
A Comparative Evaluation of Voting and Meta-learning

on Partitioned Data

Philip K. Chan and Salvatore J. Stolfo
Department of Computer Science

Columbia University
New York, NY 10027

pkc@cs.columbia.edu and sal@cs.columbia.edu

Abstract

Much of the research in inductive learning
concentrates on problems with relatively small
amounts of data. With the coming age of very
large network computing, it is likely that orders
of magnitude more data in databases will be avail-
able for various learning problems of real world
importance. Some learning algorithms assume
that the entire data set fits into main memory,
which is not feasible for massive amounts of data.
One approach to handling a large data set is to par-
tition the data set into subsets, run the learning al-
gorithm on each of the subsets, and combine the
results. In this paper we evaluate different tech-
niques for learning from partitioned data. Our
meta-learning approach is empirically compared
with techniques in the literature that aim to com-
bine multiple evidence to arrive at one prediction.

1 Introduction

Much of the research in inductive learning concentrates on
problems with relatively small amounts of data. With the
coming age of very large network computing, it is likely
that orders of magnitude more data in databases will be
available for various learning problems of real world im-
portance. The Grand Challenges of HPCC (Wah, 1993) are
perhaps the best examples. Financial institutions and mar-
ket analysis firms are already dealing with overwhelming
amounts of global information that in time will undoubt-
edly grow in size faster than improvements in machine
resources. Some learning algorithms require all the data to
be resident in main memory. However, this requirement be-
comes untenable when the amount of data exceeds the size
of main memory, which is obviously possible for any real-
istic database; we call this the scaling problem. Even with
large virtual memory, constantly swapping data in and out
of memory becomes a significant overhead. Furthermore,
it is not inconceivable that the amount of data can exceed
the virtual memory. This is also why data are disk-resident
in database management systems.

One approach to solve the scaling problem is data reduction,
meaning to partition the data set into smaller subsets, apply
learning algorithms on each subset, followed by a phase
that combines the learned results. Each subset is sized to fit
into main memory. In addition to alleviating the memory
restriction problem, we can speed up the process by running
the learning programs in parallel on multiple processors.
In fact, parallel and distributed learning motivated us to
investigate learning from partitioned data. Our ultimate
goal is to develop a sound approach to scalable and accurate
learning systems for massive amounts of distributed data.
However, in such schemes one may presume that accuracy
will suffer; i.e., combining results for separate classifiers
may not be as accurate as learning from the entire data
set. Thus, it is important to determine which schemes for
combining results have minimal impact on the quality of
the final result. Furthermore, we note that the partitioned
data approach reported here is different from much of the
similar work which combines multiple classifiers trained
from the “entire” data set for accuracy improvement.

In this paper we study different techniques for combining
predictions generated by a set of base classifiers, each of
which is computed by a learning algorithm applied to a
distinct data subset. Common techniques such as voting and
statistical schemes are evaluated. These familiar techniques
are compared to our proposed meta-learning techniques,
which were first presented in (Chan & Stolfo, 1993b). The
contributions of this paper are two fold. We systematically
compare schemes reported in the literature to our proposed
meta-learning techniques. We also demonstrate empirically
that our approach produces more accurate trained classifiers
than the other schemes.

2 Common Voting and Statistical

Techniques

Many of the simpler techniques that aim to combine multi-
ple evidence into a singular prediction are based on voting.
The first scheme we examine is simple voting. That is, based
on the predictions of different base classifiers, a final predic-
tion is chosen as the classification with a plurality of votes.
A variation of simple voting is weighted voting. Each clas-

sifier is associated with a weight, which is determined by
how accurate the classifier performs on a validation set. (A
validation set is a set of examples randomly selected from
all the subsets. Since each classifier is trained on only one
subset, examples in the other subsets that contribute to the
validation set provide a measure of predictiveness.) Each
prediction is weighted by the classifier’s assigned weight.
The weights of each classification are summed and the final
prediction is the classification with the heaviest weight.

Littlestone and Warmuth (1989) propose several weighted
majority algorithms for combining different classifiers. (In
their work the classifiers are different prediction algorithms,
which are not necessarily learned. The training data are
only used for calculating the weights.) These combining
algorithms are similar to the weighted voting method de-
scribed above; the main difference is how the weights are
obtained. The basic algorithm, calledWM , associates each
learned classifier with an initial weight. Each example in
the training set is then processed by the classifiers. The fi-
nal prediction for each example is generated as in weighted
voting. If the final prediction is wrong, the weights of the
classifiers whose predictions are incorrect are multiplied by
a fixed discount �, where 0 � � < 1, that decreases their
contribution to final predictions.

A variation of the basic WM algorithm, called WML,
does not allow the weights to be discounted beyond a pre-
defined limit. A discount can only occur if the weight is
larger than

number of classifiers

times the total weight of

all classifiers, where 0 � < :5. Another variation, called
WMR, produces randomized responses. The probability
of a classification selected as the final prediction is the total
weight of that classification divided by the total weight of all

classifications; i.e., P (class
x

) =

total weight(class

x

)

P

i

total weight(class

i

)

.

The weights are trained as in the WM algorithm.

Littlestone and Warmuth’s (1989) weighted majority
work is mainly theoretical. Their model assumes
that the classifiers make binary predictions. They
show that if the best classifier makes m mistakes,
the weighted majority algorithms will make at most
c(log(number of classifiers) + m) mistakes, where c

is a fixed constant. We adapt their techniques in this study
to include classifiers that predict an arbitrary number of
classes. Again, we use a validation set to train the weights
in the weighted majority algorithms.

Xu et al. (1992) developed a method for combin-
ing predictions from multiple classifiers based on the
Bayesian formalism. The belief function they de-
rived (Equation 32) is simplified as: bel(class

i

; x) �

Q

classifiers

k

P (class

i

j classifier

k

(x)), where x is an in-
stance and classifier

k

(x) is the classification of instance
x predicted by classifier

k

. The final prediction is class
j

where bel(class

j

; x) is the largest among all classes. We
estimate the conditional probabilities from the frequencies
generated from the validation set.

We now discuss our meta-learning techniques for combin-

ing classifications produced by multiple classifiers. These
techniques differ from the simple voting and statistical
methods we just discussed.

3 Meta-learning Techniques

Rather than learning weights, our approach introduced in
(Chan & Stolfo, 1993b) is to meta-learn a set of new clas-
sifiers (or meta-classifiers) whose training data are based
on predictions of a set of base classifiers. Our techniques
fall into two general categories: the arbiter and combiner
schemes.

We distinguish between base classifiers and ar-
biters/combiners as follows. A base classifier is the out-
come of applying a learning algorithm directly to “raw”
training data. The base classifier is a program that given a
test datum provides a prediction of its unknown class. For
purposes of this study, we ignore the representation used by
the classifier (to preserve the algorithm-independent prop-
erty). An arbiter or combiner, as detailed below, is a pro-
gram generated by a learning algorithm that is trained on the
predictions produced by a set of base classifiers and the raw
training data. The arbiter/combiner is also a classifier, and
hence other arbiters or combiners can be computed from
the set of predictions of other arbiters/combiners.

3.1 Arbiter

An arbiter (Chan & Stolfo, 1993d) is learned by some learn-
ing algorithm to arbitrate among predictions generated by
different base classifiers. That is, its purpose is to pro-
vide an alternate and more educated prediction when the
base classifiers present diverse predictions. This arbiter, to-
gether with an arbitration rule, decides a final classification
outcome based upon the base predictions. Figure 1 depicts
how the final prediction is made with predictions from two
base classifiers and a single arbiter. The details of how the
final decision is made follows.

Let x be an instance whose classification we seek, C1(x),
C2(x), ... C

k

(x) are the predicted classifications ofx from k

base classifiers, C1,C2, ... C
k

, andA(x) is the classification
of x predicted by the arbiter. One arbitration rule studied
and reported here is as follows:

� Return the class with a plurality of votes in C1(x),
C2(x), ... C

k

(x), and A(x), with preference given to
the arbiter’s choice in case of a tie.

We now detail how an arbiter is learned. The training set
of an arbiter is generated in a way that it contains the raw
training examples whose classifications the base classifiers
cannot predict consistently. Formally, a training set T for
the arbiter is generated by picking examples from the val-
idation set E. The choice of examples is dictated by a
selection rule. One version of a selection rule studied here
is as follows:

� An instance is selected if none of the classes

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Arbiter

Arbitration

Rule

Arbiter’s

Prediction
Combiner

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Figure 1: An arbiter and a combiner with two classifiers.

in the k base predictions gathers a majority
vote (> k=2 votes); i.e., T = fx 2 E j

no majority(C1(x); C2(x); :::Ck

(x))g:

The purpose of this rule is to choose examples that are
confusing; i.e., the majority of classifiers do not agree. Fig-
ure 2 presents a sample training set for the arbiter strategy.
Once the training set is formed, an arbiter is generated by
the same learning algorithm used to train the base classi-
fiers. Together with an arbitration rule, the learned arbiter
resolves conflicts among the classifiers when necessary.
Other arbiter schemes were investigated in (Chan & Stolfo,
1995).

3.2 Combiner

The aim of the combiner strategy (Chan & Stolfo, 1993a)
is to coalesce the predictions from the base classifiers by
learning the relationship between these predictions and the
correct prediction. For example, a base classifier might
consistently make the correct predictions for class c; i.e.,
when this base classifier predicts class c, it is probably cor-
rect regardless of the predictions made by the other base
classifiers. In the combiner strategy the predictions of the
learned base classifiers on the training set form the basis of
the meta-learner’s training set. A composition rule, which
varies in different schemes, determines the content of train-
ing examples for the meta-learner. From these examples,
the meta-learner generates a meta-classifier, that we call a
combiner. In classifying an instance, the base classifiers
first generate their predictions. Based on the same compo-
sition rule, a new instance is generated from the predictions,
which is then classified by the combiner (see Figure 1). We
note that a combiner computes a prediction that may be
entirely different from any proposed by a base classifier,
whereas an arbiter chooses one of the predictions from the
base classifiers and the arbiter itself.

We experimented with two schemes for the composition
rule. First, the predictions, C1(x), C2(x), ... C

k

(x), for
each example x in the validation set of examples, E, are

generated by the k base classifiers. These predicted classi-
fications are used to form a new set of “meta-level training
instances,” T , which is used as input to a learning algorithm
that computes a combiner. The manner in which T is com-
puted varies as defined below. In the following definitions,
class(x) and attribute vector(x) denote the correct clas-
sification and attribute vector of example x as specified in
the validation set, E.

1. Return meta-level training instances with the cor-
rect classification and the predictions; i.e., T =

f(class(x); C1(x); C2(x); :::Ck

(x)) j x 2 Eg: This
scheme was also used by Wolpert (1992). (For further
reference, this scheme is denoted as class-combiner.)

2. Return meta-level training instances as in class-
combiner with the addition of the attribute vectors;
i.e., T = f(class(x); C1(x); C2(x); ::::Ck

(x);

attribute vector(x)) j x 2 Eg: (This scheme is de-
noted as class-attribute-combiner.)

Figure 2 presents sample training sets for these two com-
biner schemes. Other combiner schemes were studied in
(Chan & Stolfo, 1993a).

Experiments were run to compare the accuracy of the dif-
ferent techniques we presented so far. The next section
discusses our findings.

4 Experiments and Results

Two inductive learning algorithms were used in our exper-
iments. ID3 (Quinlan, 1986) and CART (Breiman et al.,
1984) were obtained from NASA Ames Research Center
in the IND package (Buntine & Caruana, 1991). They
are both decision tree learning algorithms that require all
training examples to be resident in main memory.

Two data sets were used in our studies. The DNA splice
junction (SJ) data set (Towell et al., 1990), courtesy of
Towell, Shavlik and Noordewier, contains sequences of
nucleotides and the type of splice junction, if any, at the

Class Attribute vector Example Base classifiers’ predictions

class(x) attribute vector(x) x C1(x) C2(x) C3(x)

table attrvec1 x1 table table table
chair attrvec2 x2 table chair lamp
lamp attrvec3 x3 lamp chair table

Training set for
the arbiter scheme

Instance Class Attribute vector
1 chair attrvec2

2 lamp attrvec3

Training set for
the class-combiner scheme

Instance Class Attribute vector

1 table (table, table, table)
2 chair (table, chair, lamp)
3 lamp (lamp, chair, table)

Training set for
the class-attribute-combiner scheme

Instance Class Attribute vector

1 table (table, table, table, attrvec1)
2 chair (table, chair, lamp, attrvec2)
3 lamp (lamp, chair, table, attrvec3)

Figure 2: Sample training sets generated by the arbiter and combiner strategies with three base classifiers.

center of each sequence. There are three possible classes
in this task. Each sequence has 60 nucleotides with 8 dif-
ferent values each (four base ones plus four combinations).
The data set contains 3,190 training instances. The protein
coding region (PCR) data set (Craven & Shavlik, 1993),
courtesy of Craven and Shavlik, contains DNA nucleotide
sequences and their binary classifications (coding or non-
coding). Each sequence has 15 nucleotides with four dif-
ferent values each. The PCR data set has 20,000 sequences.
The two data sets chosen in our experiments represent two
different kinds of data sets: learning algorithms perform
well on the SJ data set (90+% accuracy) and not so well on
the PCR data set (70+%).

In our experiments, we varied the number of equi-sized sub-
sets of training data from 2 to 64 ensuring each was disjoint
but with proportional distributionof examples of each class.
The size of a validation set used for generating the combin-
ing structures (weights/probabilities/arbiters/combiners) is
twice the size of a subset. The prediction accuracy on a
separate test set is our primary comparison measure. The
voting, statistical, and meta-learning strategies discussed in
this paper were run on the two data sets with the two learning
algorithms. The results are plotted in Figure 3. The accu-
racy for the serial case is plotted as “one subset,” meaning
the learning algorithms was applied to the entire training
set to produce the baseline accuracy results for comparison.
The average accuracy of the base classifiers for each num-
ber of subsets is also plotted, labeled as “avg-base.” The
average of the highest accuracy among the base classifiers
in each run is plotted with label “max-base.” The plotted
accuracy is the average of 10-fold cross-validation runs.
Statistical significance was measured using the one-sided
t-test with 90% confidence value.

For the splice junction data set, all the methods sustain
a drop in accuracy when the number of subsets increases

(i.e., the size of each distinct subset of training data de-
creases). For either algorithm, the class-combiner and
class-attribute-combiner schemes exhibit higher accuracy
than all the other techniques. The difference is statistically
significant for ID3 with most subset sizes and for CART
with a few subset sizes. At 64 subsets, with� 45 examples
each, while the other methods sustain significantly more
than 10% in accuracy degradation, the combiner meth-
ods incur around 10% or less decrease in accuracy. The
weighted-majority-random method performs the worst and
significantly worse than the others.

For the protein coding region data set, only the arbiter
scheme can maintain, and sometimes exceeds, the original
accuracy level. Most other techniques suffer a significant
drop in accuracy for two subsets and climb back to the orig-
inal accuracy level when the number of subsets increases.
The accuracy difference between the arbiter scheme and the
other non-meta-learning techniques is statistically signifi-
cant at two and four subsets. Again, the weighted-majority-
random method performs much worse than the others.

In general all the methods, except the weighted-majority-
random scheme, considerably outperform the average base
classifier (“avg-base”). The gap is statistically significant.
Furthermore, they outperform the average most accurate
base classifier (“max-base”) except with CART in the splice
junction domain. That is, random sampling of the training
data is definitely not sufficient to generate accurate classi-
fiers in the two data sets we studied. Hence, combining
techniques are necessary.

From our experiments, our meta-learning strategies com-
pare favorably with the weighted voting techniques across
domains and learners used in this study. However, the meta-
learning techniques do not always outperform the weighted
schemes. In the splice junction domain, the combiner tech-

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

voting
weighted-voting

WM
WML
WMR

bayesian-belief
arbiter

class-combiner
class-att-combiner

avg-base
max-base

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

voting
weighted-voting

WM
WML
WMR

bayesian-belief
arbiter

class-combiner
class-att-combiner

avg-base
max-base

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

voting
weighted-voting

WM
WML
WMR

bayesian-belief
arbiter

class-combiner
class-att-combiner

avg-base
max-base

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

voting
weighted-voting

WM
WML
WMR

bayesian-belief
arbiter

class-combiner
class-att-combiner

avg-base
max-base

Figure 3: Accuracy for the one-level combining techniques.

niques are more favorable while in the protein coding re-
gion domain the arbiter technique is. It is not clear under
what circumstances a particular meta-learning strategy will
perform favorably. More experiments and studies are un-
derway in an attempt to gain an understanding of these
circumstances.

As we observe in the splice junction domain, none of the
schemes can maintain the original accuracy when the num-
ber of subsets increases. All the techniques presented so
far can be characterized as one-level methods. They only
perform one level of processing to generate the combin-
ing structures. In the next section we discuss a more so-
phisticated meta-learning approach, called arbiter tree, that
generates multiple levels of combining structures.

5 Arbiter Tree

In Section 3 we discussed how an arbiter is learned and
used. The arbiter tree approach learns arbiters in a bottom-
up, binary-tree fashion. (The choice of a binary tree is to
simplify our discussion.) An arbiter is learned from the
output of a pair of learned classifiers and recursively, an
arbiter is learned from the output of two arbiters. A binary
tree of arbiters (called an arbiter tree) is generated with the
initially learned base classifiers at the leaves. For k subsets
and k classifiers, there are log2(k) levels generated.

When an instance is classified by the arbiter tree, predictions
flow from the leaves to the root. First, each of the leaf
classifiers produces an initial prediction; i.e., a classification
of the test instance. From a pair of predictions and the
parent arbiter’s prediction, a prediction is produced by an
arbitration rule. This process is applied at each level until
a final prediction is produced at the root of the tree.

We now proceed to describe how to build an arbiter tree
in detail. For each pair of classifiers, the union of the data
subsets on which the classifiers are trained is generated.
This union set is then classified by the two base classi-
fiers. A selection rule compares the predictions from the
two classifiers and selects instances from the union set to
form the training set for the arbiter of the pair of base clas-
sifiers. To ensure efficient computation, we bound the size
of the arbiter training set to the size of each data subset;
i.e., the same data reduction technique is applied to learn-
ing arbiters. The arbiter is learned from this set with the
same learning algorithm. In essence, we seek to compute a
training set of data for the arbiter that the classifiers together
do a poor job of classifying. The process of forming the
union of data subsets, classifying it using a pair of arbiter
trees, comparing the predictions, forming a training set, and
training the arbiter is recursively performed until the root
arbiter is formed.

For example, suppose there are initially four training data
subsets (T1�T4), processed by some learning algorithm,L.
First, four classifiers (C1�C4) are generated from T1 �T4.
The union of subsets T1 and T2, U12, is then classified by
C1 and C2, which generates two sets of predictions (P1

A
12

A
34

A
14

T T T T
1 2 3 4

Classifiers

Training data subsets

Arbiters

C C C C
1 2 3 4

T

T T
3412

14

Figure 4: Sample binary arbiter tree.

and P2). A selection rule generates a training set (T12) for
the arbiter from the predictions P1 and P2, and the subset
U12. The arbiter (A12) is then trained from the set T12 using
the same learning algorithm (L) used to learn the initial
classifiers. Similarly, arbiter A34 is generated in the same
fashion starting from T3 and T4 and hence all the first-level
arbiters are produced. Then U14 is formed by the union of
subset T1 through T4 and is classified by the arbiter trees
rooted with A12 and A34. Similarly, T14 and A14 (root
arbiter) are generated and the arbiter tree is completed. The
resultant tree is depicted in Figure 4.

This process can be generalized to arbiter trees of higher or-
der. The higher the order is, the shallower the tree becomes.
In a parallel environment this translates to faster execution.
However, there will logically be an increase in the number
of disagreements and higher communication overhead at
each level in the tree due to the arbitration of many more
predictions at a single arbitration site.

5.1 Empirical Results

Using the two data sets described in Section 4, we per-
formed experiments to evaluate the arbiter tree approach.
Again, we varied the number of subsets from 2 to 64 and
measured the prediction accuracy on a disjoint test set. The
plotted results in Figure 5 are averages from 10-fold cross-
validation runs.

We varied the order of the arbiter trees from two to eight.
For the splice junction data set, there is a drop in accuracy
when the number of subsets increases. Also, the higher
order trees are generally less accurate than the lower ones.
However, in the protein coding region domain, the accuracy
is maintained, or exceeded in some circumstances, regard-
less of the order of the trees.

Recall that at each tree level, the size of the arbiter train-
ing set is fixed to the size of a data subset. If we relax
the restriction on the size of the data set for training an
arbiter, we might expect an improvement in accuracy at
the expense in processing time. To test this hypothesis,
a set of experiments was performed to double the maxi-
mum training set size for the arbiters. As we observe in
Figure 5, by doubling the arbiter training set size, the orig-
inal accuracy is roughly maintained by the binary trees in

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u
ra

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

Figure 5: Accuracy for the arbiter tree techniques.

the splice junction domain, regardless of the learner. For
4-ary and 8-ary trees, the accuracy results show no signif-
icant improvement. However, more importantly, when the
data set is partitioned, this multi-level arbiter tree approach
does demonstrate an accuracy improvement over the one-
level techniques, which might not maintain the accuracy
obtained from the whole data set in our experiments.

6 Discussion

Incremental learning algorithms have been proposed that
allow the flexibility of not requiring all training examples
to be inspected at once. However, some incremental algo-
rithms do require the storage of all examples for future ex-
amination during learning, for example, ID5 (Utgoff, 1989).
That is, these incremental learning algorithms still demand
that all examples fit in the main memory, which is not plau-
sible for massive amounts of data. For those incremental
algorithms that do not require all examples to be resident
in memory, like neural nets, many demand multiple passes
over the data to achieve convergence, which usually con-
sumes substantial processing time. Incremental IBL (Aha
& Kibler, 1989) makes only one pass over the data and
stores only a subset of the training examples; however, it
does not bound the number of examples retained during
training.

Quinlan (1979) approached the problem of scaling with a
windowing technique. Wirth and Catlett (1988) show that
the windowing technique does not significantly improve
speed on reliable data. On the contrary, for noisy data, win-
dowing considerably slows down the computation. Using
a NASA data set, Catlett (1991) demonstrates that larger
amounts of data improve accuracy, but the time for ID3
to process a million records might take several months on
a MIPS workstation, which is intolerably slow. In addi-
tion, windowing does speed up computation considerably
for this data set, but introducing noise to the data slows
down learning dramatically.

Another approach to solving the scaling problem is simply
to increase the number of processors and available mem-
ory, parallelize the learning algorithms and apply the paral-
lelized algorithm to the entire data set. Zhang et al.’s (1989)
work on parallelizing the backpropagation algorithm on a
Connection Machine is one example. This approach re-
quires optimizing the code for a particular algorithm on a
specific parallel architecture. Our approach is to run the
serial code on a number of data subsets in parallel and
combine the results with meta-learning thus reducing and
limiting the amount of data inspected by any one learn-
ing process (Chan & Stolfo, 1993d). This approach has
the advantage of using the same serial code without the
time-consuming process of parallelizing it. Since the meta-
learning framework for combining the results of learned
concepts is independent of the learning algorithm, it can be
used with different algorithms.

Our arbiter approach has some relation to Schapire’s (1990)

theoretical work on hypothesis boosting under the PAC
learning model. Based on an initial learned hypothesis for
some concept derived from a random distribution of train-
ing data, Schapire successively generates two additional
distributions of examples, to which the learning algorithm
is then applied. Half of the examples in the first additional
distribution is classified incorrectly by the initial hypoth-
esis. Examples in the second additional distribution are
classified differently by the hypotheses learned from the
first two distributions. Unlike Schapire’s approach, the first
two distributions in our arbiter approach are generated inde-
pendently (concurrently if desired) and the third distribution
can be smaller than the first two.

Lastly, our class-combiner technique is very similar to
Zhang et al.’s (1992) and Wolpert’s (1992) work. However,
their work focuses on improving accuracy by employing
multiple learning algorithms.

7 Concluding Remarks

The moral of the story is simply that attacking the scaling
problem by data reduction does have a negative impact on
accuracy. However, among the combining schemes, em-
pirical results presented in this paper show that our meta-
learning strategies can outperform the other more com-
mon one-level voting-based techniques. The results also
demonstrate that training on randomly sampled subsets of
examples, without combining, is definitely not sufficient
to maintain high accuracy. In the two domains we stud-
ied, the one-level meta-learning schemes cannot generally
achieve our goal of maintaining the accuracy across dif-
ferent numbers of subsets. To solve this problem, we pro-
posed a more sophisticated meta-learning strategy, called
arbiter tree. Results from our investigation show that the
arbiter tree approach is viable in sustaining the same level
of accuracy as a base classifier given the entire data set.
Furthermore, our techniques are also data and algorithm-
independent, which enable any learning algorithm to train
on large data sets (preliminary results from another data set
and two other algorithms are reported in (Chan & Stolfo,
1993d).)

We are investigating meta-learners that are specialized in
combining decisions. Learners that search M-of-N con-
cepts and other counting-related decision rules might be
useful in locating effective combining rules. We are also
studying the use of multiple learning algorithms in gen-
erating base classifiers to improve the overall prediction
accuracy (Chan & Stolfo, 1993c). Moreover, the arbiter
tree approach can also be applied to combiners to generate
combiner trees (Chan & Stolfo, 1995).

Acknowledgements

We thank the anonymous reviewers for their comments.
This work has been partially supported by grants from NSF
(IRI-94-13847 and CDA-90-24735), New York State Sci-
ence and Technology Foundation, and Citicorp.

References

Aha, D. & Kibler, D. (1989). Noise-tolerant instance-
based learning algorithms. Proc. IJCAI-89 (pp. 794–
799).

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,
C. J. (1984). Classification and Regression Trees. Bel-
mont, CA: Wadsworth.

Buntine, W. & Caruana, R. (1991). Introduction to IND
and Recursive Partitioning. NASA Ames Research Cen-
ter.

Catlett, J. (1991). Megainduction: A test flight. Proc.
Eighth Intl. Work. Machine Learning (pp. 596–599).

Chan, P. & Stolfo, S. (1993a). Experiments on multi-
strategy learning by meta-learning. Proc. Second Intl.
Conf. Info. Know. Manag. (pp. 314–323).

Chan, P. & Stolfo, S. (1993b). Meta-learning for multi-
strategy and parallel learning. Proc. Second Intl. Work.
on Multistrategy Learning (pp. 150–165).

Chan, P. & Stolfo, S. (1993c). Toward multistrategy
parallel and distributed learning in sequence analysis.
Proc. First Intl. Conf. Intel. Sys. Mol. Biol. (pp. 65–73).

Chan, P. & Stolfo, S. (1993d). Toward parallel and
distributed learning by meta-learning. Working Notes
AAAI Work. Know. Disc. Databases (pp. 227–240).

Chan, P. & Stolfo, S. (1995). Learning arbiter and com-
biner trees from partitioned data for scaling machine
learning. Proc. Intl. Conf. Knowledge Discovery and
Data Mining. To appear.

Craven, M. & Shavlik, J. (1993). Learning to represent
codons: A challenge problem for constructive induction.
Proc. IJCAI-93 (pp. 1319–1324).

Littlestone, N. & Warmuth, M. (1989). The weighted
majority algorithm. (Technical Report UCSC-CRL-89-
16): Univ. Cal., Santa Cruz.

Quinlan, J. R. (1979). Induction over large data
bases. (Technical Report STAN-CS-79-739): Comp.
Sci. Dept., Stanford Univ.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1, 81–106.

Schapire, R. (1990). The strength of weak learnability.
Machine Learning, 5, 197–226.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Re-
finement of approximate domain theories by knowledge-
based neural networks. Proc. AAAI-90 (pp. 861–866).

Utgoff, P. (1989). Incremental induction of decision
trees. Machine Learning, 4, 161–186.

Wah, B. (1993). High performance computing and com-
munications for grand challenge applications: Computer
vision, speech and natural language processing, and arti-
ficial intelligence. IEEE Trans. Know. Data. Eng., 5(1),
138–154.

Wirth, J. & Catlett, J. (1988). Experiments on the costs
and benefits of windowing in ID3. Proc. Fifth Intl. Conf.
Machine Learning (pp. 87–99).

Wolpert, D. (1992). Stacked generalization. Neural
Networks, 5, 241–259.

Xu, L., Krzyzak, A., & Suen, C. (1992). Methods of
combining multiple classifires and their applications to
handwriting recognition. IEEE Trans. Sys. Man. Cyb.,
22, 418–435.

Zhang, X., Mckenna, M., Mesirov, J., & Waltz, D.
(1989). An Efficient Implementation of the Backprop-
agation Algorithm on the Connection Machine CM-2.
(Technical Report RL89-1): Thinking Machines Corp.

Zhang, X., Mesirov, J., & Waltz, D. (1992). A hybrid
system for protein secondary structure prediction. J.
Mol. Biol., 225, 1049–1063.

