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Abstract

We analyze the machine learning bias of
stacking and point out the conflict problem.
Conflicts are defined as base data with differ-
ent class labels that produced the same pre-
dictions by a set of base classifiers. Based on
conflicts, we propose conflict-based accuracy

estimate to determine the overall accuracy of
a stacked classifier and conflict-based accu-

racy improvement estimate to determine the
overall accuracy improvement over base clas-
sifiers. We discuss some popular metrics for
comparing and evaluating a set of classifiers:
coverage, correlated error, diversity and spe-

cialty, and show that these metrics do not
accurately estimate the overall accuracy of a
stacked classifier system. From experimental
results, we demonstrate that conflict-based

accuracy estimate is an effective measure to
predict overall performance and compare dif-
ferent stacked systems, and conflict-based ac-

curacy improvement estimate is a good mea-
sure to project the overall accuracy improve-
ment.

1 Introduction

Stacking [16] is a widely known technique to combine
classifiers [7]. Empirical studies have shown that stack-
ing helps increase accuracy. Many papers in recent
years have concentrated on using various metrics, cov-

erage [2], diversity [2, 4], correlated error [1] and spe-

cialty [4], to explain stacking and choose classifiers for
combining. Choosing the best base classifiers is an im-
portant issue to increase accuracy and efficiency of a
stacked classifier system. In this paper, we will an-

alyze the machine learning bias of stacking and dis-
cuss a problem called conflicts that prevents the accu-
racy improvement of stacking. Based on conflicts, we
propose a direct measure, conflict-based accuracy es-

timate, to determine the overall accuracy of a stacked
system and conflict-based accuracy improvement esti-

mate to predict the accuracy improvement. We will
show that, except for coverage, all the other metrics
mentioned above are indirect measures of stacking and
it is hard to use them for predicting overall accuracy.
Experimental results demonstrate that conflict-based

accuracy estimate is an effective measure to predict
performance and compare different stacked systems.

The paper is organized as follows. First, we ana-
lyze the machine learning bias of stacking and propose
quantitative measures for it. The paper follows with a
comparison to previously proposed metrics. We con-
clude by a discussion of the results of experiments and
future work.

2 Conflict and Measures

2.1 Stacking and Its Conflict Problem

Following Wolpert[16], the general scheme for stack-
ing works as follows. There are t different algo-
rithms {A1,. . . ,At} and a set of training examples S =
{(x1, y1), . . . , (xm, ym)}. S is CV (or cross-validation)
partitioned into n pairs {(T1,V1), . . . , (Tn,Vn)} (2 ≤
n ≤ m). We train A1 to At on Tk to produce classifiers
C1 to Ct and apply these classifiers to predict on Vk to
obtain predicted class labels. ∀(xi, yi) ∈ Vk, we form a

new training item :
(

(

C1(xi), C2(xi), ..., Ct(xi)
)

, yi

)

.

The process is repeated for all n pairs of (Tk,Vk) to
generate a new data set, Mtrain. A1 to At are re-
applied on the complete training set S to produce base
classifiers C1 to Ct. We may use any algorithm to



learn the new meta-level training set, Mtrain, to gener-
ate the meta-classifier, MC . During testing, C1,. . .,Ct

first generate predictions. Their predictions form a
meta-level testing item (C1(x), ..., Ct(x)) that is given
to the meta-classifier. The meta-classifier’s prediction

MC

(

(C1(x), . . . , Ct(x)
)

is the final outcome.

For simplicity, we consider binary problems in which
y ∈ {0, 1}. The prediction Ci(x) of classifier Ci

on data item (x, y) is abbreviated in lowercase ci.
((c1, c2, . . . , ct), y) is thus a meta-level training data
item. The feature vector (c1, c2, . . . , ct) is further ab-
breviated as c. Each training data item (x, y) will fall
into exactly one particular c. For binary problems,
there are at most 2t different kinds or combinations of
c’s. Figure 1 shows the 8 combinations of two boolean
data sets (see Section 3). To understand how stacking
works, for a fixed combination c, we count all the oc-
currences of the same instance (c, 1) in the meta-level
training data (denoted |c, 1|), and all occurrences of
(c, 0) (denoted |c, 0|). We define accuracy α and con-

flict ratio ǫ on the combination c as:

α =
max(|c, 1|, |c, 0|)

|c, 1| + |c, 0|
, ǫ = 1 − α

For conflict c = (0, 1, 1) of BOOLEAN45 in Figure 1,
|(0, 1, 1), 1| = 1247 and |(0, 1, 1), 0| = 1445, so α =
1445/(1247 + 1445) = 0.537 and ǫ = 1247/(1247 +
1445) = 0.463.

Since the feature vector c = (c1, c2, . . . , ct) is the same
for both (c, 0) and (c, 1), any machine learning algo-
rithm has no way to distinguish between them. The
best it can do is to pick the label of the majority class,
and the minority occurrences will always be labelled
incorrectly. For the (0,1,1) type discussed above, dur-
ing testing, whenever the meta-classifier MC is given
a vector of (0,1,1), its prediction will always be 0, be-
cause |(0, 1, 1), 0| is the majority in training the meta-
classifier.

Stacking gives a final prediction according to the value
of c. We call each c a type. A data item is mapped
into exactly one type. In each type, we call one classi-
fication the majority label if its count is the majority.
Stacking chooses the majority label. For data items
of type c, stacking will have accuracy of α as defined
previously.

For data of each type, there is always an ǫ portion
that are labelled wrong. We assume that the training
data and testing data are of the same distribution; this
means that the ǫ portion will always be misclassified.
We call the ǫ portion data conflicts. Conflicts were

first discussed in [8, 14]. In this paper, we concen-
trate on measuring performance of a stacked classifier
system based on conflicts. The selection of majority
class for each conflict type is the machine learning bias
of stacking. We have used α and ǫ to quantitatively
measure the accuracy of each conflict types in previ-
ous discussion, we can further consider the effects of
conflicts on the overall performance.

Considering the effects of conflicts on a complete train-
ing set, we define conflict-based accuracy estimate A
and conflict-based error estimate E as1:

A =

P(1,1,...,1)
c

max(|c, 1|, |c, 0|)

m
, E = 1 − A

For brevity, we call conflict-based accuracy estimate

as CB-accuracy estimate and conflict-based error es-

timate as CB-error estimate. A is the portion of all
training data with majority labels. This portion is la-
belled correctly by stacking. On the contrary, E is
the portion of the training data with minority labels
and they are labelled incorrectly. A and E are predic-
tions for the stacked classifier system’s performance
in testing data. A and E are not training accuracy
and training error because when generating the meta-
level data, the base classifiers were trained from Tk

and tested against a disjoint Vk. A and E may not be
accurate when conflict ratio ǫ of some conflict types
are close to 0.5. In these cases, the chance that the
majority label of these conflict types is not the best
choice (or becomes the minority label for testing data)
is very high.

To see the effects of conflicts on overall performance,
consider Figure 1. In the left table, the accuracy α
on (0,0,1) to (1,1,0) are very low: 0.537 to 0.808.
There are in total 5647 conflicts out of 29491 train-
ing data items. So the CB-accuracy estimate is A =
23844/29491 = 0.809 and the CB-error rate estimate

is E = 5647/29491 = 0.191. The second table is even
worse. The accuracy of types (0,0,1) to (1,1,0) are
from 0.526 to 0.768. The type (1,0,0) is very tricky,
since ǫ is nearly 0.50. The chance that the majority
prediction 0 will be wrong for the testing data is high.

2.2 Measuring Performance of Stacking

We first consider different performance measurements.
We propose to use CB-accuracy estimate to predict
stacking’s performance. We then discuss some popular
metrics and show by example that it is relatively hard
to use them to predict the overall accuracy.

1P(1,1,...,1)
c

iterates from (0, 0, . . . , 0) to (1, 1, . . . , 1)



BOOLEAN45 Meta Level Data
Majority

c |c, 1| |c, 0| α ǫ Label

(0,0,0) 524 3990 0.884 0.116 0
(0,0,1) 379 639 0.628 0.372 0
(0,1,0) 748 1678 0.692 0.308 0
(0,1,1) 1247 1445 0.537 0.463 0
(1,0,0) 886 284 0.757 0.243 1
(1,0,1) 1318 456 0.743 0.257 1
(1,1,0) 2210 526 0.808 0.192 1
(1,1,1) 11478 1683 0.872 0.128 1

CB-accuracy estimate A = 0.809

BOOLEAN5678 Meta Level Data
Majority

c |c, 1| |c, 0| α ǫ Label

(0,0,0) 867 21929 0.962 0.038 0
(0,0,1) 396 1314 0.768 0.232 0
(0,1,0) 0 0 0.00 0.00 0
(0,1,1) 0 0 0.00 0.00 0
(1,0,0) 1249 1385 0.526 0.474 0
(1,0,1) 1419 932 0.604 0.396 1
(1,1,0) 0 0 0.00 0.00 0
(1,1,1) 0 0 0.00 0.00 0

CB-accuracy estimate A = 0.883

Figure 1: Sample of Conflicts with RIPPER, CART and ID3 as base classifiers

Measurements: Accuracy difference, accuracy im-

provement [4] and error ratio [1] were used previously
to compare the performance of different combining
structures. Let σ denote the overall accuracy of a
stacked classifier system and φ denote the average ac-
curacy of constituent base classifiers. The accuracy
difference is defined as [4], accuracy difference =
(σ − φ). The accuracy improvement [4] is defined as,
accuracy improvement = σ−φ

φ
. Using this notation,

the error ratio [1] is defined as, error ratio = 1−σ
1−φ

.
These measures are appropriate when the base classi-
fiers are fixed. However, it is problematic to use them
to compare two different structures, since these mea-
sures are defined over the average predictive accuracy
of all base classifiers. A stacked system with inaccu-
rate base classifiers may have a very high accuracy im-
provement, but may not necessarily have a good over-
all performance σ. To compare different structures,
choose classifiers for stacking and prune classifiers, we
claim that using accuracy σ is more appropriate. Pre-
suming the training and testing data have the same
distribution, we hypothesize CB-accuracy estimate A,
derived from conflicts, is a good and direct estimation
of σ.

We also define conflict-based accuracy improvement es-

timate to project accuracy improvement. It is defined

as, (A−B)
B

. B is the average of the base classifier ac-

curacy estimate, which is easily calculated from the
meta-level training data by counting how many predic-
tions for one classifier have correct labels. For brevity,
we call conflict-based accuracy improvement estimate

as CB-accuracy improvement estimate.

Metrics: Recent work on stacking has concentrated
effort on using coverage [2], diversity [2, 4], specialty

[4] and correlated error [1] to choose classifiers for
combining and to explain how stacking increases ac-
curacy. For a detailed description and formal defi-
nition of these metrics, please refer the cited papers.
These metrics, except for coverage, are indirect mea-

surements of stacking. On the other hand, conflicts ex-
plains what actually contributes to accuracy improve-
ment and what prevents it. Conflicts is not a metric.
It is the cause of poor performance of stacking. CB-

accuracy estimate A, derived from conflicts, can be
used to directly predict the accuracy of a stacked clas-
sifier system.

It has been reported that there is either an increasing
or a decreasing trend of accuracy improvement (not
overall accuracy) when these metrics increase. As we
shall see, it is relatively hard to use these metrics to
estimate how well the overall stacked system will be.

Coverage, introduced by Brodley and Lane [2], mea-
sures the fraction of instances for which at least one
of the base classifiers produces the correct predictions.
Coverage actually measures 2 extreme cases of con-
flict, ((0, 0, . . . , 0), 1) and ((1, 1, . . . , 1), 0). In terms
of conflicts, we can define coverage as: coverage =

1 − |(0,0,...,0),1|+|(1,1,...,1),0|
m

. But conflict is more gen-
eral than coverage. It is reported that high coverage

will increase stacking’s accuracy improvement [2, 4].
This is natural since high coverage reduces the occur-
rences of the two extreme cases of conflicts.

Diversity [2, 4] measures how different the base classi-
fiers are, based on their predictions. When the value
of diversity grows, the predictions from the base classi-
fiers are more evenly distributed and, therefore, more
diverse. It has been observed that accuracy improve-
ment increases with diversity. But it is not necessarily
true that high diversity will increase overall accuracy.
From the example in Figure 2, we see that when diver-

sity increases, overall accuracy σ can either increase or
decrease. The numbers in Figure 2 are calculated from
the formula of each metric.

Correlated Error, introduced by Ali and Pazzani [1],
measures the fraction of instances for which a pair of
base classifiers make the same incorrect prediction. It
has been observed that there is a decreasing trend in



Diversity vs Conflicts
Scenario 1 Scenario 2

Conflict 1 Conflict 2 Conflict 1 Conflict 2
((1,1),1) ((1,0),1) ((1,1),1) ((0,0),1)
((1,1),1) ((1,0),1) ((1,1),0) ((0,1),0)
((1,0),0) ((1,0),0) ((0,0),1) ((1,0),1)
((1,0),0) ((1,0),0) ((0,0),0) ((1,1),1)

diversity = 0.5 diversity = 1 diversity = 0 diversity = 0.5
σ = 1 σ = 0.5 σ = 0.5 σ = 1

Conflicts vs Correlated Error
Scenario 1 Scenario 2

(c, y) |c, y| (c, y) |c, y|
((0,0,1,0),0) 100 ((0,0,1,0),0) 200
((0,0,1,0),1) 400 ((0,0,1,0),1) 100
((0,1,1,0),0) 800 ((0,1,1,0),0) 800
((0,1,1,0),1) 500 ((0,1,1,0),1) 800
correlated error = 0.2314 correlated error = 0.1667

σ = 0.6667 σ = 0.5263

Figure 2: Diversity and Correlated Error vs. Overall Performance

Example 1 Example 2 Example 3
((1,0),0) ((1,0),0) ((0,0),0)
((0,1),0) ((0,1),0) ((0,0),0)
((0,1),1) ((0,1),1) ((1,1),1)
((0,0),1) ((1,0),1) ((1,1).1)

specialty = 0.25 specialty = 0 specialty = 0
σ = 0.75 σ = 0.5 σ = 1

Figure 3: Specialty vs. Overall Performance

accuracy improvement when correlated error increases
[1, 4]. But also, from the example in Figure 2, we
observe that when correlated error decreases, overall
accuracy σ also decreases.

Specialty, introduced by Chan [4], measures how bi-
ased the base classifiers’ predictions are towards cer-
tain classes. That is, they are more accurate in pre-
dicting certain classes than others. As this measure
increases, the base classifiers are more biased and spe-
cialized to certain classes. It has been reported that
there is an increasing trend of accuracy improvement
when specialty increases. But this does not mean the
overall performance will be good either, as noted in
Figure 3.

3 Experiments and Results

We wish to determine whether or not the proposed
CB-accuracy estimate accurately estimates the overall
performance σ and if CB-accuracy improvement esti-

mate is effective towards projecting the true accuracy
improvement. We compare them with those previously
defined.

Experimental Set-up: In our experiments, four
data sets were used, two artifical boolean data sets
and two real world credit card transaction data sets.
We generated two artificial data sets of 15 boolean
variables. For BOOLEAN5678, the data item is true

if 5, 6, 7 or 8 variables out of 15 are 1 otherwise it
is false. Since there are 15 variables, there are 215

= 32768 data items in total. The percentage of data
items with label true are about 64%. Another simi-
lar artificial data set, BOOLEAN45 was generated in a

similar way: a data item is true if 4 or 5 variables out
of 15 are 1. The percentage of data with label true is
about 13.3%. We used 10-fold CV in our test and did
not replicate any data items, so the training and test
sets were disjoint. These two datasets are noise-free
and of significant size, it is relatively easy for us to
analyze results under such conditions.

We also ran experiments on two real world data sets,
First Union Credit Card Transaction Data and Chase
Credit Card Transaction Data. The target classifica-
tion of the data is either legitimate or fraudulent. For a
description of the data schema, refer to [14]. From each
bank, we obtained 0.5 million data spanning a whole
year. The First Union data was not uniformally sam-
pled for each month. The percentage of fraud ranges
from 4% to over 20% over each month and the size of
data for each month varies. In our experiment, we re-
moved all fields that are not available at authorization
time and then culled all transactions into one large
data set. We partitioned the data into 10 folds, used
one fold for training and another fold for testing for
a total of 5 runs. Each fold is disjoint. The Chase
Credit Card data was more uniformly sampled than
the First Union data. The fraud percentage of each
month ranges from 17% to 23%. The data set size
of each month varies from 28k to 50K. Although the
training and testing data are not of the same distribu-
tion, we think that this data set is more appropriate to
test these measures in a real world situation. We used
data of one month for training and data of 2 months
later for testing. (In a real world content, there is a
one month billing cycle and a one month investigation
to ultimately determine if a transaction is fraudulent.)
Since our data set is 12 months, only 10 experiments
are feasible.

We used RIPPER [6], CART, ID3 and C4.5 [3] as the
base learners. We combined 2 and 3 out of the 4 base
classifiers trained by these programs and formed 10
different stacked systems. 2-fold CV was used to gen-
erate meta-level training data. We did not use any
meta-learner here. We have shown that the meta-level
data is actually easy to learn. In place of the meta-



classifier, we used a rote table to record all the conflict
types and their majority labels. The use of a rote ta-
ble has exactly the same effect as an un-pruned full
decision tree. Each conflict type is a leaf of such a
tree. However, a rote table may be different from a
pruned/generalized classifier. In the Section 4, we will
discuss this issue.

For each combination of base classifiers, we calculated
the value of all the metrics and the corresponding over-
all accuracy σ and accuracy improvement. We plot all
the original data points in the figures that follow. We
didn’t use their average in order to show the full spread
of the points. We used polynomials to fit the data
points to uncover any trend. We used the Marquardt-
Levenberg algorithm [12] (a non-linear least square fit-
ting procedure, available in the GNUFIT package [9])
for this purpose. The sum of residuals usually stabi-
lized at a quadratic fit. Some plots have very scattered
data points and the residual of fitting is very large.
This implies that there is hardly any trend. In order
to compare results from different tests, we normalized
them into the range [0,1].

Experimental Results: The results on the different
data sets are displayed in Figure 4 and Figure 5. In
Figure 4, we display the change of overall accuracy
with the increase of four metrics in all four data sets.
In Figure 5, we show the results on overall accuracy
improvement. In each plot, we display 100 data points
(First Union plots have 50 points), both linear and
quadratic fit if there is any trend. Each figure contains
4 columns, each displaying results of four metrics on
one data set. Starting from the left column, there are
BOOLEAN5678, Chase, First Union and BOOLEAN45.
Each row is the result of one metric on all four data
sets.

We first observe that the result on BOOLEAN45 (the
last column of both Figure 4 and Figure 5) is an out-
lier. Its trends on all metrics, if any, for both overall
accuracy and accuracy improvement tests differ from
the results on the other three data sets. All the re-
sults on the accuracy improvement measure don’t con-
form to previous findings either. The data points of
many plots are scattered. We have taken a look at the
meta-level testing data. The reason is that many con-
flict types (such as type (1,0,0) depicted in Figure 1)
have a conflict ratio ǫ close to 0.5. The majority la-
bel of these types became minority labels for the test-
ing data. Due to this reason, the measures based on
meta-level training data were no longer valid for the
testing data. Therefore, we will focus our discussion
on the other three domains (which are in the first three

columns of Figure 4 and 5).

We compare the different metrics towards predicting
overall accuracy σ. CB-accuracy estimate is the best
performer. There is a very clear increasing trend.
when the CB-accuracy estimate increases. This grow-
ing trend is consistent for BOOLEAN5678. Chase and
First Union data sets. The slope of the linear fit is al-
most 1.0. The residuals of fitting are relatively small.
The other metrics don’t show any consistent trend or
any trend at all for the different data sets. The data
points of these metrics are more scattered than the
plot of CB-accuracy estimate.

Next we compare the different metrics towards pre-
dicting accuracy improvement. Both CB-accuracy im-

provement estimate and correlated error are the best
performers. There is a clear increasing trend when the
CB-accuracy improvement estimate increases, while
there is a clear and decreasing trend with the increase
of correlated error. The linear fit slopes (absolute
value) for the CB-accuracy improvement estimate and
the correlated error are identical, which means they
have equal predictive value. For diversity, there is
an increasing trend with the increase of diversity in
2 cases. In the 4 sets of experiments, we see a decreas-
ing trend of accuracy improvement when the specialty

metric increases. We anticipate the accuracy improve-
ment to increase with the specialty metric. On close
inspection, the metric is flawed. For example, if a clas-
sifier always predicts one class, it has a high specialty

value. An improved specialty-based metric is proposed
in [15].

4 Discussion and Conclusion

The CB-accuracy estimate and CB-accuracy improve-

ment estimate metrics are effective in predicting the
performance of a stacked classifier, when the conflict
ratio ǫ of each type are different than 0.5. But they
are inaccurate when the ratios are close to 0.5. The
reason is that we didn’t take conflict ratio ǫ into ac-
count when defining A. For a stacked system in the
presence of severe conflicts, we propose confidence or
CB-accuracy estimate range. We define the confidence

ratio for a conflict type to be, confidence(c1,c2,...,ct) =
f(α(c1,c2,...,ct)). f(x) is a function that maps α to the
range of [0,1] with f(0.5) = 0 and f(1) = 1. Our
empirical studies show that when α is more than 0.6,
it is very unlikely that such a conflict type will be
flipped to its minority label during testing. There-
fore, a non-linear function with decreasing derivatives
may be preferred. We can use a sigmoid-like function,



y(x) = 1
1+e−t·x , f(x) = y(x)−y(0.5)

y(1)−y(0.5) . (t adjusts the

derivatives of f(x).) We define the confidence of A to
be the weighted sum of the confidence of each conflict
type. The weight of each conflict is its size divided
by the size of the training set. A stacked system on
the same data set with both a higher A and a higher
confidence ratio is very likely to have higher testing
accuracy than one with both lower A and confidence
ratio. An alternative approach is to define A as a
range. For each conflict type whose ǫ ≥ τ , we use its
minority class frequency to estimate the lower bound
of overall accuracy. The upper bound is the original
definitions of A. In practice, we can set τ to be 0.4.
If the lower bound of one system is bigger than the
upper bound of another, it is likely that the previous
one will have higher overall accuracy.

The rote table approach is equivalent to an un-
pruned full tree, but it may not be the same as a
pruned/generalized classifier. For example, if two
leaves (1,1,1) (with majority label 1) and (1,1,0) (with
majority label 0) are pruned, their parent node (1,1,?)
is a new leaf and we assume that 1 is its majority la-
bel. This means for (1,1,0) pattern, its minority label
1 will be used in testing. For a pruned meta-classifier,
we can still estimate its overall accuracy and accu-
racy improvement. We enumerate all the patterns of
meta-level training data, (0, 0, . . . , 0) to (1, 1, . . . , 1),
and send them to the meta-classifier. The predictions
by the meta-learner can be used as the ‘majority label’
to calculate the accuracy of each conflict type α and
thus A.

When designing a meta-learning system, one must
choose from a set of available classifiers those whose
combination will derive the best overall stacked clas-
sifier. Various metrics have been proposed as a means
for choosing the best classifiers. The presence of con-
flicts in a stacked generalizer is an important factor af-
fecting its accuracy. We have derived the CB-accuracy

estimate and the CB-accuracy improvement estimate

metrics from conflicts to measure and compare the per-
formance of stacked systems. From our analysis and
empirical studies, CB-accuracy estimate is the most
accurate measure of overall testing performance and
CB-accuracy improvement estimate is as good as cor-

related error and better than all the other metrics pre-
viously proposed.
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Figure 4: Different Metrics to Predict Overall Accuracy σ
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Figure 5: Different Metrics to Predict Accuracy Improvement


