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Abstract

AdaCost, a variant of AdaBoost, is a misclas-
sification cost-sensitive boosting method. It
uses the cost of misclassifications to update
the training distribution on successive boost-
ing rounds. The purpose is to reduce the
cumulative misclassification cost more than
AdaBoost. We formally show that AdaCost
reduces the upper bound of cumulative mis-
classification cost of the training set. Empiri-
cal evaluations have shown significant reduc-
tion in the cumulative misclassification cost
over AdaBoost without consuming additional
computing power.

1 Introduction

Recently, there has been considerable interest in cost-
sensitive learning [15, 8, 7, 17, 6, 2]. Turney [15, 16]
discusses learning tasks sensitive to the costs of mis-
classification among others. We are interested in re-
ducing misclassification cost. It can be either constant
for each type of misclassification or conditional on a
specific example under different types of misclassifica-
tion. In troubleshooting systems, for example, there
is usually a fixed cost in producing one type of wrong
diagnosis. In fraud detection systems, however, unde-
tected frauds with high transaction amounts are obvi-
ously more costly. In this paper, we propose AdaCost,
a variant of AdaBoost, that reduces both fixed and
variable misclassification costs more significantly than
AdaBoost.

Freund and Schapire’s AdaBoost [4] learns a highly
accurate voted ensemble of many “weak” hypotheses.
Typically, each hypothesis outputs both a prediction
and a confidence for this prediction. Each hypothesis

is trained on the same data set yet with a different
distribution. Different hypotheses are produced in dif-
ferent rounds of boosting. At each round, AdaBoost
increases the weights of wrongly classified training in-
stances and decreases those of correctly predicted in-
stances. AdaBoost allows for an arbitrary initial distri-
bution. For classification error, each example is given
an equal weight. To reduce cumulative misclassifica-
tion costs, costly examples can be given higher weights.
AdaBoost reduces the weighted error for this initial
distribution. Schapire, Singer and Singhal [11] gave
different weights for false positives and false negatives
to apply AdaBoost in text-filtering. Karakoulas and
Shawe-Taylor [5] applied a similar approach. How-
ever, misclassification cost is not used in AdaBoost’s
weight updating rule. In AdaCost, the weight updat-
ing rule increases the weights of costly wrong classifi-
cations more aggressively, but decreases the weights of
costly correct classifications more conservatively. This
is accomplished by introducing a misclassification cost
adjustment function into the weight updating formula.
Under this updating rule, the weights for expensive ex-
amples are higher and the weights for inexpensive ex-
amples are comparatively lower. Each weak hypothesis
correctly predicts more expensive examples for such a
distribution. The final voted ensemble will also cor-
rectly predict more costly instances.

The focus of this paper is on both theoretical issues
and empirical evaluations. In Section 2, we describe
AdaCost and derive a reasonable upper bound on the
misclassification cost. We also discuss the choices of
the cost adjustment function β and the hypothesis
weight α to reduce this upper bound. In Section 3,
we evaluate AdaCost against AdaBoost on both real
world credit card fraud detection and publicly avail-
able data sets. In Section 2.6, we discuss an alternative
to AdaCost.



• Given: S = {(x1, c1, y1), . . . , (xm, cm, ym)};
xi ∈ X , ci ∈ R

+, yi ∈ {−1,+1}.
• Initialize D1(i) (such as D1(i) = ci/

∑m
j cj).

• For t = 1, . . . , T :

1. Train weak learner using distribution Dt.
2. Compute weak hypothesis ht : X → R.
3. Choose αt ∈ R and β(i) ∈ R

+.
4. Update

Dt+1(i) =

Dt(i)exp

(

− αtyiht(xi) β(i)

)

Zt

where β(i) = β
(

sign(yiht(xi)), ci

)

is a

cost-adjustment function. Zt is a normal-
ization factor chosen so that Dt+1 will be
a distribution.

• Output the final hypothesis:

H(x) = sign(f(x)) where f(x) =

(

T
∑

t=1

αtht(x)

)

Figure 1: AdaCost

2 AdaCost Algorithm

2.1 Difference from AdaBoost

We follow the generalized analysis of AdaBoost by
Schapire and Singer [9]. The algorithm is shown in
Figure 1. Let S = ((x1, c1, y1), . . . , (xm, cm, ym)) be a
sequence of training examples where each instance xi

belongs to a domain X , each cost factor ci belongs to
the non-negative real domain R

+, and each label yi

belongs to a finite label space Y. In this paper,
we focus on binary classification problems in which
Y = {−1,+1}. h is a weak hypothesis. It has the
form h : X → R. The sign of h(x) is interpreted as
the predicted label and the magnitude |h(x)| is the
“confidence” in this prediction. Let t be an index to
show the round of boosting and Dt(i) be the weight
given to (xi, ci, yi) at the t-th round. 0 ≤ Dt(i) ≤
1 and

∑

Dt(i) = 1. αt is a chosen parameter as a
weight for weak hypothesis ht at the t-th round. We
assume αt > 0. β(sign(yiht(xi)), ci) is a cost adjust-
ment function with two arguments: sign(yiht(xi)) to
show if ht(xi) is correct, and the cost factor ci.

The difference between AdaCost and AdaBoost
is the additional cost adjustment function
β(sign(yiht(xi)), ci) in the weight updating rule
(highlighted by a box in Figure 1). Where it is
clear in context, we use either β(i) or β(ci) as a

shorthand for β(sign(yiht(xi)), ci). Furthermore,
we use β+ when sign(yiht(xi)) = +1 and β− when
sign(yiht(xi)) = −1. For an instance with a higher
cost factor, β(i) increases its weights “more” if the
instance is misclassified, but decreases its weight
“less” otherwise. Therefore, we require β−(ci) to be
non-decreasing with respect to ci, β+(ci) to be non-
increasing, and both are non-negative. Karakoulas
and Shawe-Taylor [5] have also introduced a similar
parameter β into the weight updating formula: if
y = +1 then β = 1, if y = −1, then β = v (v < 1).
Their intuition is different from our approach. In
their approach, positives are given a “fixed” higher
weight than negatives. The weight updating rule will
increase the weights of false negatives (+1 predicted
as −1) more than false positives (−1 predicted as
+1). However, it will also decrease the weights of
true positives more than true negatives. Two related
but different cost-sensitive boosting approaches
for tree classifications are proposed by Ting and
Zheng [14]. Their approaches apply to situations
where the costs change very often. The solution is
to repeatedly use the same induced model yet with
different misclassification costs at classification. Our
proposal applies to situations where misclassification
costs are relatively stable. In the first approach, they
modify the classification procedures of AdaBoost by
calculating the expected misclassification cost for
every class and choosing the predicted class with
the lowest expected cost for a given instance. In the
second approach, they completely change the weight
updating rule. The rule replaces an instance’s weight
with the misclassification cost if it is misclassified;
otherwise the current weight is retained. They didn’t
provide a training misclassification cost upper bound.

2.2 Training Misclassification Cost Upper

Bound

Before studying how to reduce the training misclassi-
fication cost, we derive an upper bound on the cumu-
lative training misclassification cost.

Lemma 1

Let f ′(x) =
∑T

t=1 αtht(x)β
(

sign(yht(x)), c
)

and

H ′(x) = sign(f ′(x)). If ∀c, β−(c) ≥ β+(c), the fol-
lowing is true:

∀x ∈ S
(

H ′(x) = y =⇒ H(x) = y

)

Proof: By definition of H ′(x) and f ′(x):

H ′(x) = y ⇐⇒



yf ′(x) = y
T
∑

t=1

αtht(x)β
(

sign(yht(x)), c
)

> 0 (1)

The righthand side of (1) can be rewritten as a sum of
the correct and wrong portions of predictions by the
weak hypotheses:

y
∑

t+

αt+ht+(x)β+ + y
∑

t
−

αt
−

ht
−

(x)β− > 0 (2)

Since β− ≥ 0, β+ ≥ 0 and αt > 0 (the requirements by
AdaCost), in Eq (2),

y
∑

t+

αt+ht+(x)β+ > 0 and y
∑

t
−

αt
−

ht
−

(x)β− ≤ 0

The Lemma requires that β− ≥ β+ > 0 , the following
must be true because we have decreased the votes of
the wrong portion of predictions in Eq (2).

y
∑

t+

αt+ht+(x)β+ + y
∑

t
−

αt
−

ht
−

(x)β+

≥ (3)

y
∑

t+

αt+ht+(x)β+ + y
∑

t
−

αt
−

ht
−

(x)β−

Combining Eqs (2), (3) and definition of f(x) (defined
in Figure 1) gives the following:

β+(yf(x)) = y
∑

t+

αt+ht+(x)β++y
∑

t
−

αt
−

ht
−

(x)β+ > 0

(4)

β+ > 0 and (4) implies

yf(x) > 0 (5)

By definition of H(x) and f(x), (5) shows that
H(x) = y. �

Lemma I shows that for every example correctly clas-
sified by H ′(x), it is also correctly classified by H(x).
The difference of H(x) from H ′(x) is that H(x) has

no β
(

sign(yht(x)), c
)

terms.

Theorem 1 The following holds for the upper bound
of the training cumulative misclassification cost. [[π]]
returns 1 if predicate π = true or 0 otherwise.

∑

ci[[H(xi) 6= yi]] ≤ d
T
∏

t=1

Zt, d =
∑

cj

Proof: From Lemma I, we know that
∑

ci[[H(xi) 6= yi]] ≤
∑

ci[[H
′(xi) 6= yi]] (6)

By unraveling the update rule (extended and mod-
ified from the proof of Theorem I in Schapire and
Singer [9]), we have that

DT+1(i) =
D1(i)exp(−∑t αtyiht(xi)β(i))

∏

t Zt

=
D1(i)exp(−yif

′(xi))
∏

t Zt

(7)

Moreover, if H ′(xi) 6= yi, then yif
′(xi) ≤ 0 implying

that exp(−yif
′(xi)) ≥ 1. Thus,

[[H ′(xi) 6= yi]] ≤ exp(−yif
′(xi)) (8)

Combining Eqs (6),(7), (8) and D1(i) = ci/
∑m

j cj

gives the stated bound on cumulative misclassification
cost since
∑

ci[[H(xi) 6= yi]] ≤
∑

ci · exp(−yif
′(xi))

=
∑

i

(
∏

t

Zt)(
ci

D1(i)
)DT+1(i)

= d
T
∏

t=1

Zt, d =
∑

cj

�

The reason to require β− ≥ β+ in Lemma I is clear.
It removes the cost adjustment function β and the
true label y terms from H ′(x) to generate the final
hypothesis H(x). This is important since neither the
cost c nor the label y is available during testing. Ad-
ditionally, Lemma 1 shows that H(x) is more accu-
rate than H ′(x). Moreover, for a particular exam-
ple, β− ≥ β+ guarantees that the weight updating
rule will increase the weight more for wrong classifi-
cations than decreasing the weight for correct predic-
tions. The requirements of non-decreasing β−(ci) and
non-increasing β+(ci) force the weak learner to give
more attention to more “costly” examples.

2.3 Choosing αt

One consequence of Theorem 1 is that, to reduce train-
ing cost, we should seek to minimize Zt at each round
of boosting in the choice of αt. We derive two choices
for αt following an estimation method by Freund and
Schapire [4] and a numerical method by Schapire and
Singer [9] and Karakoulas and Shave-Taylor [5]. We
omit the round index t. For weak hypothesis h with
range [-1,+1] and cost adjustment function β(i) in the
range [0,+1], the choice of α is

α = 1

2
ln

1 + r

1 − r
where r =

∑

i

D(i)ui, ui = yih(xi)β(i)

(9)



Since ui ∈ [−1,+1], the following inequality holds.

Z =
∑

D(i)e−αui ≤
∑

D(i)

(

1 + ui

2
e−α+

1 − ui

2
eα

)

By zeroing the first derivative of the right hand side,
we have the choice of α in formula (9). For this choice
of α, Z ≤

√
1 − r2 ≤ 1. The above proof is extended

from the estimation method given by Schapire and
Singer [9].

Corollary 1 Assuming ht has range [-1,+1] and β(i)
has range [0,+1]. αt is chosen as in formula (9). The
training cumulative cost of H is at most:

d
∏T

t=1

√

1 − r2
t

where rt =
∑

i Dt(i)yiht(xi)β(i) and d =
∑

j cj

The upper bound on misclassification cost is actually
reduced when Zt =

√
1 − r2 < 1. This estimation for

Z is pessimistic and not tight. The exact range of
u is {−β−, β+}. It is hard to find a general and tight
analytical upper bound for Z if u is taken as {−β−, β+}
and it would still be an estimation.

A general numerical solution is given by:

Z ′(α) =
dZ

dα
= −

∑

i

D(i)uie
−αui = 0 (10)

Since Z ′′(α) > 0, Z ′(α) can have at most one zero. A
detailed analysis of this formula without the cost factor
β is given by Schapire and Singer [9]. In practice, we
can use the estimation method to find a candidate for
α and use numerical methods to improve.

If αt < 0 during learning, we can reverse the sign of
ht. Thus, we use h′

t = −ht and α′
t = −αt.

2.4 Example

We show the intuition behind AdaCost by an ex-
ample from the breast cancer data set (Section 3).
((p2, . . . , p10), y) is the schema and y ∈ {m, b}. The
cost factor for instances with label m is 1 or oth-
erwise 0.33. h1(x) is the same for both AdaBoost
and AdaCost. One rule says “if p3 = 1 then b”
with confidence 0.972. So, ((4, 1, 1, 3, 1, 5, 2, 1, 1),m)
is misclassified as b. D1 of this item is .002849. Ad-
aBoost generates αAdaBoost1 = 1.48027 and changes
the example’s distribution to .013. AdaCost calculates
αAdaCost1 = 1.481265 and updates the distribution to
.033. At round 2, the weak hypotheses produced by
AdaBoost and AdaCost are different. hAdaBoost2(x),

has a rule “if p3 = 1∧ p9 = 1 then m” with 0.99 confi-
dence that applies to the item and αAdaBoost2 = 1.026.
Hence, the example is still misclassified as b. On the
other hand, hAdaCost2(x) has a default rule “if the in-
stance is not classified as b, then it is m” with a confi-
dence of 0.99. The weight is αAdaCost2 = 2.11. There-
fore, the prediction by AdaCost at round 2 is m, since
1.481265 ∗ 0.972 < 2.11 ∗ 0.99. The obvious reason
is that AdaCost increases the weight of this instance
more than AdaBoost by introducing the cost adjust-
ment function β into the weight updating rule. The
weight updating rule of AdaCost gives more weight to
misclassifications with true label m since it is 3 times
as “expensive” as b.

2.5 Applying Cost to other Boosting

Algorithms

The addition of a cost adjustment function β into the
weight updating formula doesn’t violate the assump-
tions of AdaBoost. It can be introduced to the vari-
ations of the original AdaBoost. We show by two ex-
amples. For Schapire and Singer’s AdaBoost.MH [10]
(a multi-class multi-label ranking AdaBoost algo-
rithm), the cost adjustment function can be defined

as β

(

sign
(

Yi{l}ht(xi, l)
)

, ci(l)

)

. ci(l) is the cost fac-

tor that document xi is not categorized as label l. For
Schapire and Singer’s AdaBoost.MR [10] (a multi-class
multi-label preference ranking AdaBoost algorithm),

we can design β

(

sign
(

ht(xi, l0)−ht(xi, l1)
)

, ci(l0, l1)

)

where ci(l0, l1) is the cost factor to mistakenly prefer
l0 over l1. (The symbols presented by the original au-
thors are used above without explanation.)

2.6 Alternative Method

An alternative weight updating formula is:

Dt+1(i) =
β Dt(i)exp

(

− αtyiht(xi)
)

Zt

(11)

The difference here from Figure 1 is that β is
outside of the exponent. β is a non-decreasing
function of the cost factor c, such as β(c) =
c. The following holds for the upper bound
of training cumulative cost:

∑

ci[[H(xi) 6= yi]] ≤
d

(

∏T−1
t Zt

)(

∑

i
DT (i)
βT−1 exp(−αT yihi(xi))

)

, d =
∑

ci. It can be easily proved by unraveling the weight
updating rule (12) and using the techniques in the
proof of Theorem 1. In order to reduce misclassi-



Table 1: Data Set Summary

Data Testing
S Data

Size Size
Positive%

1 hypothyroid 3163 CV 4.77
2 boolean 32768 CV 13.34
3 dis 2800 972 4.63
4 crx 690 CV 44.5
5 breast cancer 699 CV 34.5
6 wpbc 198 CV 23.74
7 chase 40K*10 40K*10 ≈ 20

fication cost, we will choose αt in the first T − 1
rounds to minimize Zt and in the last round mini-
mize

∑

i
DT (i)
βT−1 exp(−αT yihi(xi)). Since ui = yihi, ui ∈

[−1,+1], we can use the estimation and numerical
methods to choose both αt(1 ≤ t ≤ T − 1) and αT .

3 Experiment

3.1 Set up

Data Set: We used seven data sets to evaluate the
performance of AdaCost against AdaBoost in reducing
cumulative misclassification cost. Table 1 lists their
summary statistics. Five of the data sets were down-
loaded from the UCI Machine Learning Database.
“boolean” is an artificial data set. It has 15 boolean
variables. The instance is positive if any 4 or 5 vari-
ables are true, or otherwise it is negative. The last data
set is a real world credit card fraud detection data set
from Chase Bank. It contains .5M transaction records
spanning a period of a whole year. It was provided
for our research on fraud and intrusion detection [12].
Information on the schema can be found in [13].

Cost Factor: For a simplified cost model in the
credit card business [13], there is an overhead $ovrhd
to challenge a fraud. For any transaction with a
transaction amount lower than the overhead, that is,
$amt ≤ $ovrhd, the authorization system will simply
authorize it. The bank loses all $amt for all frauds
of this kind (yet another cost of doing business). We
assign them a cost factor c = 0, since these transca-
tions may not contribute to learning a fraud model for
a fixed $ovrhd.

We can therefore save money by catching frauds with
$amt > $ovrhd. We lose $amt if they are not de-
tected. We still lose $ovrhd even if they are caught.
It implies that by leaving a fraud undetected, we will
lose ($amt−$ovrhd) more. For legitimate transactions
mistakenly labelled as frauds, we will lose $ovrhd. Let

fn, fp and tp represent the predicates of false neg-
ative, false positive and true positive. For example,
fp(i) = true if the i-th example is a false positive.
The total cost to be minimized is formulated by:

∑

i:fn(i)

$amti +
∑

j:fp(j)

$ovrhd +
∑

k:tp(k)

$ovrhd (12)

If we don’t detect any frauds, we lose
∑

i:p(i) $amt (p

returns true for fraud). We call this quantity Max-
imal Loss. If every fraud is detected, we still lose
∑

i:p(i) $ovrhd. This is named Least Loss. Our goal is

to minimize the total cost formula (12). Logically, we
can assign a cost factor c of $amt − $ovrhd to frauds
and a factor c of $ovrhd to non-frauds. This reflects
how the prediction errors will add to the total cost of
a hypothesis. Since the overhead $ovrhd is not known
to us, we chose to set $ovrhd ∈ {60, 70, 80, 90} to run
four sets of experiments. We believe that these choices
are realistic approximations to the real overhead. De-
tailed information on credit card cost model can be
found in [13].

We do not have any “business-oriented” misclassifica-
tion cost models for the remaining data sets. Instead,
we varied the cost ratio R of positive vs. negative from
2 to 9.

We normalized each ci to [0, 1] for all data sets. The
cost adjustment function β is chosen as: β−(c) = 0.5 ·
c + 0.5 and β+(c) = −0.5 · c + 0.5.

Training and Testing: In the credit card business,
due to normal billing cycles, there is a two-month delay
for data to be used to train a detection system applied
to current transactions. We mirror this constraint by
using one month data for training and data from two
months later for testing. Our data set allowed us to
form 10 such pairs of training and testing sets. For the
other six data sets, we used 10-fold CV to average the
results or used the specific testing data provided.

Weak Learner: We used Cohen’s RIPPER [3] as the
“weak” learner. We chose it because RIPPER pro-
vides an easy way to change the distribution of the
training set. Since using the training set alone usually
overly estimates the accuracy of a rule set, we used the
Laplace estimate to generate the confidence ( |h(x)| )
for each rule [1]. RIPPER is cost-insensitive. We make
it cost-sensitive, called cRIPPER, by supplying it with
a distribution that is linear in the cost of each instance
(D1(i) ∝ ci).

Calculating αt: Both AdaBoost and AdaCost were
run to the 50th round. We carefully engineered the bi-
section search algorithm with the first candidate α cal-



culated by formula (9). The second point was searched
with an exponential step increment. To avoid numer-
ical errors introduced when adding a small number to
a much bigger number, we used a vector v to com-
pute Z ′(α) = −∑i D(i)uie

−αui . For simplicity, we
allow the index of v to be negative. The k-th ele-
ment of the vector adds up (wi = −D(i)uie

−αui), if
10k−1 ≤ |wi| ≤ 10k. We add every element in the vec-
tor starting from the smallest index (to avoid addition
errors) to calculate Z ′.

3.2 Results

We are interested in comparing cRIPPER (as a base-
line), AdaCost and AdaBoost in several dimensions.
First, for each data set and each cost model, we deter-
mine which algorithm has achieved the lowest cumu-
lative misclassification cost and how many cases Ada-
Cost is the clear winner. Second, we also seek to know,
quantitatively, the difference in cumulative misclassi-
fication cost of AdaCost from AdaBoost and the base-
line cRIPPER. It is interesting to measure the signif-
icance of these differences in terms of both reduction
in misclassification loss and percentage of reduction.
Additionally, we also want to see for all data sets and
all cost models, how many of the times AdaCost has
a lower cumulative cost than AdaBoost for all corre-
sponding rounds of boosting. Finally, we are interested
to know if AdaCost consumes more computing power.
We grouped the results into two groups: the six data
sets excluding Chase credit card and the Chase credit
card alone.

Six Data Sets All the results are summarized in Ta-
ble 2 and Figure 2. We use percentage cumulative
loss (or %l) to compare across data sets. %l is de-
fined as cumulative loss

max loss
, where max loss is the total

loss when every instance is misclassified. Table 2 lists
%l for cRIPPER (cRpr), %l at the end of 50th round
for AdaBoost (Bst) and AdaCost (Cst) for six data
sets excluding Chase credit card. The data sets are
numbered from 1 to 6. The information on each data
set can be found in Table 1. The second column is
the R or cost ratio chosen to go from 2 to 9. The last
two columns list the difference of %l in both plain sub-
traction and percentage (parenthesized). (C − B)(%)
includes values for %lAdaCost − %lAdaBoost as well as
%lAdaCost−%lAdaBoost

%lAdaBoost
. (C − P )(%) lists similar values

for AdaCost versus cRIPPER. We keep one decimal
point significant digit for all results. When AdaCost
is the best performer, it is highlighted in bold font.

In 42 (88% of 48) cases, AdaCost achieved the lowest
misclassification loss. AdaBoost had the best perfor-

mance in 5 (10% of 48) cases. AdaCost and AdaBoost
tied at 1 run. The absolute reduction by AdaCost
from AdaBoost (as shown in (C − B)(%) column) in
these six data sets ranges from 0.1% (data set 1 or
hypothyroid with ratio R = 7) to 14.6% (data set 6
or wpbc with ratio R = 3). The percentage increase
goes from 2% (data set 4 or crx with ratio R = 6) to
57% (data set 2 or boolean with ratio R = 3). The
improvements are clear. The difference of AdaCost
from cRIPPER (as shown in column (C − P )(%)) are
even greater. The last row µ for every data set is the
average percentage loss for all chosen cost ratios R.

We have plotted the individual error and error ratio
points for these six data sets in Figure 2. Each point in
the left figure is the ratio of AdaCost vs. AdaBoost, in
other words, %lAdaCost

%lAdaBoost
. We have drawn the points for

all 8 ratios and all 50 boosting rounds. To avoid over-
lapping of these points, the boosting round t was given
a random adjustment in the range of [−0.45,+0.45].
The majority of the points are below the “Ratio=1”
line which means that in an overwhelming majority of
cases, AdaCost has lower cost than AdaBoost. The
figure on the right plots the same information in a
different way where the value of each individual mis-
classification cost is shown. The majority of points are
above the “y = x” line which also means that AdaCost
clearly has lower cumulative cost.

Chase Credit Card The results are plotted in Fig-
ures 3 and 4. Figure 3 shows the average reduction
of 10 months in percentage cumulative loss (defined as

cumulativeloss
maximalloss−leastloss

∗ 100%) for AdaBoost and Ada-
Cost for all 50 rounds and 4 overheads. We can clearly
see that there is a consistent reduction of AdaCost over
AdaBoost for all 400 (= 50 ∗ 2 ∗ 4) runs. The absolute
amount of reduction is over 3%. We also observe that
the speed of reduction by AdaCost is quicker than that
of AdaBoost in all 4 figures. The speed is the quickest
in the first few rounds. This means that in practice,
we may not need to run AdaCost for many rounds.

Figure 4 plots the ratio of cumulative cost by Ada-
Cost and AdaBoost. The figures are similar to those
in Figure 2. We have plotted the results of all 10 pairs
of training and test months over all rounds and over-
heads. Most of the points are below the “Ratio=1”
line in the left drawing and above the “y=x” line in
the right drawing, both implying that AdaCost has
lower cumulative loss in an overwhelming number of
cases.



Table 2: Percentage Cumulative Loss by cRIPPER, AdaBoost and AdaCost for Six Data Sets

S R cRpr Bst Cst (C-B)(%) (C-P)(%)
2 1.4 1.6 1.2 -0.4(-25) -0.2(-16)
3 1.8 2.0 1.6 -0.3(-17) -0.2(-10)
4 2.1 2.2 1.8 -0.4(-16) -0.3(-12)

1 5 2.5 2.7 2.2 -0.4(-16) -0.3(-11)
6 3.2 3.0 2.5 -0.6(-19) -0.7(-23)
7 3.1 2.8 2.7 -0.1(-3) -0.4(-13)
8 3.0 3.1 2.7 -0.4(-12) -0.3(-10)
9 3.0 3.2 2.5 -0.7(-23) -0.5(-17)
µ 2.5 2.6 2.2 -0.4 (-16.0) -0.4(-14.2)
2 13.8 10.5 3.3 -7.2(-69) -10.6(-76)
3 14.2 11.6 5.0 -6.6(-57) -9.2(-65)
4 15.4 10.9 6.9 -4.0(-37) -8.5(-55)

2 5 14.7 11.4 7.3 -4.1(-36) -7.4(-50)
6 13.9 9.3 8.1 -1.3(-13) -5.8(-42)
7 19.5 9.6 8.5 -1.1(-11) -11.0(-57)
8 18.0 9.6 8.3 -1.3(-14) -9.6(-54)
9 18.3 11.0 8.1 -3.0(-27) -10.2(-56)
µ 16.0 10.5 6.9 -3.6 (-34.1) -9.1(-56.7)
2 2.3 2.6 2.0 -0.6(-24) -0.3(-14)
3 4.1 3.5 3.1 -0.4(-12) -1.0(-25)
4 5.0 4.3 4.3 0.0(0) -0.7(-14)

3 5 6.2 4.9 4.4 -0.5(-10) -1.8(-29)
6 6.5 7.0 5.5 -1.5(-21) -1.0(-15)
7 7.6 8.0 6.7 -1.2(-15) -0.9(-11)
8 6.7 7.6 6.1 -1.5(-20) -0.6(-9)
9 7.8 10.1 7.1 -3.0(-30) -0.7(-9)
µ 5.8 6.0 4.9 -1.1 (-18.2) -0.9(-14.9)

S R cRpr Bst Cst (C-B)(%) (C-P)(%)
2 14.0 10.5 5.4 -5.1(-48) -8.6(-61)
3 11.7 12.4 12.1 -0.3(-3) 0.4(4)
4 11.1 11.2 11.3 0.1(1) 0.2(2)

4 5 9.7 9.9 10.0 0.1(1) 0.3(3)
6 9.8 7.4 7.3 -0.1(-2) -2.5(-25)
7 8.5 8.1 4.9 -3.2(-39) -3.6(-42)
8 8.1 10.6 8.7 -2.0(-19) 0.6(7)
9 7.7 11.1 8.9 -2.2(-20) 1.2(15)
µ 10.1 10.2 8.6 -1.6 (-15.5) -1.5(-14.8)
2 4.4 3.2 1.7 -1.4(-45) -2.7(-61)
3 3.7 3.4 1.8 -1.6(-46) -1.9(-51)
4 3.8 4.8 3.1 -1.8(-37) -0.7(-19)

5 5 4.1 4.6 4.2 -0.4(-9) 0.1(2)
6 3.5 3.6 2.2 -1.4(-39) -1.3(-38)
7 3.5 3.2 3.2 -0.1(-2) -0.3(-9)
8 3.3 3.5 2.2 -1.4(-38) -1.1(-34)
9 3.2 3.1 3.0 -0.1(-3) -0.2(-7)
µ 3.7 3.7 2.7 -1.0 (-27.6) -1.0(-27.7)
2 35.8 43.7 34.0 -9.7(-22) -1.8(-5)
3 38.9 35.1 20.5 -14.6(-42) -18.4(-47)
4 36.7 33.5 35.7 2.1(6) -1.0(-3)

6 5 35.0 34.5 22.6 -12.0(-35) -12.4(-35)
6 31.2 18.7 11.1 -7.6(-41) -20.1(-64)
7 28.6 28.6 28.8 0.1(1) 0.2(1)
8 24.6 24.8 25.1 0.4(2) 0.5(2)
9 25.5 27.1 25.7 -1.4(-5) 0.2(1)
µ 32.0 30.8 25.4 -5.3 (-17.3) -6.6(-20.6)
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Figure 2: Cumulative Loss Ratio and Loss of AdaCost and AdaBoost for Six Data Sets
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Figure 3: Cumulative Loss Ratio of AdaCost and AdaBoost for Chase Credit Card Data Set
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Figure 4: Cumulative Loss Ratio and Loss of AdaCost and AdaBoost on Chase Credit Card



4 Conclusion

This paper has raised an interesting question: can we
improve AdaBoost based on a cost model? We have
studied the problem of reducing misclassification cost
using boosting methods and proposed the AdaCost al-
gorithm. The intuition is that in addition to assign-
ing high initial weights to costly examples, the weight
updating rule should also take cost into account and
increase the weights of costly misclassification more
but decrease the weights of costly correct classifica-
tion less. Based on Freund, Schapire and Singer’s pre-
vious work, we have formally proved the upper bound
of training cumulative misclassification cost and dis-
cussed the choice of α. We also attempted to apply
AdaCost to other variants of AdaBoost.

We have empirically evaluated AdaCost and AdaBoost
on seven data sets using both real world and artifical
cost models and we have observed that AdaCost shows
a consistent and significant reduction in misclassifica-
tion cost over AdaBoost and it doesn’t consume more
computing power on average. One interesting exper-
iment we have done, but not included in this paper,
is to compare AdaBoost and AdaCost with a uniform
initial distribution. In other words, we set D(i) = 1

m
.

Chase credit card data was used in this study. The
results show that AdaBoost reduces classification er-
ror significantly but doesn’t reduce misclassification
cost much. On the other hand, there is a significant
reduction in misclassification cost by AdaCost. This
experiment has, to some extent, provided additional
evidence for the “benefits” of introducing cost into the
weight updating rule.
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