
Machine Learning in Molecular Biology

Sequence Analysis

Philip K. Chan

CUCS-041-91

Department of Computer Science

Columbia University

New York, NY 10027

pkc@cs.columbia.edu

(212) 854-8100

November 27, 1991

Abstract

To investigate how human characteristics are inherited, molecular biologists have

been analyzing chemical sequences from DNA, RNA, and proteins. To facilitate this

process, sequence analysis knowledge has been encoded in computer programs. How-

ever, translating human knowledge to programs is known to be problematic. Machine

Learning techniques allow these systems to be generated automatically. This article dis-

cusses the application of learning techniques to various analysis tasks. It is shown that

the learned systems constructed to date are often more accurate than human-designed

systems. Moreover, learning can form plausible new hypotheses, which potentially lead

to discovering new knowledge.

0

1 Introduction

To fully understand how human characteristics are inherited, molecular biologists have been

investigating the human cell nuclei at the molecular level. In particular, researchers have been

studying the structure and functions of DNA and protein molecules, and their interactions. It

is known that DNA carries genetic information and this information dictates the production

of proteins, the very building blocks of life. However, we do not know the functions of most of

the DNA or protein segments. With the advancement of technology, scientists have been able

to map DNA and proteins to their building blocks: nucleotides and amino acids. From this

structural information, more functional information can be discovered. Since the building

blocks are linked in a sequence, this process is commonly known as sequence analysis.

Various computer systems have been built to facilitate the process of analyzing sequences

(von Heijne, 1987; Bishop and Rawlings, 1987). However, most of the systems require

translating analysis techniques developed by humans to programs. It is well known that

this process, knowledge engineering, can be lengthy and problematic (Buchanan et al., 1983;

Boose, 1986).

Machine learning is an arti�cial intelligence technique which allows systems to be gener-

ated automatically by �nding patterns and causal relationships in the provided data. That

is, it is theoretically possible that sequence-analysis systems can be built automatically and

directly from exemplar sequence information without obtaining and translating human exper-

tise. Furthermore, machine learning techniques allow the possibility of discovering patterns

and concepts unknown to the experts. As we will see later, some of these systems generated

by learning techniques outperform human-designed systems.

This paper focuses on the application of machine learning techniques to generating

sequence-analysis systems. Descriptions of human-designed systems can be found elsewhere

(e.g., (von Heijne, 1987)). For each learning application, the approach is identi�ed and de-

tails of the algorithm used are then discussed. Experiments run on the systems are described

and their performance results are presented. If there is more than one learning application

for a sequence analysis task, results from di�erent systems, including some human-designed

systems, are compared. One important theme to keep in mind is the inevitable explosion

of new stores of information that will require e�cient implementations to process massive

amounts of data. Much of the existing work reported here for the most part is not concerned

with issues of computational e�ciency.

The remainder of this paper is organized as follows. We �rst overview the two main

areas of sequence analysis. We then overview the di�erent approaches of machine learning.

Section 4 discusses learning applications in amino acid sequence analysis while Section 5

describes nucleotide sequence analysis. We conclude with a discussion of the importance

and implications of the results achieved to date.

2 Sequence Analysis

Molecular biologists have been focusing on analyzing sequences obtained from proteins, DNA

(DeoxyriboNucleic Acid), and RNA strands (RiboNucleic Acid). These sequences are divided

into two groups: amino acid sequences and nucleotide sequences. These two groups are brie
y

1

discussed in the following two subsections.

2.1 Amino Acid Sequence

Proteins are fundamental and instrumental in every aspect of human biological function even

though they are quite chemically simple in structure. Each protein is a sequence of amino

acids linked together in a linear chain. There are a total of twenty di�erent amino acids.

A protein segment can thus be represented as a sequence of symbols, where each symbol

signi�es a distinct amino acid. For example, PIVDTGSVAP is a segment of ten amino

acids in Haemoglobin V (Qian and Sejnowski, 1988). The order of amino acids determines

the 3-D shape of a protein, which largely determines the protein's function. (Imagine a

rope with a series of knots, each knot representing an amino acid. Our imaginary protein

rope can be twisted and folded into a globule exposing some knots externally while hiding

others internally. The exposed external knots largely determine the protein's biochemical

behavior.) The number of distinct proteins, however, is essentially unbounded. The purpose

of analyzing amino acid sequences is to gain information about proteins both structurally

and functionally.

Consider, for example, amino acids in a protein interacting with each other. These

interactions induce regular secondary structures, which are important in determining the

function of the protein (more details are provided in Section 4.1). Scientists have been

trying to �nd ways to predict the secondary structures of particular amino acid sequences

so that they can learn more about the functional properties of proteins.

2.2 Nucleotide Sequence

The basic building blocks of human genetics are nucleotides. There are four di�erent kinds of

nucleotides in DNA (adenine, cytosine, guanine, and thymine) and RNA (adenine, cytosine,

guanine, and uracil). That is, a DNA or RNA segment can be represented as a sequence of

symbols, where each symbol denotes one of the four nucleotides. For example, GGGACG-

GUCC is a segment of ten nucleotides of the U1 RNA (Nakata et al., 1985). DNA is double

stranded in double helix form whereas RNA is single stranded.

Human characteristics and functions are controlled by proteins, whose production is

regulated by the information encoded in the nucleotide sequences of DNA in the cell nucleus.

This genetic information is basically the order of nucleotides in the DNA. Proteins are not

directly produced from the information on our DNA. Instead, information on DNA segments,

genes, is copied to another type of nucleotide sequence, RNA, whose nucleotide order is used

to produce proteins. As in analyzing amino acid sequences, we can gain more structural and

functional information about DNA and RNA from studying their nucleotide sequences.

For example, the decoding process of producing a protein always starts at a certain loca-

tion in an RNA segment called the promoter site (more details in are provided Section 5.1).

Molecular biologists try to identify the initiation region in a given RNA sequence so that

they can understand more about the interactions between RNA and protein production.

2

3 Machine Learning

The goal of machine learning is to make a system \improve" by itself. Improvements generally

fall into two categories: gaining knowledge and enhancing computational e�ciency. More

speci�cally, learning includes the tasks of forming concepts by generalizing data, compiling

knowledge into a compact form for e�cient execution and access, �nding useful explanations

for valid concepts, clustering data to form new classes, and many others.

Machine learning can be roughly divided into four paradigms (Carbonell, 1989):

� Inductive learning concerns forming concepts from data without a lot of knowledge from

the domain (e.g., learning from examples (Michalski, 1983) and conceptual clustering

(Michalski and Stepp, 1983)).

� Analytic learning involves the use of existing knowledge to derive new useful concepts

(e.g., explanation-based learning (Mitchell et al., 1986) and certain forms of analogical

(Carbonell, 1983) and case-based (Slade, 1991) learning methods).

� Connectionist learning methods use arti�cial neural networks to search for and represent

concepts (Rumelhart and McClelland, 1986; Hinton, 1989).

� Genetic algorithms utilize the Darwinism metaphor, \survival of the �ttest," to search

for the most e�ective concept (Holland, 1975; Booker et al., 1989).

It is important to note that the �rst two paradigms characterize the nature of learning tasks

whereas the latter two represent two particular methods to perform di�erent learning tasks.

The �rst two paradigms are commonly referred to as symbolic approaches, which generally

exclude the connectionist and genetic algorithm approaches.

Inductive, connectionist, and genetic learning methods are typically used in tasks that

are data-oriented and provide little or no knowledge of the domain. These methods pri-

marily concentrate on �nding similarities and di�erences among data. On the other hand,

analytic learning methods rely on the presence of background knowledge to infer or de-

rive new knowledge. That is, analytic methods are suitable for tasks that need to build

knowledge from existing knowledge. In addition, due to the nature of data representation

in connectionist methods, they can conveniently represent numeric/binary data. However,

inductive and genetic methods are more suitable for data abstracted as symbolic or nominal

features. In other words, connectionist methods are generally more suitable in working with

low-level data, inductive and genetic methods with feature-level data, and analytic methods

with logic-level data.

The learning approaches used in the sequence analysis tasks discussed in this article fall

into the inductive learning and connectionist paradigms. However, the learning problem

is roughly the same for the di�erent tasks: given some positive and negative examples,

learning is achieved by forming concepts to distinguish the two types of examples in seen

and unseen instances. Since the classi�cations of the training set are known beforehand, this

is also known as learning from examples or supervised learning. In this classi�cation task, a

learning algorithm is presented with a set of examples with their appropriate classi�cations.

The algorithm then tries to form concepts based on these examples; this is the training phase.

To evaluate the concepts learned by the algorithm, instances are presented for classi�cation

3

and accuracy is measured; this is the testing phase. To truly evaluate the accuracy of the

learned concepts, and hence the e�ectiveness of the learning algorithm, the training and

testing instances are usually disjoint. In practice, given a set of examples, a random subset

is used for training and the rest are used for testing. To assure randomness, experiments are

usually run multiple times with di�erent sets of random training examples and the accuracies

are averaged. One of the more common techniques used in evaluating learned concepts is

cross-validation (Breiman et al., 1984). In this technique, a subset of the examples is used

for testing and the rest are used for training. This is repeated for a di�erent subset of the

examples as the test instances until the examples are exhausted, and the accuracies are

averaged.

The following subsections give a brief overview of the four learning paradigms and tech-

niques. The overview is intended to provide readers unfamiliar with machine learning a broad

view of the di�erent approaches. Readers who want to learn more about these techniques

are directed to the references cited in respective sections. Introductory readings in machine

learning can be found in (Carbonell, 1989; Cohen and Feigenbaum, 1982; Michalski et al.,

1983).

3.1 Inductive Learning

Inductive learning (also known as empirical learning or similarity-based learning) involves

forming concepts by �nding similarities and di�erences among data. This approach is best

suited for tasks where a considerable amount of data is available and knowledge about the

domain is scarce. This method does not work e�ectively when there is insu�cient data

since it relies on �nding patterns among data. With insu�cient amounts of data, too little

information is available to infer patterns with high degree of con�dence. The following

overview discusses approaches in supervised learning, where examples are classi�ed before

they are presented to the learning system. Discussions of unsupervised learning approaches,

where data are grouped or clustered according to the algorithms, can be found in (Michalski

and Stepp, 1983; Fisher and Langley, 1985).

3.1.1 Concept Learning

One form of inductive learning, called concept learning, is to generate concepts by gen-

eralizing the data. A concept can be regarded as a semantically meaningful structured

object. These concepts essentially characterize patterns in the data. Learning is achieved

by searching the hypothesis (descriptor) space and locating descriptors that best identify or

di�erentiate patterns in the data. Some of the common representations for the generated

concepts are decision trees, rules, and version spaces. Decision trees are used in ID3 (Quin-

lan, 1986), where each concept is represented as a conjunction of terms on a path from the

root of a tree to a leaf. Rules in CN2 (Clark and Niblett, 1987) are if-then expressions, where

the antecedent is the pattern and the consequent is the classi�cation. Each version space

learned in VS (Mitchell, 1982) de�nes the most general and speci�c description boundaries

of a concept.

For example, given the descriptions of cups and non-cups in Table 1, a simple concept

learning algorithm which only gathers common descriptors present in the cup examples and

4

Table 1: Descriptions of cups

Example COLOR MATERIAL HANDLE LIFTABLE CONCAVE CUP

A RED METAL YES YES YES YES

B BLUE PLASTIC NO YES YES YES

C RED CERAMIC YES YES YES YES

D WHITE PLASTIC NO YES YES YES

E BROWN METAL NO NO NO NO

F WHITE CERAMIC YES NO YES NO

absent from the non-cup examples would form the following concept for cups:

(LIFTABLE = YES) and (CONCAVE = YES) ! CUP

That is, only the \liftable" and \concave" features are present in all the examples of cups

and therefore an instance is a cup if it is liftable and concave.

3.1.2 Exemplar-based Learning

Another form of inductive learning, called exemplar-based learning, involves storing all or a

large subset of the examples in memory. Given an unclassi�ed instance, a distance metric,

which encodes the notion of \similarity" and is adjusted during training, is used to �nd the

\closest" example(s) in the memory relative to the test instance. The classi�cation of the test

instance is then based on this selected example(s). Each exemplar in memory is associated

with a weight that re
ects its e�ectiveness in correct prediction and is incorporated into the

distance metric. This weight is adjusted during training (Cost and Salzberg, 1990b).

For example, using the cup and non-cup descriptions in the previous section, we can

transform Table 1 to Table 2. The binary substitutions are: no = 0 and yes = 1. (COLOR

and MATERIAL, which are not binary descriptors, are omited from Table 2 for simplicity.

Section 4.1.2 describes a method for dealing with non-binary descriptors.) A simple distance

metric is the sum of absolute di�erences in all descriptors. For simplicity, after training, all

the examples have equal weights. Given the instance [HANDLE = 0, LIFTABLE = 1, and

CONCAVE = 1], the closest examples are B and D (since the distances for these two are

zeros, while the distances of the other examples are one or two); therefore, it is classi�ed as

a cup. (Ties are broken arbitrarily if the closest neighbors do not agree.)

This approach is related to rote learning, where all the examples are memorized and an

instance can only be classi�ed when the instance exists in the memory. That is, there is no

explicit reasoning or generalization in rote learning.

3.2 Analytic Learning

Explanation-based learning (EBL) (Mitchell et al., 1986) is a form of analytic learning. It

involves forming explanations of why an example of a coarsely de�ned concept belongs to

5

Table 2: Binary descriptions of cups

Example HANDLE LIFTABLE CONCAVE CUP Distance from (0 1 1)

A 1 1 1 YES 1

B 0 1 1 YES 0

C 1 1 1 YES 1

D 0 1 1 YES 0

E 0 0 0 NO 2

F 1 0 1 NO 2

that concept. A domain theory (facts and rules about the domain) forms the basis for ex-

planations and an operationality criterion restricts the language of explanations to a useful

form. Moreover, explanations are generalized by a form of goal regression (Waldinger, 1977;

Nilsson, 1980) to �nd a su�cient condition for the explanations. That is, a most general con-

cept is formed from an example(s) according to the operationality criterion that is consistent

with the domain theory and the initial concept.

For example, consider the cup recognition problem in (Mitchell et al., 1986) with the

following goal concept:

CUP(x) $ LIFTABLE(x) and STABLE(x) and OPEN-VESSEL(x)

Some entries in the domain theory are:

IS(x, LIGHT) and PART-OF(x, y) and ISA(y, HANDLE) ! LIFTABLE(x)

PART-OF(x, y) and ISA(y, BOTTOM) and IS(y, FLAT) ! STABLE(x)

PART-OF(x, y) and ISA(y, CONCAVITY) and IS(y, UPWARD-POINTING)!

OPEN-VESSEL(x)

The operationality criterion is to express the concept in terms of structural features like

LIGHT, HANDLE, and FLAT. Given the training example:

OWNER(OBJ1, EDGAR) and PART-OF(OBJ1, CONCAVITY-1) and IS(OBJ1, LIGHT)

and ...

an EBL algorithm can form an explanation as shown in Figure 1. By changing constants to

variables, the explanation can be generalized to:

PART-OF(x, xc) and ISA(xc, CONCAVITY) and IS(xc, UPWARD-POINTING) and

PART-OF(x, xb) and ISA(xb, BOTTOM) and IS(xb, FLAT) and

PART-OF(x, xh) and ISA(xh, HANDLE) and IS(x, LIGHT) ! CUP(x)

which represents a generalized concept for cups.

The major di�erence between EBL and inductive learning is that EBL is more knowledge

intensive and can generalize from one example. However, EBL requires a domain theory,

which is not necessary in inductive learning. Indeed, that is the intent of this learning

paradigm. A thorough survey of EBL approaches can be found in (Ellman, 1989).

6

Figure 1: An explanation tree for the cup problem (Mitchell et al. 1986)

3.3 Connectionist Methods

Neural networks (Lippmann, 1987; Vemuri, 1988) were originated from perceptrons intro-

duced by Rosenblatt (1962) and Minsky and Papert (1969). Connectionism is an attempt

to mimic how information is processed in the human brain, which has likely many billions

of neurons and connections among them.

A neural network usually consists of layers of units (neurons) and links between units

in adjacent layers. There are other networks that are not layered. A typical layered neural

network has an input layer, an output layer, and zero or more hidden layers (e.g., Figure 2

is a three-layer neural network). A perceptron is a special case of a neural network. It has

input and output layers, but there are no hidden layers. That is, the input layer is directly

connected to the output layer. In addition, there is only one output unit in perceptrons. It is

well known that the absence of hidden layers prevents perceptrons from learning anything but

linearly separable concepts. That is, in a two-dimensional event space, a concept is learnable

by perceptrons if a straight line can be drawn in the event space separating positive examples

from negative ones.

In a fully connected network, each unit in a layer is connected to every unit in the adjacent

layer. A feed-forward network propagates values from the input layer, through the links, to

the output layer. The output of a node at each layer is determined by an output function,

f , a threshold, �, inputs from the previous layer, x, and weights on the links connected to

the previous layer, w (Figure 3). The output, y, of a unit is typically (Lippmann, 1987):

y = f

n

X

i=1

w

i

x

i

� �

!

(1)

where n is the number of links from the previous layer to this unit. f is typically a threshold

or sigmoid function with values from 0 to 1.

Learning is achieved by adjusting weights and thresholds in the network by propagating,

from the output layer back to the input layer, the di�erence between the desired output and

7

Figure 2: A three-layer neural network

Figure 3: A unit in a neural network

8

Figure 4: Learning the OR function with a neural net

the actual output at each unit. A well-known adjustment algorithm is the back-propagation

algorithm introduced by Rumelhart et al. (1986). Usually, examples are repeatedly presented

to the network until certain criteria are met; for example, the error rate on the training

examples is within a certain limit or a certain amount of processing time has been consumed.

For example, consider a network with two input units and one output unit, and the

network attempts to learn the OR function. The output unit has a threshold of 1 and the

initial weights are randomly set at 0 or 1. A simple weight adjustment algorithm is to add

the inputs to the weights when the output is too low and subtract when the output is too

high. The four combinations of inputs are repeatedly presented to the network until all the

inputs produce the correct output.

Figure 4 shows how the OR function can be learned. The two weights in the network

are �rst initialized to one and zero. The �rst input pair is 00. Since the weighted sum of

the inputs is 0 (0 � 1 + 0 � 0) and is lower than 1 (the threshold), the output is zero. The

output is correct and hence the weights are not adjusted. When the second input pair 01 is

presented to the network, the weighted sum is 0 (0 � 1 + 1 � 0) and is still lower than the

threshold and hence the output is zero. Because the output is lower than the correct output,

1, the inputs are added to the corresponding weights. That is, the weights become 1 and

1. Similarly, after four more pairs of inputs, the weights converge to two and two, which

correctly characterize the OR function.

3.4 Genetic Algorithms

The idea of genetic algorithms was introduced by Holland (1975). It is based on Darwin's

theory on evolution, Darwinism, which essentially posits that the o�spring of organisms are

generally di�erent and only the o�spring with characteristics suitable for the environment

can survive and reproduce. Hence, \good" characteristics are being passed on through

generations and \bad" ones are lost.

9

In genetic algorithms there is a set of rules, or classi�ers, and a message list (Holland,

1986; Booker et al., 1989). If the antecedent of a classi�er matches with the messages on the

list, the classi�er will bid to post its consequence onto the message list. A bid is a probability

of how likely the message will actually be posted and is determined by the strength of the

rule and speci�city of the rule's antecedent. The strength of a rule represents its usefulness

in the task and the speci�city of a rule represents its relevance in the current iteration. If

the message of a rule is actually posted, the strength of the posting rule is decreased by

the bid and the strength of the rules which posted the messages, in the previous iteration,

matched by the posting rule is increased by sharing the bid. That is, the classi�ers in

the previous iteration are \credited" if their posted messages contributed to the successful

posting classi�er in the current iteration. Similarly, the current posting classi�er will also

be \credited" if its posted message is matched by a posting classi�er in the next iteration.

Consequently, this creates a chain e�ect which bene�ts all the classi�ers that are in the

solution path. At each iteration, all the messages from the previous iteration are replaced

by the ones from the current iteration. At the end only strong classi�ers survive and are the

ones that contributed to the process.

To adjust the classi�ers, the notion of evolution is employed. Genetic operators are

applied to classi�ers to generate o�spring. Common genetic operators are: crossover (ex-

changing segments between two classi�ers), inversion (reversing the order of two segments

in the same classi�er), and mutation (changing a segment of a classi�er to something di�er-

ent). The strength of an o�spring is derived from their parents. The o�spring then compete

with the original classi�ers and can only survive if they replace weaker classi�ers|the num-

ber of classi�ers remains the same. The rate of applying each operator and the number of

reproducing classi�ers are based on user-speci�ed parameters.

Wilson (1987) presents a specialized genetic algorithm for learning from examples. The

antecedent of classi�ers is a template for matching inputs and the consequent is the class

prediction of the matched input. When an input is presented to the classi�ers, the matching

classi�ers form the match set, M . From M , a classi�er is selected using the probability

distribution over the strengths in M and the prediction of the chosen classi�er is the system

output.

All the classi�ers with the same output fromM constitute the action set, A, and the rest

of M form the not-action set, notA. During the strength-adjustment (credit-assignment)

process, a fraction of the strengths of all the classi�ers in A are deducted. A payo� R is

added to the strength of each classi�er in A if the system output is correct and R

0

, where

0 � R

0

< R, is added when the output is wrong. A fraction of the strengths in notA is then

deducted. To generate new classi�ers and replace weak classi�ers, crossovers and mutations

are performed according to user-speci�ed rates and probabilities.

During training, examples are presented to the system repeatedly until convergence is

achieved or certain criteria are met. The strengths of classi�ers are adjusted, new classi�ers

are generated, and weak ones are replaced according to the algorithm described above.

For example, Figure 5 illustrates an evolution of classi�ers using a genetic algorithm

to learn the OR function. A simpli�ed version of Wilson's algorithm is adopted to show

the working of genetic algorithms. The strength-adjustment process only consists of adding

1 to the strength of classi�ers that match the training instance and predict the correct

classi�cation. The initial strength of each classi�er is 1. The strength of the two o�spring

10

a) 1/00/0 2/00/0 2/00/0 2/00/0

b) 1/#1/1 00 1/#1/1 01 2/#1/1 crossover(c,d) 2/#1/1 10

c) 1/0#/1 --> 1/0#/1 --> 2/0#/1 --> 2/0#/1 -->

d) 1/10/0 1/10/0 1/10/0 1.5/1#/1

2/00/0 2/00/0 2/00/0 3/00/0

2/#1/1 11 3/#1/1 mutation(c) 3/#1/1 00 3/#1/1

2/0#/1 --> 2/0#/1 --> 2/00/1 --> 2/00/1

2.5/1#/1 3.5/1#/1 3.5/1#/1 3.5/1#/1

Figure 5: Learning the OR function with a genetic algorithm

generated by a crossover is half the sum of their parents' strengths. In our example, there are

four classi�ers (a{d); each classi�er is represented as strength/pattern/classi�cation. (The

\#" in a pattern is a wild card.)

After two examples, a crossover operation is applied to classi�er c and d. The crossover

point is in the middle of the pattern (i.e. 2/0o#/1 and 1/1o0/0). Therefore, the o�spring are

1.5/1#/1 and 1.5/00/0. Since 1/10/0 (one of the two parents) is weaker than the o�spring,

it is replaced by 1.5/1#/1 (arbitrarily chosen from the two equally strong o�spring). A

mutation operation is then applied to classi�er c after four examples, the \#" in the pattern

is replaced by a \0." After �ve training examples, the strongest three classi�ers succinctly

describe the OR function.

4 Amino Acid Sequence Analysis

We now turn our attention to a description of the various machine learning approaches

employed in various amino acid sequence analysis tasks. Each of the following subsections

discusses a di�erent task and the applied learning techniques.

4.1 Protein Secondary Structures

Recall that due to the physical and chemical interactions among amino acids, proteins do

not appear as linear ropes. Interacting segments create twists and turns (called protein

folding) which make proteins appear globular. Scientists have identi�ed structural patterns

in proteins and classi�ed three structural levels. The primary structure is the sequence

of amino acids, a linear chain of speci�c acids. The main secondary structures are three-

dimensional structures formed from this linear sequence called �-helix, �-sheet, and coil.

Groups of secondary structures produce tertiary structures.

There have been quite a number of research attempts to use machine learning techniques

to identify protein secondary structures from amino acid sequences. The task is to learn the

rules governing the formation of, say an �-helix, given a particular amino acid sequence. All

11

the techniques described below use a windowing technique for generating training sequences.

Each training sequence consists of a �xed number of amino acids in sequence and a window,

a �xed number of amino acids considered as a subsequence. The window slides over the

protein sequence, one amino acid at a time, to generate di�erent training sequences. The

window size varies according to the method applied in di�erent tasks. The systems are

described in two subsections, one discusses the neural network approaches and the other

discusses the symbolic learning approaches. A third subsection summarizes the results of

various learning approaches and compares these approaches to results obtained from human-

designed systems.

4.1.1 Neural Network Approaches

Qian and Sejnowski (1988) used neural networks to learn the rules of secondary structure

formation. They varied the number of groups, or window size, in the input layer from 1 to

21 and empirically found 13 to be the most e�ective. The input groups represent a sequence

of amino acids. Each input group has 21 units, which encode 20 amino acids and a \spacer."

They attempted 0 to 60 units in the hidden layer and determined that a layer with 40 units

was the most appropriate. It is not clear from the paper why why these settings worked

best. There are three units in the output layer that encode the three secondary structure

classes. For a given sequence of amino acids at the input units, the output units represent

the structure classi�cation of the center amino acid in the input sequence. During train-

ing, the weights between nodes are adjusted using the back-propagation learning algorithm

(Rumelhart et al., 1986). The highest accuracy obtained was 62.7%.

They also attempted two connected networks, called cascaded networks, where the output

of the �rst network is the input of the second. The �rst network is the same one described

above. The second network has 13 input groups with 3 units each. The 13 input groups

represent a sequence of 13 outputs from the �rst network. The second network still has a

hidden layer of 40 units and an output layer of three units. With the cascaded networks, they

achieved an accuracy of 64.3%. This means that the learned system is correct in predicting

secondary structures 64.3% of the time.

Holley and Karplus (1989) independently used a very similar neural network approach.

Based on the evidence of high statistical correlation with secondary structure and 8 amino

acids on either side of a prediction point (Garnier et al., 1978), the input layer has 17 groups,

each with 21 units. The hidden layer has only 2 units, but it is unclear why 2 was chosen. The

output layer also has two units and the secondary structures are encoded as follows: (1,0) =

helix, (0,1) = sheet, and (0,0) = coil. They used the same back-propagation algorithm Qian

and Sejnowski used for training the network. Since the output units generate real numbers

between 0 and 1, a threshold is used to determine the class represented by the outputs.

In addition, domain knowledge is also incorporated in the classi�cation process. Helix is

assigned to any group of four or more contiguous amino acids having helix outputs greater

than sheet outputs and greater than the threshold. Similarly, sheet is assigned to any group

of two or more contiguous amino acids having sheet outputs greater than helix outputs and

greater than the threshold. The rest are assigned as coil. The threshold of .37 was found

to be the best achieving an accuracy of 63%, roughly the same as Qian and Sejnowski's

result. It is unknown, however, whether these two systems predicted correctly on the same

12

instances.

4.1.2 Inductive Learning Approaches

Concept Learning King (1987) used a concept learning approach to generate rules for

secondary structure prediction. Amino acids are grouped according to their chemical prop-

erties as presented in (Taylor, 1986). Conjunctions and disjunctions of descriptors in the

antecedent are allowed as long as they are consistent with the chemical properties so that

the search space is limited. The antecedents of rules can also be specialized and generalized

according to a generalization/class lattice. A generalization lattice is a graph, where each

node is a set of descriptors and its child nodes are subsets of the parent node but are not

subsets of other child nodes. It is not a tree because a node can have more than one parent

node. A parent node is, in a sense, more \general" than its child nodes. This is similar to

a generalization/class hierarchy that may be traversed to �nd the appropriate descriptors

(Utgo�, 1986).

The learned rules are of the form:

Descriptor

1

;Descriptor

2

; : : : ;Descriptor

n

! SecondaryStructureType

where Descriptor

i

is the descriptor of an amino acid in a segment and all the amino acids

in the segment have the same SecondaryStructureType. n is not �xed.

The search operators employed in this system included adding disjunctive or conjunctive

descriptors and generalizing or specializing existing descriptors in the antecedent of a rule.

Using a best-�rst search, the system looks for a better rule until the search operators cannot

generate rules better than the current one. The evaluation function consists of two parts:

coverage and accuracy. Coverage measures the number of amino acids covered by the rule in

the examples. Accuracy measures the percentage of correct classi�cations by the rule. During

the rule selection process, only rules with an accuracy greater than 60% and a coverage of

more than 80 amino acids are selected. These thresholds were chosen arbitrarily by King.

When more than one rule passes the threshold, the rule with a higher coverage is preferred.

According to the article, only rules for �-helices and �-sheets are generated. A sample

rule from (King, 1987) is:

T inyOrPolar; Large;AromaticOrM;Large; LargeAndNotNegative! Helix

which matches �ve amino acids in sequence. Classi�cation is performed by matching the

instances with all the rules. If con
icts occur (both helix and sheet rules match), helix

is assigned. If none of the rule matches, coil is assigned. (The decision is based on the

probabilities of the three structures: helix = .26, sheet = .20, and coil = .54.) King achieved

an accuracy of 60%.

Seshu et al. used a constructive induction approach (Seshu et al., 1989). New features are

built from primitive features using construction operators (constructors). These constructors

can be domain-dependent or domain-independent. Domain-dependent constructors combine

features according to domain knowledge. For example, in the secondary structure task,

there is a sequence constructor which takes a pattern and returns a feature which counts the

number of occurrences of that pattern in the database. Domain-independent constructors

include boolean operators like conjunctions and disjunctions. An optimization algorithm

13

(Seshu et al., 1989) is then applied to select a subset of constructed features to be added

to the original feature set. The new feature set is then used in the PLS1 induction system

(Rendell, 1983) to generate rules. If the accuracy of the generated rules is not satisfactory,

the construct-select-induce process is repeated until an acceptable accuracy is obtained.

Unlike King's rules, which match di�erent numbers of amino acids, Seshu et al.'s rules

are �xed to match nine amino acids and the structure predicted by the rule applies to the

center amino acid, similar to the approach used in the neural network methods. That is, a

rule is of the following form:

Descriptor

1

; : : : ;Descriptor

5

; : : : ;Descriptor

9

! SecondaryStructureTypeAtDescriptor

5

where Descriptor

i

is applied to amino acid categories, six in total, instead of the amino acids

themselves, which is similar to King's approach.

Using the same data as in other work, they achieved an accuracy of about 60.6%. Seshu

et al. (1989) also mentioned that they achieved 53.7% accuracy with two induction systems:

PLS1 (Rendell, 1983) and ID3 (Quinlan, 1986).

It is important to note that there is a major di�erence between King's and Seshu et al.'s

approaches besides the representation of rules. King uses a greedy approach to generate

rules to cover the examples while Seshu et al. keep generating a new set of rules based on

an \enhanced" set of features until accuracy cannot be improved.

Exemplar-based Learning Cost and Salzberg (1990a) used an exemplar-based learning

approach. Based on the examples, they use the value di�erence metric (Stan�ll and Waltz,

1986) to generate distance tables for each symbolic feature. This metric provides a numeric

distance measure between two values of a symbolic feature and is de�ned as:

�(V

1

; V

2

) =

n

X

i=1

�

�

�

�

C

1

i

C

1

+

C

2

i

C

2

�

�

�

�

k

(2)

where V

1

and V

2

are two values of a feature; for example, two amino acids. The distance

between two values are summed over all n classes; in this case, n = 3 (helix, sheet, and coil).

C

1

i

is the number of times V

1

is classi�ed as class i, C

1

is the number of times V

1

occurs,

and k is �xed at 1 (Cost and Salzberg, 1990b).

During the classi�cation process, these tables are consulted to determine the distance

between two instances. The distance between two instances is de�ned as:

�(A;B) = w

A

N

X

i=1

�(a

i

; b

i

)

r

(3)

where A is an exemplar in the memory and B is the new instance. a

i

and b

i

are amino acids

of A and B at the i

th

position, in a window size of N . w

A

is the ratio of the number of uses

of A to the number of correct uses of A. Basically, � calculates the weighted sum of distance

between the two instances at each attribute. If every time an exemplar A is picked to be

the nearest neighbor to an instance B and the class of A matches that of B, w

A

is close to

1. Otherwise, w

A

is greater than 1, which means A is not very reliable and extra distance is

added when A is used. During training, w

A

is constantly adjusted. r is set to 1 (Manhattan

distance) for this task (Cost and Salzberg, 1990b).

14

Table 3: Summary of Secondary Structure Prediction Accuracy

Method Accuracy (%) Type

Lim 50 Human-designed

Garnier-Robson 53

Chou-Fasman 50

Qian-Sejnowski 62.7 Neural Networks

Qian-Sejnowski (cascaded) 64.3

Holly-Karplus 63

King 60 Concept Learning

PLS1 or ID3 53.7

Seshu et al. 60.6

Cost-Salzberg 71.0 Exemplar-based Learning

The classi�cation of the nearest instance in the memory becomes the prediction of the

new instance. The classi�cation is then adjusted according to the minimal sequence length

restrictions used by Holley and Karplus (1989). These restrictions state that a sheet must

span at least two amino acids and a helix must span at least four, as mentioned in Sec-

tion 4.1.1. The highest accuracy reported was 71.0% with a window size of 19.

4.1.3 Summary of Prediction Accuracy

The �rst three methods in Table 3 are human-designed systems and are the work of

Lim (1974), Garnier and Robson (Garnier et al., 1978), and Chou and Fasman (1978). The

accuracies of these methods are summarized in (Qian and Sejnowski, 1988). The rest used

machine learning techniques, which are described in previous subsections. As we can see

from the table, systems generated by machine learning techniques are often more accurate

than human-designed systems. Since there are no strong indications that all the systems

used the same data and the same method for measuring accuracy, the above table can only

be treated as a rough comparison among systems. These issues are further discussed in

Section 6.1.

The highest accuracy achieved was only 71%, which is rather low for practical purposes.

Hunter (1991) suggests two possible reasons that attribute the low accuracy. One reason is

that all the systems only use local information (adjacent amino acids) to make predictions;

more distant amino acids might play a signi�cant role in determining the structure. The other

reason is that helices, sheets, and coils might not be the appropriate level of description for

forming concepts; this problem is related to the representation issues that will be discussed in

Section 6.1. In addition, the amount of training data might not be su�cient for the systems

to generate accurate concepts.

4.2 Signal Sequences of Exported Proteins

Gascuel and Danchin (1986) tried to di�erentiate prokaryotes' (E. coli) exported protein

signal sequences from eukaryotes' (H. sapiens). They used a symbolic concept learning

15

Figure 6: Amino acid class hierarchy (Gascuel and Danchin, 1986)

approach to investigate if there exist rules for the di�erentiation. This di�erentiation can

indicate a di�erence in the mechanism of how proteins are exported through membranes.

Gascuel and Danchin used 18 bacterial and 22 human sequences as data. Amino acids

are grouped into classes and are arranged in a hierarchy with more general classes at the top

(for example, Figure 6). Primitive descriptors are functions that are applied to nodes (amino

acid classes or amino acids) in the hierarchy. The primitive descriptors include the number

of amino acids of a given class, barycenter of a given amino acid, distribution of amino

acids, position from the start, minimum distance between two amino acids, and presence of a

pattern (Gascuel and Danchin, 1986). Descriptors are composed from primitive descriptors

according to a grammar provided by the user. Two sample descriptors are:

the signal sequence contains at least one C

and

the barycenter of aromatic amino acids is greater than or equal to 7.

Each descriptor is applied to all the nodes in the class hierarchy, which forms a space for

that descriptor. For example, applying the NUMBER descriptor (number of amino acids)

to Figure 6 yields Figure 7. During learning, for each descriptor, its space is searched in a

top-down manner. The most general instance of the descriptor and its children are evaluated.

At each evaluation cycle, if an instance is below the threshold, its children in the hierarchy

will be evaluated. When the search ends, the descriptor instance with the highest score is

selected. The evaluation is based on a contingency table with a chi-square test.

Totally, 17 descriptors were found to pass the threshold, which include the two sample

descriptors mentioned in the previous paragraph. When the descriptors are used to classify

a sequence, each descriptor provides a score of 0, 1, or .5, where 0 is more bacterial, 1 is more

human, and .5 is undecided. The score of the 17 descriptors are then summed. According

to the scores from the training set (40 sequences), a score of 6.5 was reported to be the best

di�erentiation point. For a test set with 14 sequences, the accuracy rate was 64%.

5 Nucleotide Sequence Analysis

Another type of sequence analysis is investigated for nucleotide sequences from DNA and

RNA. The following subsections discuss how learning techniques were applied to nucleotide

16

Figure 7: Hierarchy for descriptor NUMBER (Gascuel and Danchin, 1986)

sequence analysis.

5.1 Promoters

Promoters are DNA regions where transcription begins. Transcription is the process of

copying information from a gene on DNA to mRNA (messenger RNA). For all the systems

described below, nucleotide sequences from E. coli were used.

5.1.1 Neural Networks

Towell et al. (1990) used neural networks with guidance from general knowledge about pro-

moters. Given a domain theory, a set of rules about the domain, their system, calledKbann

(Knowledge-Based Arti�cial Neural Networks), translates the rules to a neural network. The

rules are used to generate the topology as well as the weights and thresholds of an initial

neural network. It is important to note that, unlike most networks, the network generated

by Kbann is not necessarily symmetrical or uniform; that is, there might be connections be-

tween non-adjacent layers (a semi-layered network). This is due to the fact that the number

of connections from an input unit to an output unit relies on the dependencies of terms in

the rules, and so there is no guarantee that all the output units have the same distance from

the input units. In addition, input units corresponding to features that do not appear in

the rules are added. Connections between units are also added to explore dependencies not

expressed in the rules; the weights for these connections are initialized to zero. As a last step

in constructing the initial network, near-zero random numbers are added to the weights and

thresholds to avoid symmetry-breaking problems (Rumelhart et al., 1986). For the promoter

recognition task, each sequence has 57 nucleotides, and hence the input layer has 57 input

groups, each has four units to represent a nucleotide in the DNA sequence. In the output

layer, there is only one unit to indicate if the input sequence is a promoter. Figure 8 contains

part of the domain theory used in Towell et al.'s study and the initial neural network built

from the domain theory.

Towell et al. used 53 promoter sequences and 53 non-promoter sequences for training.

Each sequence has 57 nucleotides. The non-promoter sequences were generated from a

DNA segment that is believed not to contain any promoter sites. In their experiments they

17

promoter contact, conformation

contact minus 35, minus 10

Figure 8: Partial domain theory and initial neural network for promoter recognition (Towell

et al., 1990)

achieved an error rate of 4/106 (96% accuracy).

5.1.2 Exemplar-based Learning

Cost and Salzberg (1990) used an exemplar-based learning technique to determine the lo-

cation of promoters. They used the same approach as in their protein secondary structure

task which is described in Section 4.1.2 except that they set r to 2 in Equation 3 (Euclidean

distance) (Cost and Salzberg, 1990b). They used the same data Towell et al. used|53

promoter and 53 non-promoter sequences, each with 57 nucleotides. They obtained an error

rate of 4/106 (96% accuracy), same as Towell et al.'s result. But, it is not clear if both

systems predicted incorrectly on the same instances.

5.1.3 Summary of Prediction Error Rate

Table 4 summarizes the error rates for various promoter prediction systems. The �rst system

is due to O'Neill (1989) and is the most accurate human-designed system according to Towell

et al. (1990). The results for a neural network with the standard backpropagation algorithm

and ID3 are from Towell et al. (1990). Although all the learned systems used the same data,

it is not clear if O'Neill's system did. Hence, again, the above table can only provide a rough

comparison among the systems (see Section 6.1). In general, except ID3, learned systems

were more e�ective than the human-designed systems.

Although the promoter prediction accuracies demonstrated by these system are not per-

fect, they are far much better than those in protein secondary structure prediction (Sec-

tion 4.1.3). This might be attributed to the larger amount of information exhibited by

nucleotides near the promoter site. That is, the performance results suggest that adjacent

18

Table 4: Summary of Promoter Prediction Error Rate

Method Error Rate Type

O'Neill 12/106 Human-designed

Standard Backpropagation 8/106 Neural Networks

Towell et al. 4/106 Neural Networks with domain knowledge

ID3 19/106 Concept Learning

Cost-Salzberg 4/106 Exemplar-based Learning

nucleotides to the promoter site are indicative of the presence of such a site.

5.2 RNA Splice Junctions

In eukaryotes' DNA, there are interrupted genes. That is, some regions of a gene do not

encode protein information. During transcription, these non-protein-encoding regions are

passed to the RNA. These regions on an RNA are called introns and are sliced o� during

translation, the process of decoding information on an RNA to generate proteins. Before

translation begins, the regions that encode protein information, exons, are spliced together

after the introns are removed.

Lapedes et al. (1990) used perceptrons to determine if DNA sequence segments containing

the dinucleotides \AG" or \GT" are transcribed to RNA splice junctions. Input sequences

with 11, 21, and 41 nucleotides were used in di�erent experiments. Each input group has

four units, which represent the four di�erent nucleotides. All known splice junctions are

divided into donor sites (the boundary between an intron and an exon) and acceptor sites

(the boundary between and an exon and an intron). For the donor group, DNA segments

were selected with the highly conserved dinucleotide \AG" in the middle. Similarly, for the

acceptor group, the dinucleotide \GT" was used. All but 50 DNA segments were used as

positive or negative training examples and the rest were used in testing. They obtained an

accuracy of 91.2% (41 input nucleotides) in the acceptor group and 94.5% (11 and 21 input

nucleotides) in the donor group.

Lapedes et al. (1990) also reports that they achieved a slightly lower accuracy with ID3.

With ID3, the input sequence length was 20. In the generated decision tree, each node

contains a descriptor specifying a nucleotide at a particular location. Figure 9 contains the

top two levels of an ID3-generated tree.

5.3 Protein Coding Regions

Lapedes et al. (1990) tried to determine whether certain DNA sequence segments are trans-

lated to protein. Not all DNA segments encode proteins, some encode \control" information;

for example, regions that signify the initiation and termination of protein production.

Lapedes et al. used perceptrons to determine protein coding regions in eukaryotic (H.

sapiens) and prokaryotic (E. coli) DNA sequences. However, they used higher-order per-

ceptrons introduced by Lee et al. (1986) to determine if the input representation can be

19

loc_-3

A C G T

loc_-7 loc_-6 loc_-4 loc_-10

A C G T A C G T A C G T A C G T

...

Figure 9: Partial decision tree for RNA splice region recognition (Lapedes et al., 1990)

improved before the regular (�rst-order) perceptron algorithm is used. In higher-order per-

ceptrons, instead of summing the weighted single inputs at the output unit (i.e.,

P

i

w

i

x

i

,

Equation 1), weighted products of multiple inputs are summed (i.e.,

P

ijk

w

ijk

x

i

x

j

x

k

for a

third-order perceptron).

Using a third-order perceptron, Lapedes et al. decided that the codon input represen-

tation (a sequence of three nucleotides which encodes an amino acid) is better than the

nucleotide input representation. For the codon input representation, 64 units are used in

each input group for the perceptrons. Input sequence lengths were varied from 15 to 270

for E. coli and 45 to 270 for H. sapiens in di�erent experiments. Training examples for E.

coli were obtained from the �rst 50 entries in GenBank, a genetic database, and the rest

were used for testing. Training examples for H. sapiens were obtained from known coding

sequences in liver cells. The highest accuracies Lapedes et al. obtained were 99.4% (180 and

270 input nucleotides) for E. coli and 98.4% (270 input nucleotides) for H. sapiens.

Furthermore, in the course of investigation, Lapedes et al. predicted a previously unan-

notated protein-coding region in the GenBank entry including the 5' UTR of E. coli fhuA

gene, which was later con�rmed experimentally to be the pon B gene (Lapedes et al., 1990).

This demonstrates the viability of machine learning in helping molecular biologists discover

new knowledge by observing patterns in data that humans have otherwise missed.

5.4 Translational Initiation Sites in mRNA

A translational initiation site or ribosome binding site is a region of mRNA (messenger

RNA) where a ribosome binds to the mRNA and starts producing a protein according to

the nucleotide sequence on the mRNA.

Stormo et al. (1982) used perceptrons to identify translational initiation sites. Input

sequence lengths were 51, 71, and 101 in di�erent experiments. Each input group has four

units, which represent the four di�erent nucleotides. In addition, the output layer has only

one unit. The output unit has a threshold of 0 to determine whether the input sequence is a

translational initiation site. 124 known sites and 167 non-sites were used for training. The

trained perceptrons were then tested on the entire mRNA library, which had over 78,000

sites. The perceptrons trained with 71 and 101 nucleotides were able to identify the 124

20

known sites correctly. The perceptron trained with 51 nucleotides could not reach a state to

di�erentiate the sites from the non-sites.

6 Discussion

A variety of machine learning techniques have been applied to automating the development

of di�erent sequence-analysis systems. Learning techniques range from symbolic to neural

network approaches. It has been demonstrated that these generated systems are often more

e�ective and accurate than their human-designed counterparts. This strongly indicates that

learning techniques are viable alternatives in developing knowledge-based systems. It also

implies the learning techniques are no longer con�ned to \toy" applications and can be

successfully applied to \real-world" problems.

Besides building more accurate sequence-analysis systems e�ciently, learning techniques

are capable of unearthing previously unknown information in molecular biology. As men-

tioned in Section 5.3, a protein coding region was identi�ed by a learned system and was

subsequently veri�ed by experiments. This capability is particularly important to molecular

biologists especially when they have to analyze vast amounts of data. Learning systems

can help scientists to process the data e�ciently and develop hypotheses, which can then

be veri�ed or refuted by experiments. In other words, learning systems can speed up and

contribute to the process of discovering new knowledge.

6.1 Issues

Domain Knowledge In some of the systems discussed in this paper, a substantial amount

of knowledge in molecular biology has been incorporated into the symbolic inductive learning

and neural network systems. For example, chemical properties of amino acids are taken into

account in King's work (Section 4.1.2) and promoter facts are used to build the initial

neural network in Towell et al.'s work (Section 5.1.1). This deviates from a number of

similar systems which mainly rely on identifying patterns in the data without reliance upon

background knowledge. The incorporation of knowledge helps searching algorithms avoid

exploring many implausible hypotheses and vastly reduces the size of the search space,

and hence shortens the overall execution time. However, the use of knowledge in learning

systems might potentially prevent discovery outside the search space delimited by domain

knowledge. Therefore, the use of knowledge in inductive systems has a delicate trade-o�

between execution time and discovery potential.

Knowledge Representation Knowledge representation is a well-known fundamental prob-

lem in arti�cial intelligence. It is not easy to �nd the appropriate representation for a partic-

ular task and in almost all cases, there is no single e�ective and agreed upon representation

for a wide variety of tasks. Learning systems are no exceptions. In symbolic learning, re-

searchers have been using various techniques to augment and enrich the language used in

the hypothesis space. For example, Gascuel and Danchin use a domain-dependent grammar

to generate descriptors (Section 4.2), King uses a domain-dependent generalization lattice

to provide di�erent levels of abstractions for the descriptors (Section 4.1.2), and Seshu et

21

al. provide domain-dependent constructors to introduce new descriptors (Section 4.1.2). In

neural networks, most systems experiment with di�erent alternatives to �nd the \right"

number of input and hidden units (trial and error). In most cases the ranges of these num-

bers are conveniently and randomly chosen. However, some work has been done to make

a more reasonable choice of representation. For example, a high-order neural network is

used to evaluate two di�erent representations in Lapedes et al.'s work (Section 5.3) and

promoter facts are employed to initialize a neural network topology in Towell et al.'s work

(Section 5.1). Although more work needs to be done, this is a step toward the right direction

in providing more e�ective knowledge representations for learning systems.

Comprehensibility Symbolic concepts are generally more comprehensible than concepts

represented in neural nets. In some applications connectionist approaches might generate

more e�ective concepts than symbolic approaches, but it might be worthwhile to sacri�ce

some accuracy for comprehensibility. One plausible solution to this problem is to extract

symbolic concepts from a connectionist representation (Towell et al., 1991).

Speed The issue of e�ciency was not a concern in the work discussed above. Most of the

current research in machine learning has been focused on improving the accuracy of learning

algorithms on relatively small data sets. Due to the initiation of the Human Genome Project

(DeLisi, 1988), large amounts of genetic data will be generated in the coming years. That

is, the current learning technology will not be adequate in e�ciently processing genetic

databases of potentially massive size; current learning systems might not be able to scale

up.

Choice of Parameters How to choose parameters (thresholds, number of input units,

etc.) optimally for learning systems is another concern. In most systems described here,

parameters are selected in an ad hoc way. One would prefer to have a systematic way of

determining these parameters instead of experimenting with them. One approach might be

to perform sensitivity analyses on how parameter settings a�ect prediction accuracy. These

analyses might shed some light on which parameter causes which type of errors.

Standardization It might be deceiving to proclaim one learning system is better than

the other when their accuracies are based on di�erent data sets. In the machine learning

community, researchers addressed this problem by setting up archives for data sets (for

example, the one at University of California at Irvine) so that the same data sets can be

used for comparison. In addition, they encourage fellow colleagues to make their private

data sets publicly available so that other researchers can reproduce their results. In addition,

there are no standardized methods for measuring accuracy. Comparative performance results

might be misleading if di�erent methods are used. Fortunately, cross-validation techniques

are gaining popularity and are generally accepted as a standardized method for measuring

accuracy.

22

6.2 Directions

Although a variety of learning techniques have been used in the sequence analysis tasks

discussed in this article, they are restricted to the inductive learning and connectionist

paradigms. The tasks are data-oriented and genetic algorithms are suitable and should be

explored. We believe, however, that techniques in analytic learning are not appropriate

since they are knowledge-intensive and are for high-level inference. However, there might

be other sequence-analysis tasks that are knowledge-intensive and hence appropriate for

analytic learning.

As mentioned above, the e�ciency of current learning systems will be challenged by

the enormous amount of data generated by the Human Genome Project. One approach

to remedy this problem is to devise more e�cient learning algorithms. This area has been

receiving much attention in recent years and learning theorists have been building formal

computational learning models (Valiant, 1984) and developing more e�cient learning algo-

rithms based on these models. In fact, an annual workshop devoted to learning theory was

commenced in 1988 (Haussler and Pitt, 1988). Another approach is to utilize parallel pro-

cessing. However, unfortunately, there has not been much attention in this area, especially

in the symbolic learning paradigm. NSF's Scienti�c Database Initiative has attempted to

focus interest here.

Di�erent learning algorithms inherently possess di�erent inductive biases (Mitchell, 1980).

That is, the way a hypothesis space is searched varies among learning systems. Di�erent

systems have di�erent heuristics, and hence di�erent ways to search their hypothesis spaces.

Therefore, a learning system's inductive bias impacts its e�ectiveness in dissimilar tasks. As

mentioned above, di�erent knowledge representations are appropriate for di�erent tasks. To

take advantage of this diversity among algorithms, multiple learning systems with di�erent

biases and representations can be used on the same task at the same time. Furthermore, in

the same learning task, di�erent learning systems can generate di�erent concepts and hence

make di�erent mistakes. If these mistakes do not overlap, the concepts can complement each

other to produce more accurate results. We believe that a group of learning systems can be

at least as e�ective as the system with the most appropriate bias and representation, and

the highest accuracy. Hence, the quality of learned concepts can potentially be improved by

complementing the systems. These systems can run independently and their results might

then be coalesced by another algorithm, which can be another learning algorithm. They can

also run cooperatively using distributed arti�cial intelligence (DAI) techniques (Bond and

Gasser, 1988), where knowledge is exchanged among individual agents while working on the

same task. Since these di�erent systems can be run concurrently, parallelism, in this case,

can potentially improve both the speed and quality of learning. In our view this is also an

area ripe for exploration with the coming generation of distributed and parallel computing

systems.

7 Concluding Remarks

This paper surveys how machine learning techniques have been applied to generating sequence-

analysis systems. It has been demonstrated that these techniques can be successfully applied

to di�erent analysis tasks and the prediction accuracies are often higher than those obtained

23

from human-designed systems. In addition to being more accurate, learning systems are

capable of forming veri�able new hypotheses. That is, learning techniques are viable al-

ternatives in developing sequence-analysis systems as well as aiding molecular biologists in

discovering new knowledge.

To e�ciently process the anticipated massive in
ux of data from the Human Genome

Project, we believe that utilizing parallel processing can be more bene�cial than improving

existing sequential algorithms in the long run. The reason is that genetic databases might

grow to a point that the fastest sequential algorithm will still not be e�cient enough. In

addition to speed, parallelism also allows multiple learning systems to run concurrently and

potentially improve the quality of learning. It is our conjecture that parallelism is vital in

coping with future needs in the sequence analysis community as well as the machine learning

community.

References

Bishop, M. and Rawlings, C. (1987). Nucleic Acid and Protein Sequence Analysis. IRL

Press, Oxford, England.

Bond, A. and Gasser, L., editors (1988). Readings in Distributed Arti�cial Intelligence.

Morgan Kaufmann, San Mateo, CA.

Booker, L., Goldberg, D., and Holland, J. (1989). Classi�er systems and genetic algorithms.

Arti�cial Intelligence, 40:235{282.

Boose, J. (1986). Expertise Transfer for Expert System Design. Elsevier, Amsterdam,Nether-

lands.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classi�cation and

Regression Trees. Wadsworth, Belmont, CA.

Buchanan, B., Barstow, D., Bechtel, R., Bennett, J., Clancey, W., Kulikowski, C., Mitchell,

T., and Waterman, D. (1983). Constructing an expert system. In Hayes-Roth, F., Wa-

terman, D., and Lenat, D., editors, Building Expert Systems, pages 127{167. Addison-

Wesley, Reading, MA.

Carbonell, J. (1983). Learning by analogy: Formulating and generalizing plans from past

experience. In Michalski, R., Carbonell, J., and Mitchell, T., editors,Machine Learning:

An Arti�cial Intelligence Approach, pages 137{161. Morgan Kaufmann, Los Altos, CA.

Carbonell, J. (1989). Introduction: Paradigms for machine learning. Arti�cial Intelligence,

40:1{9.

Chou, P. and Fasman, G. (1978). Prediction of the secondary structure of proteins from

their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol., 47:45{148.

Clark, P. and Niblett, T. (1987). The CN2 induction algorithm. Machine Learning, 3:261{

285.

24

Cohen, P. and Feigenbaum, E., editors (1982). The Handbook of Arti�cial Intelligence,

volume 3, chapter XIV, pages 323{511. William Kaufmann, Los Altos, CA.

Cost, S. and Salzberg, S. (1990a). Exemplar-based learning to predict protein folding. In

Proc. Sym. Comp. Appl. Medical Care, Washington, DC.

Cost, S. and Salzberg, S. (1990b). A weighted nearest neighbour algorithm for learning with

symbolic features. Technical Report JHU-90/11, Department of Computer Science,

Johns Hopkins University, Baltimore, MD.

DeLisi, C. (1988). The human genome project. American Scientist, 76:488{493.

Ellman, T. (1989). Explanation-based learning: A survey of programs and perspectives.

Computing Surveys, 21:163{221.

Fisher, D. and Langley, P. (1985). Approaches to concetual clustering. In Proc. IJCAI-85,

pages 691{697.

Garnier, J., Osguthorpe, D., and Robson, B. (1978). Analysis of the accuracy and implica-

tions of simple methods for predicting the secondary structure of globular proteins. J.

Mol. Biol., 120:97{120.

Gascuel, O. and Danchin, A. (1986). Protein export in prokaryotes and eukaryotes: Indica-

tions of a di�erence in the mechanism of exportation. J. Mol. Evol., 24:130{142.

Haussler, D. and Pitt, L., editors (1988). Proceedings of the 1988 Wrokshop on Computational

Learning Theory, San Mateo, CA. Morgan Kaufmann.

Hinton, G. (1989). Connectionist learning procedures. Arti�cial Intelligence, 40:185{234.

Holland, J. (1975). Adaptation in Natural and Arti�cial Systems. University of Michigan

Press, Ann Arbor, MI.

Holland, J. (1986). Escaping brittleness: The possiblilities of general-purpose learning al-

gorithms applied to parallel rule-based systems. In Michalski, R., Carbonell, J., and

Mitchell, T., editors, Machine Learning: An Arti�cial Intelligence Approach (Vol. 2),

pages 593{623. Morgan Kaufmann, Los Altos, CA.

Holley, L. H. and Karplus, M. (1989). Protein secondary structure prediction with a neural

network. Proc. Natl. Acad. Sci. USA, 86:152{156.

Hunter, L. (1991). Arti�cial intelligence and molecular biology. AI Magazine, 11(5):27{36.

King, R. (1987). An inductive learning approach to the problem of predicting a protein's

secondary structure from its amino acid sequence. In Progress in Machine Learning:

Proc. Second European Working Session on Learning, pages 230{250.

25

Lapedes, A., Barnes, C., Burks, C., Farber, R., and Sirotkin, K. (1990). Application of

neural networks and other machine learning algorithms to DNA sequence analysis. In

Bell, G. and Marr, T., editors, Computers and DNA: The Proceedings of the Interface

between Computation Science and Nucleic Acid Sequencing Workshop, pages 157{182.

Addison-Wesley, Redwood City, CA.

Lee, Y. and et al. (1986). Machine learning using a higher order correlation network. Physica,

22D:276{306.

Lim, V. (1974). Algorithms for prediction of �-helical and �-structural regions in globular

proteins. J. Mol. Biol., 88:873{894.

Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine,

5(2):4{22.

Michalski, R. (1983). A theory and methodology of inductive learning. In Michalski, R.,

Carbonell, J., and Mitchell, T., editors, Machine Learning: An Arti�cial Intelligence

Approach, pages 83{134. Morgan Kaufmann, Los Altos, CA.

Michalski, R., Carbonell, J., and Mitchell, T., editors (1983). Machine Learning: An Arti�-

cial Intelligence Approach. Morgan Kaufmann, Los Altos, CA.

Michalski, R. and Stepp, R. (1983). Learning from observation: Conceptual clustering. In

Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An Arti�cial

Intelligence Approach, pages 331{363. Morgan Kaufmann, Los Altos, CA.

Minksy, M. and Papert, S. (1969). Perceptrons: An Introduction to Computation Geometry.

MIT Press, Cambridge, MA.

Mitchell, T. (1982). Generalization as search. Arti�cial Intelligence, 18:203{226.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-based generalization: A

unifying view. Machine Learning, 1:47{80.

Mitchell, T. M. (1980). The need for biases in learning generalizaions. Technical Report

CBM-TR-117, Department of Computer Science, Rutgers University.

Nakata, K., Kanchisa, M., and DeLisi, C. (1985). Prediction of splice junctions in mRNA

sequences. Nucl. Acids Res., 13:5327{5340.

Nilsson, N. (1980). Principles of Artic�cial Intelligence. Tioga, Palo Alto, CA.

O'Neill, M. (1989). Esherichia coli promoters: II. A spacing class-dependent promoter search

protocol. J. Biol. Chem., 264:5531{5534.

Qian, N. and Sejnowski, T. (1988). Predicting the secondary structure of globular proteins

using neural nework models. J. Mol. Biol., 202:865{884.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81{106.

26

Rendell, L. (1983). A new basis for state-space learning systems and a successful implemen-

tation. Arti�cial Intelligence, 20:369{392.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York, NY.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations by

error propagation. In Rumelhart, D. and McClelland, J., editors, Parallel Distributed

Processing, volume 1, pages 318{362. MIT Press, Cambridge, MA.

Rumelhart, D. and McClelland, J., editors (1986). Parallel Distributed Processing, volume 1.

MIT Press, Cambridge, MA.

Seshu, R., Rendell, L., and Tcheng, D. (1989). Managing constructive induction using

optimization and test incoopration. In Proc. Fifth Intl. Conf. Art. Intell. Appl., pages

191{187.

Slade, S. (1991). Case-based reasoning: A research paradigm. AI Magazine, 12(1):42{55.

Stan�ll, C. and Waltz, D. (1986). Toward memory-based reasoning. Comm. ACM,

29(12):1213{1228.

Stormo, G., Schneider, T., Gold, L., and Ehrenfeucht, A. (1982). Use of the `perceptron' al-

gorithm to distinguish translational initiation sites in E. coli. Nucl. Acids Res., 10:2997{

3011.

Taylor, W. (1986). The classi�cation of amino acid conservation. J. Theor. Biol., 119:205{

221.

Towell, G., Graven, M., and Shavlik, J. (1991). Constructive induction in knowledge-based

neural networks. In Proc. Eighth Intl. Workshop Machine Learning, pages 213{217.

Towell, G., Shavlik, J., and Noordewier, M. (1990). Re�nement of approximate domain

theories by knowledge-based neural networks. In Proc. AAAI-90, pages 861{866.

Utgo�, P. (1986). Machine Learning of Inductive Bias. Kluwer Academic, Norwell, MA.

Valiant, L. (1984). A theory of the learnable. Comm. ACM, 27:1134{1142.

Vemuri, V., editor (1988). Arti�cial Neural Networks: Theoretical Concepts. IEEE, Wash-

ington, DC.

von Heijne, G. (1987). Sequence Analysis in Molecular Biology. Academic Press, San Diego,

CA.

Waldinger, R. (1977). Achieving several goals simultaneously. In Elcock, E. and Michie, D.,

editors, Machine Intelligence 8, pages 94{136. Ellis Horwood.

Wilson, S. (1987). Classi�er systems and the animat problem. Machine Learning, 2:199{228.

27

