Distributed Communication for Highly M obile Agents

Mohammad Samarah and Philip Chan

Thedivision of Electrical and Computer Science and Engineering
Florida Institute of Technology, Melbourne, FL 32901
nsanmar ah@ach.fit. edu and pkc@s.fit.edu

Abstract. In this paper, we investigate the need for well-suited remote
communication architectures to address communication issues in mobile agent
environments. We study the implication of mobility for agent architectures —
specifically, ways in which the architecture may facilitate agent
communication. We present an architecture for inter-agent communication
suitable for remote messaging, agent monitoring, agent tracing, and agent
debugging for mobile agent environments. The architecture allows for the
dynamic adaptation of communication components. It provides for a seamless
and continuous active communication during the agent migration process.

1 Introduction

Mobile agents is an emerging technology attracting audiences from the fields of
distributed systems, information retrieval, World Wide Web, dectronic commerce
and artificial intelligence. A mobile agent is an autonomous entity that can migrate
from one machine to another in a heterogeneous network. The agent may suspend its
execution at any point, transport itself to another machine and then resume execution.
Mobile agents depart from the conventional client/server model and give rise to a
paradigm shift in distributed systems in which the agents are autonomous and sdlf
sustained.

In order for mobile agents to flourish they need a software environment in which
they can exist. A mobile agent environment is a distributed software system running
over a network of heterogeneous computers. The primary task of the environment is
to provide an execution framework for the agents. The mobile agent environment
implements a large subset of the maobile agents models. The environment may
provide support services that relate to the mobile agent environment itself and support
services pertaining to the environments on which the mobile agent environment is
built. The environment also provides support services to access other mobile agent
systems, and support services to provide open access to other non-agent based
software environments.

Agent-to-agent communication is the key to realizing the potential of the agent
paradigm, just, as the development of human languages was the key to the rapid
progress of the human race. A well-defined communication architectureis a necessary
component for the success and the wide deployment of mobile agents technology.
Research has addressed the communication problem from a language perspective

such as the interaction protocols [5] and the dialogue frames [10]. Furthermore, a few
have proposed formal communication models for mobile agent environments such as
[3] on communication concepts and [7] on open communication frameworks for
software agents. Current mobile agent systems employ many communication
mechanisms such as messages, local and remote procedure calls, but we are not aware
of any framework based on communication types and not domain specific
classification. Moreover, the agent ability to move while in active communication is
not addressed in many of the communication mechanisms available today.

In this paper, we present an architecture for inter-agent communication suitable for
remote messaging, agent monitoring, agent tracing, and agent debugging for mobile
agent environments. Synchronous communication can be established for inter-agent
interactions, while asynchronous communication addresses the need for mobile and
group communication. The framework provides the ahility of an agent to move while
in active communication, by employing message buffering and forwarding.

Our framework provides seamless communication during migration.
Communication is not interrupted and proceeds seamlessy during the migration
process. This issue is not addressed in many of the current architectures such as the
work done in [3], and most models assume the communication is interrupted and/or
terminated at the initiation of the move and reestablished once the agent arrives at the
destination. Using our scheme an agent is not required to be aware of other agents
network related activities. The agents collaborate on the task assigned, while the
framework provides the low level details of mobility.

The remainder of the paper is structured as follows. In Section 2, we present an
overview of the proposed communication architecture. Section 3 discusses the issues
involved in distributing the location registry. Section 4 discusses related work.
Section 5 concludes the paper with a summary of results and future research
directions.

2 The AGI Communication Architecture

In this section we provide an overview of the Asynchronous, Group Oriented, and
Inter-agent communication architecture, and a description of its key features. The
AGI architecture defines three models of communication. The first model is based on
an asynchronous event modd. The second model allows for agent group
collaboration. The third modd allows for direct inter-agent messaging. The
communication models provide the ability to perform call back messaging,
asynchronous messaging with delayed retrieval, and direct synchronous messaging.

2.1 Communication M odels
The AGI communication models represent a high abstraction from which new

communication types can be devised. The communication types represent application-
related capabilities. The AGI architecture is compromised of three models:

Asynchronous Events Model: This modd is based on an asynchronous event
model, in which agents may post events and messages and listen for events and
messages from other agents. It is used for normal priority messages, background
tasks, events not requiring immediate responses, and to facilitate agent mobility
by storing messages for agentsin transient.

Group Oriented Model: This model allows agents to cooperate and collaborate
with each other toward a common set of goals. It is used to facilitate group
communication and to provide a versatile communication conduit.

Inter-Agent Synchronous Model: This modd allows for direct inter-agent
messaging that provides the ability for two or more agents to communicate
directly with each other. It is used to facilitate real-time messaging and
immediate delivery of alert and notification messages.

M A - ‘i”

Aperr wiilnl apent - C
CUR TR PRI

Comeparnett {‘eomm. core |
\ale[1)
Apet g

CONRIT Hem
Copnporerrs

Fig. 1. Shows the AGI communication models. It depicts three agents with different
communication handling.

2.2 Communication Types

The AGI architecture defines three types of agent-to-agent communication
mechanisms.

1

Direct inter-agent messaging: This mechanism uses the shared messaging bus
represented by the underlying network communication layer to deliver the
message via single cast, multicast or broadcast as appropriate. It provides an
efficient communication conduit while allowing for real-time agent-to-agent
interactions. A message is delivered directly from one agent to one or more
agents.

Indirect asynchronous messaging with return receipt: This mechanism uses
the shared messaging bus to deliver the message to the messaging board. The
messaging board is a persistent storage area where the messages are kept and
maintained by a system agent. A return receipt is sent back to the originating

agent upon the retrieval of the message. Furthermore, the arrival of the message
triggers an update event that is sent from the messaging board to the recipient
agent. An agent group concept has been proposed in [2]. This concept does not
provide a solution to fault tolerance, but may be extended using group
communication and voting. We define an agent group as a collection of agents
working together on a common task. This mechanism provides group
communication as well as asynchronous messaging.

3. Mobile Messaging: This mechanism uses the messaging board and the system
agents to handle messages and events. Agents may subscribe to events and
messages and may post additional messages. Messages may have a channel
identifier that serves to categorize the message by subject, interest, or group. The
subscription channds are created and destroyed dynamically by the submission
and the deletion of the channd events. An agent may request subscription to a
channel, and continue to receive updates, and at a later time turn off channe
updates, or completely remove its subscription.

The communication types can be mapped into one or more communication models as
shown in table 1.

Table 1. Mapping Communication Types to Communication Modds

Type Model
Indirect asynchronous messaging with return receipt A

M ohile messaging
Indirect asynchronous messaging with return receipt G
Direct inter-agent messaging
M obile messaging

Direct inter-agent messaging I

2.3 System Agents and the M essaging Middlewar e Design

The moability of an agent is defined based on the code mobility and the migration
moddl. As discussed in [6] and [1], the different degrees of mobility can be
diginguished. Our framework alows an agent to move while in active
communication. The framework provides the following mobility services:

1. Location Registry Service: This service provides naming and location
information. One or more location registry agent (LRA) provides this
Sservice.

2. Message Buffering and Forwarding Servicee This service provides a
persistent area to buffer and forward messages for agentsin transient. One or
more message relay agent (MRA) provides this service.

3. Messaging Events Management: This service provides monitoring and
notification mechanisms of agent events. One or more messaging event agent
(MEA) providesthis service.

4. Rdiable Ddlivery and Fault Tolerance: This is accomplished by replication
of theLRA, MRA, and MEA agents.

Fig. 2. Illustrates zone topology. Each agent belongs to a zone. A zone is a collection of hosts
connected together through the local network.

In order to provide scalable location and message services, the network is divided into
location zones. The system agents interact with each other to provide messaging and
mobility services to user agents. The interaction is carried out through the messaging
middleware (MMW). Each agent is equipped with the messaging middleware. The
MMW carries out the communication among the agents. Furthermore, all interactions
among the service agents and user agents are carried through this component. The
user agent performing a high-level application task is not aware of the detail
interaction among the MMW. The middleware maintains the system agent names and
the status of the middleware asillustrated in table 2.

Each user agent undergoes a discovery phase through the MMW to sdect its
system agents. When an agent joins the framework, its MMW praobes the network and
determines the most appropriate service agents. As the agent moves from one
machine to another the middleware may select another system agent to take advantage
of resource availability and proximity.

Table 2. Information maintained by the messaging middleware (MMW)

LRA Name LRA Address MRA Name | MEA Name | State
LRA1 158.147.130.40 | MRA1 MEA1 Idle

2.3.1 The Location Registry Agent (LRA)

The location registry agent keeps track of the location of each agent and their current
dtate. This agent may reside on one or more hosts on the network. The registry
implementation may utilize a central registry, a fully replicated registry or a
distributed registry. More details on the registry design are presented in section 3.

The LRA agent is equipped with a special registry to maintain location
information. The registry keepstrack of three tables: the transient table, the user agent
location table, and the system agent location table. The transent table has two
attributes: Agent name and target address. The location table for user agents has five
attributes: Agent name, network address, MRA agent, MEA agent name, and agent

mobility state. The MEA and the MRA attributes provide the ahility to load-balance
the message forwarding and events management services. In the smplest
environments, a single MEA agent and a single MRA agent carry these services. The
location table for system agents has four attributes: Agent name, network address,
agent running state, and utilization load.

2.3.2 The Message Relay Agent (MRA)

The message relay agent is responsible for storing asynchronous messages. The MRA
agent buffers messages for agents in transient and is equipped with a special registry
to maintain message information. The registry keeps track of one table that has five
attributes: Agent name, message ID, message envelope, message contents and
timestamp

Buffering a message is triggered by an event that is posted by the middleware of
the agent in transient. At arrival the middieware may instruct the MRA agent to
deliver its messages or it may retrieve the messages itself. The MRA reassembles the
message from the message envelope and the message content fields and routes the
message to the recipient. The MRA agent also serves as a messaging board that stores
asynchronous messages.

2.3.3 The M essaging Events Agent (MEA)

The messaging events agent is responsible for receiving, maintaining and triggering
message events and is equipped with a special registry to maintain event information.
The registry keeps track of one table that has three attributes: Agent name, monitored
event, and recipient agent name.

3 Distributing the Registry

One of Mobile Agent systems target application areas are geographically distributed
applications. For such applications scalability is a major hurdle. To scale the system
agents, the core component namely the registry must be scalable. There are at least
three approaches for the implementation of the registry.

Table 3. Comparing the Registry Types

Registry Type Advantages Disadvantages

Centralized global registry | Easy touseand implement | Does not scale well

Replicated registries | Easy to use and provides | Replication may overwhelm

everywhere fault tolerance the network. Must deal with
concurrency and coherency
issues

Distributed (non- | Scales well and provides | Difficult to implement.

overlapping or dightly | fault tolerance Must deal with concurrency

overlapping) registries and mobility issues

We model our design of the registry for a non-overlapping distributed registry. In this
context, the system agents employ discovery mechanisms to share status and state
information among each other and provide mechanismsto find and update the registry
entries. The agents collaborate among each other to keep the registries up-to-date.
Periodic messages are sent out to indicate agent activity and status. A system agent
can probe another for activity status and determine itsregistry state.

When an agent moves, the registry entries associated with that agent may move to
another registry to take advantage of geographical proximity. Upon arrival to the
destination machine, the messaging middleware through the LRA agent determines if
the registry entries need to be moved to a system agent closer to the new destination.
If such host is available, the registry information is copied to the new location, and
immediately removed from the previous registry.

The DNS protocol provides a distributed hierarchical registry, but does not address
mobility. We model our distributed registry based on the DNS protocol, and provide
mechanisms to address mobility.

3.1 The Location Registry

The location registry agent isthe logically central but physically distributed repository
for information about agents. Agents register themselves with the LRA so that other
agents may find them. The location registry agent maintains a database that contains
descriptions of the capabilities of the agents.

Each agent has a name and belongs to a birth zone. In a single zone environment as
described in section 2 only the agent name is significant, however in multi-zone
environments the agent name and its birth zone information are necessary to locate
the agent. We term the agent name and its zone information as the agent 1D (AID).
The format of the AID is. Agent-name:birth-zone. The birth zone is the place to
locate the agent if it can not be found otherwise. The AID provides location
transparency; it is independent of the agent network physical address, and the agent
ID does not change throughout the life cycle of the agent. Agent names are unique
within each birth zone. The agent 1D space is the collection of user agent namesin all
the zones within the execution environment. Zone names are globally unique
throughout the environment. The zone name space is the collection of all zone names
available.

3.1.1 The Registry Organization

The location registry is organized as a tree hierarchy. The hierarchy employs location
zones at the system and user agent levels. Zones are subdivision of the naming space.
Zones may represent geographical locations, country codes, data center servers, a
collection of LANs (Local Area Networks), or a subset of an organization private
network. The primary zones congtitute the entire global naming space. Zones are non-
overlapping and are organized in a hierarchical tree. Non-leaf registries have a list of
LRA agents serving that zone, and leaf registries have a list of user agents that are
served by thislocation registry.

3.2 The Registry Events

In this section we describe the main events that take place in the registry. The events
are divided into three categories: LRA agent events, middleware events, and user
agent events. The main events for LRA agents and the middleware are startup and
termination. The main events for user agents are startup, local hame lookup, external
name lookup, migration, and termination. Due to space limitation, we only describe
name lookup and agent migration.

3.2.1 Name L ookup

Name-to-address lookup queries can be for local agents, or agents in a remote zone.
From a user perspective, the agent name lookup process is transparent. The processis
performed on behalf of the user agent using the middleware. The middleware calls a
name-to-address lookup function that queries an LRA agent, which returns the
network address of the destination agent to the calling middieware.

At lookup time, the primary zone registry for the agent submitting the request is
consulted, if this registry can not be contacted, the replica registry is contacted, if the
replicais down, itsreplicain turn is contacted. If the process fails, we consult the root
registry for another agent providing name services for that zone, and we continue this
process until some timeout value is reached, or the name lookup is resolved. Two
types of name lookup is available:

1. Local Name Lookup: When the name lookup is performed, the client’s
middleware asks the local LRA agent for the network address of the destination
agent. If the agent name is found, then the query is for a local agent. Figure 3
illustrates this process.

2. External Name Lookup: Because the local LRA agent only knows about the
local zone, any queries for external agents must be forwarded to the LRA agent
responsible for the external zone. Since the registry is distributed, the remote
LRA agent must be located using the LRA queries as well. When a user agent
issues a lookup for a remote zone, it begins by sending a query to the
middleware, in turn the query is sent to the local LRA agent. If the local LRA
agent does not have the information, it checks its top-level zone list and its cache
of recently requested zones for the name of the remote LRA responsible for the
birth zone in the agent ID, and then issues a request to the remote LRA agent on
behalf of the client. If the local LRA agent does not know the network address of
the remote LRA agent, then it must issue a query to the root LRA agent asking
for the network address of the LRA agent responsible for the remote zone. The
root LRA looks up its registry for an LRA serving the zone requested. Once this
information is returned, the LRA agent will then issue a query to the remote
zon€'s LRA agent asking for the network address of the destination agent.
Finally, this information is returned to the user agent middleware that issued the
origina query. Figure 4 illustrates this process.

' User Agent 138 147 13054
_ 138 147100155,
—_—
Sewad nmessage o
apenat S lncal

@

it Hetwaork
address for
aperet Hapme

=
Local

—— I Check: LRA repiste il

-’ 2. Revtorm nenwor aodress

Fig. 3. The Local Name L ookup

I .
Sevid messape io 158,147, 130,354 |
.'I;:f‘".l.ll'.‘;e‘-"l'f"’.'.‘.'r.l IS8 147, 1 1R 055,

== ——d
S ——)

Serd IE81IRELS

FIT LRA Agent

Fig. 4. The Externa Name Lookup

3.2.2 User Agent Migration

At the agent migration event the target address of the destination machine is checked
by the middleware. The user agent may move within the same zone or to another
zone.

1. Intra-Zone Migration: If the target address of the destination machine belongs
to the same zone as the one the agent is currently in, then the agent is moving
within the same zone. In this case, no physical move of the registry entries is
necessary. The agent network address is updated upon the arrival to the
destination machine.

2. Inter-Zone Migration: To begin migration, the local middleware checks to see
if the target host is ready by querying the middieware on the destination machine.
If a connection was made, the destination middleware returns its zone name as an
acknowledgment to begin the migration process. If the zone name returned is not

the same as the local zone name, then the agent is migrating to another zone. In
this case, the entries are marked with “in transent” attribute in the birth zone, and
at arrival are copied to the destination zone. Once the move is complete, the birth
zoneregigtry entries are updated with the new host name.

As an agent moves from one zone to another the registry must be updated to reflect
the current location. Several update schemes may be used to maintain the registry
records. In al schemes the birth zone records are continuously updated to reflect the
current host name. We describe the following update schemes:

1. Greedy Update In this scheme when an agent moves, its location entry is
removed from the local LRA and a new entry is added to the remote LRA. Its
entry in the birth zone LRA is updated. That is, only the LRAs of the current
zone and the hirth zone have the location changes of the agent. There are only
three registry changes: One add, one delete, and one update.

2. Deep Update: In this scheme when an agent moves, all the LRA recordsin zones
where the agent has resided are updated. This scheme requires an LRA to store a
back link to the previous LRA where the agent resided. By following the back
links, all LRAs in previoudly visited zones are updated. There are m+1 updates
for mprevious migrations, one add is needed for the new residence.

3. Delayed Update: In this scheme when an agent moves, its location entry is
updated in the local LRA and a new entry is added in the remote LRA. Its entry
in the birth zone LRA is updated. That is, only the LRAs of the previous zone,
current zone and the hirth zone have the location changes of the agent. There are
only threeregistry changes: One add, and two updates.

The first scheme is the smplest to implement and may increase external lookups
while reducing the registry size. The second scheme blindly updates the previoudy
visited zones, reducing external lookups while increasing the registry size. The third
scheme amortizes the cost of updating all visited zones over the path of travel by
updating two zones for each move, while increasing the registry size. In terms of
update cost the first scheme performs best, however, in terms of lookup cost the
second scheme is best. The third scheme reduces external 1ookups at the cost of extra
updates. The ideal scheme will vary according to geographic proximity between
zones and the application communication cost requirements versus storage
reguirements for each registry.

4 Reated Work

In this section, we discuss research efforts related to this paper. Baumann discussed
two communication concepts based on session and global event management [3].
While the communication concepts introduced in Baumann where general, it did not
allow for the mobility of the agents while in active communication. Our scheme
allows an agent to move while in active communication and provides for message
buffering and forwarding.

Dong in [7] proposed a communication framework from a language perspective,
based on the various types of cooperation among the agents. While Reed in [10]
introduced a framework based on dialogue types and the distinction between
persuasion and negotiation. Also, D’ Inverno Agentis framework [5] is based upon a
model of agent interaction whose key element is services and tasks. Our scheme is
general and application neutral, and employs high-level communication mechanisms
to provide agent to agent communication and group collaboration. Our scheme is
independent of the agent task and any agent group classification

Chess discussed communication portals that are responsible for managing the
arrival and departure of itinerant agents. The portal may support either session-
oriented connection or messaging based protocols [4]. Rus' transportable agents have
network-sensing tools that allow the agent to adapt to the network configuration and
to navigate under an alternate plan [11]. Our scheme borrows from Rus's concepts,
and allows the agent to dynamically acquire or offload communication components as
it movesthrough itslife cycle.

Tambe have studied the problem of agent tracking in multi-agent worlds.
Although, the paper [12] discusses the ability of one agent to execute models of
another agent, and provides for dynamic and simultaneous execution of models, the
architecture does not address communication issues, but instead assumes a high
bandwidth inter-model communication.

5 Conclusion and Future Work

Mobile agents have several advantages over the traditional client/server modd.
Mohile agents consume fewer network resources since they move the computation to
the data rather than the data to the computation and do not require a continuous
connection between machines. Mobile agents allow clients and servers to extend each
other's functionality by programming each other. There are many alternative
techniques to mobile agents such as queued RPC, proxy servers, etc. that have many
of the same advantages. The problem with these techniques is that each one is only
suitable for certain domain specific applications [9, and 8]. A mobile agent system on
the other hand is a generic, open and unified framework in which a wide range of
distributed applications can be implemented and deployed easily and effectively.

Mobile agents offer a new paradigm for very large scale distributed heterogeneous
applications. The paradigm focuses on the interactions of autonomous, cooperating
and adaptable processes. Communication is of central importance to agents, and, in
particular, establishing common agent communication languages and protocols is
essential. This paper argues that if mobile agents are to successfully use complex and
dynamic networks, they must aobtain architectura support for remote agent
communication — an important capability required for agent interactions. The key
implications of agent communication for agent architectures include open and flexible
framework, extendable and modular communication models, and the ability to
communicate whilein migration.

One of the main contributions of this research is an open communication
architecture based on communication types. The AGI (Asynchronous, Group

Oriented, and Inter-agent communication) architecture is an open framework not tied
to a particular agent execution environment, a particular implementation, or the
underlying network protocol.

Among issues for future work, we shall integrate the design approach of section 3
for an implementation of a distributed registry in which the location registry is
distributed across many location zones. Other future works involve integration with
commercially available agent execution environments. Current state of the arts
execution environments includes Object-Space Voyager, IBM’s Aglets, Agent Tcl or
D'Agents, and Mitsubishi Concordia. One problem with these execution environments
is that the source code is not available due to their commercial nature. As a result
augmenting and enhancing the built in communication mechanisms may not be
feasible for research purposes. Nevertheless, we shall study the viability of the current
execution environments and compare their mobile communication features.
Additionally, we shall investigate the role of Java RMI and object serialization in
providing mobile agent communication facilities.

References

1. J Baumann, F. Hohl, K. Rothermel, and M. Strasser: Mole — Concepts of a Mobile Agent
System, submitted to WWW Journal, Special issue on Applications and Techniques of
Web Agents, 1997.

2. J. Baumann, and N. Radouniklis. Agent Groups in Mobile Agent Systems, The IFIP WG
6.1 International Working Conference on Distributed Applications and Interoperable
Systems, DAIS97.

3. J Baumann, F. Hohl, N. Radouniklis, K. Rothermed, and M. Strber: Communication
Concepts for mobile agent systems, Proceedings of the First International Workshop on
Mobile Agents, Berlin, Germany, April 1997.

4. Chess, D. e a: Itinerant Agents for Mobile Computing, |EEE Personal Communications,
Volume 2, Number 5, Pages 34-49, October 1995.

5. M. dInverno, D. Kinny and M. Luck: Interaction Protocols in Agentis, Third International
Conference on Multi Agent Systems, 1998.

6. P. Domd, A. Lingnau and O. Drobnik: Mobile Agent Interaction in Heterogeneous
Environments, First International Workshop on Mobile Agents Berlin, Germany, April
1997.

7. H. Dong, JH. Ding, X. Li and J. Lu: On Open Communication Framework for Software
Agents, Proceedings of the Technology of Object-Oriented Languages and Systems, 1998.

8. Green, S ¢ a: Software Agents: A review, |IAG Technical Report, Trinity College, May
1997.

9. C. Harrison, D. Chess and A. Kershenbaum: Mobile agents. Are they a good idea?, IBM
Research Report, IBM T.J. Watson Research Center, 1995.

10. C. Reed: Dialogue Frames in Agent Communication, Proceedings of the Third
International Conference on Multi-Agent Systems (ICMAS 1998).

11. D. Rus, R. Gray, and D. Kotz: Transportable Information Agents, International conference
on autonomous Agents, Feb. 1997.

12. M. Tambe and P.S. Rosenbloom: Architectures for agents that track other agentsin multi-
agent worlds, Intelligent Agents, Vol 1l Springer Verlag Lecture Notes in Artificial
Intelligence (LNAI 1037), 1996.

