
Learning a Neural-network-based Representation for Open Set

Recognition

Mehadi Hassen∗ Philip K. Chan†

February 7, 2020

Abstract

In this paper, we present a neural network based represen-

tation for the Open Set Recognition problem. In this rep-

resentation instances from the same class are close to each

other while instances from different classes are further apart.

When used for Open Set Recognition tasks, evaluated on

three datasets from two different domains, the proposed ap-

proach results in a statistically significant improvement com-

pared to other approaches.

Keywords— Open Set Recognition, Representa-
tion Learning, Malware Defense

1 Introduction

To build robust AI systems, Dietterich [11] reasons
that one of the main challenges is handling the “un-
known unknowns.” One idea is to detect model failures
(i.e., the system understands that its model about the
world/domain has limitations and may fail). For ex-
ample, assume you trained a binary classifier model to
discriminate between pictures of cats and dogs. Let’s
assume this model performs well at recognizing images
of cats and dogs. What would this model do if it is
faced with a picture of a fox or a caracal? The model
being a binary classifier will predict these pictures to be
either a dog or a cat, which is not desirable and can be
considered as a failure of the model. In machine learn-
ing, one direction of research for detecting model fail-
ure is “open category learning”, where not all categories
are known during training, and the system needs to ap-
propriately handle instances from novel/unknown cate-
gories that may appear during testing. Besides “open
category learning”, terms such as “open world recogni-
tion” [5] and “open set recognition” [22, 6] have been
used in past literatures. In this paper, we will use the
term “open set recognition”.

Where does open set recognition appear in real-

∗School of Computing, Florida Institute of Technology.

mhassen2005@my.fit.edu
†School of Computing, Florida Institute of Technology.

pkc@cs.fit.edu

world problems? Various real-world applications oper-
ate in an open set scenario. For example, Ortiz and
Becker [18] point to the problem of face recognition.
One such use case is automatic labeling of friends in so-
cial media posts, “where the system must determine if
the query face exists in the known gallery, and, if so, the
most probable identity.” Another domain is in malware
classification, where training data usually is incomplete
because of novel malware families/classes that emerge
regularly. As a result, malware classification systems
operate in an open set scenario.

In this paper, we propose a neural network based
representation and a mechanism that utilizes this rep-
resentation for performing open set recognition. Since
our primary motivation when developing this approach
was the malware classification domain, we evaluate our
work on two malware datasets. To show the applicabil-
ity of our approach to other domains, we evaluate our
approach on images.

Our contributions include: (1) we propose an ap-
proach for learning a representation that facilitates open
set recognition, (2) we propose a loss function that en-
ables us to use the same distance function both when
training and when computing an outlier score, (3) our
proposed approaches achieve statistically significant im-
provement compared to previous research work on three
datasets.

2 Related Work

We can broadly categorize existing open set recognition
systems into two types. The first type provides mech-
anisms to discriminate known class instances from un-
known class instances. These systems, however, cannot
discriminate between the known classes, where there is
more than one. Research works such as [22, 8, 7] fall in
this category. Scheirer et al. [22] formalized the concept
of open set recognition and proposed a 1-vs-set binary
SVM based approach. Bodesheim et al. [8] propose
KNFST for performing open set recognition for multi-
ple known classes at the same time. The idea of KNFST
is further extended in [7] by considering the locality of

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

a sample when calculating its outlier score.
The second type of open set recognition system pro-

vides the ability to discriminate between known classes
in addition to identifying unknown class instances. Re-
search works such as [15, 5, 6, 10, 12] fall in this category.
PI-SVM [15], for instance, uses a collection of binary
SVM classifiers, one for each class, and fits a Weibull dis-
tribution over the score of each classifier. This approach
allows PI-SVM to be able to both perform recognition of
unknown class instances and classification between the
known class instances. Bendale and Boult [5] propose
an approach to extend Nearest Class Mean (NCM) to
perform open set recognition with the added benefit of
being able to do incremental learning.

Neural Net based methods for open set recognition
have been proposed in [6, 9, 12]. Openmax [6] (a state-
of-art algorithm) modifies the regular Softmax layer of
a neural network by redistributing the activation vector
(the values of the final layer of a neural network that
are given as input to the Softmax function) to account
for unknown classes. Ge et al. [12] use DCGAN [19]
to generate unknown-class samples. The network is
trained on the original instances plus the generated
samples, and Openmax is used to adjust the activation
vector. Similarly, Yu et al. [23] generate “negative”
samples using adversarial learning and use supervised
algorithms to learn the final classifier. Our approach
does not generate “unknown-class/negative” samples
and hence does not increase the training overhead in
the learning step. In malware classification, K. Rieck
et al.[20] proposed a malware clustering approach and
an associated outlier score. Although the authors did
not propose their work for open set recognition, their
outlier score can be used for unsupervised open set
recognition. Rudd et al. [21] outline ways to extend
existing closed set intrusion detection approaches for
open set scenarios. Lee et al. [16] are interested
in detecting test samples that are out-of-distribution
(different from the training “in-distribution’); however,
each test sample is still from one of the known classes.

3 Approach

For open set recognition, given a set of instances belong-
ing to known classes, we would like to learn a function
that can accurately classify an unseen instance to one of
the known classes or an unknown class. Let D be a set
of instances X and their respective class labels Y (i.e.,
D = (X,Y)), and K be the number of unique known
class labels. Given D for training, the problem of open
set recognition is to learn a function f that can accu-
rately classify an unseen instance (not in X) to one of
the K classes or an unknown class (or the “none of the
above” class).

The problem of open set recognition differs from the
problem of closed set (“regular”) classification because
the learned function f needs to handle unseen instances
that might belong to classes that are not known during
training. That is, the learner is robust in handling
instances of classes that are not known. This difference
is the main challenge for open set recognition. Another
challenge is how to learn a more effective instance
representation that facilitates open set recognition than
the original instance representation used in X.

Learning representations Consider ~x is an in-
stance and y = f(~x) is the class label predicted using
f(~x). In case of a closed set, y is one of the known class
labels. In the case of open set, y could be one of the
known classes or an unknown class. The hidden layers
in a neural network, ~z = g(~x), can be considered as dif-
ferent representations of ~x. Note, we can rewrite y in
terms of the hidden layer as y = f(~z) = f(g(~x)).

The objective of our approach is to learn a represen-
tation that facilitates open set recognition. We would
like this new representation to have two properties: (P1)
instances of the same class are closer together, and (P2)
instances of different classes are further apart. The
two properties can lead to larger spaces among known
classes for the instances of the unknown classes to oc-
cupy. Consequently, instances of unknown classes could
be more effectively detected. This representation is sim-
ilar in spirit to a Fisher Discriminant. A Fisher discrim-
inant aims to find a linear projection that maximizes
between class (inter-class) separation while minimizing
within class (intra-class) spread. Such a projection is
obtained by maximizing the Fisher criteria. However,
in the case of this work, we use a neural network with a
non-linear projection to learn this representation. The
neural network g used to learn the representation can
be either a combination of convolution and fully con-
nected layers, as shown in Figure 1a, or it can be all
fully connected layers, Figure 1b. Both types are used
in our experimental evaluation.

II-Loss Function In a typical neural network
classifier, the activation vector that comes from the final
linear layer is given as input to a Softmax function.
Then the network is trained to minimize a loss function
such as cross-entropy on the outputs of the Softmax
layer. In our case, the output vector ~zi of the final
linear layer of a neural network (i.e., activation vector
that serves as input to a Softmax in a typical neural
net) are considered as the projection of the input vector
~xi, of instance i, to a different space. The network
is trained using mini-batch stochastic gradient descent
with backpropagation as outlined in Algorithm 1 to
minimize the loss function in Equation 3.1, which we
will refer to ii-loss for the remainder of this paper. In

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1: Training to minimize ii-loss.

Input :
(X, Y): Training data and labels

1 for number of training iterations do
2 Sample a mini-batch (Xbatch, Ybatch) from

(X, Y)
3 Zbatch ← g(Xbatch)
4 {~µ1 · · · ~µK} ← class means(Zbatch, Ybatch)
5 ii-loss ← intra spread(Zbatch, {~µ1 · · · ~µK}) -

inter separation({~µ1 · · · ~µK})
6 update parameters of g using stochastic

gradient descent to minimize ii-loss

7 {~µ1 · · · ~µK} ← class means(g(X), Y)
8 return {~µ1 · · · ~µK} and parameters of g as the

model.

this loss function, we aim to maximize the distance
between different classes (inter-class separation) and
minimize the distance of an instance from its class mean
(intra-class spread). We measure intra-class spread
as the average distance of instances from their class
means (first part of Equation 3.1). We measure the
inter-class separation in terms of the distance between
the closest two class means among all the K known
classes (second part of Equation 3.1). After the network
finishes training, the class means are calculated for each
class using all the training instances of that class and
stored as part of the model.

ii-loss =
(1

N

K∑
j=1

|Cj |∑
i=1

‖ ~µj − ~zi‖22︸ ︷︷ ︸
intra spread

)
−

(
min

1≤m≤K
m+1≤n≤K

‖ ~µm − ~µn‖22

︸ ︷︷ ︸
inter sparation

)(3.1)

where |Cj | is the number of training instances in class
Cj , N is the number of training instances, K is the

number of known classes, and ~µj = 1
|Cj |

∑|Cj |
i=1 ~zi is the

mean of class Cj .
Combining ii-loss with Cross Entropy Loss

While the two desirable properties P1 and P2 discussed
in an earlier Section aim to have a representation that
separates instances from different classes, lower classifi-
cation error is not explicitly stated. Hence, a third de-
sirable property (P3) is a low classification error in the
training data. To achieve this, alternatively, a network
can be trained on both cross entropy loss and ii-loss (Eq
3.1) simultaneously. The network architecture in Figure

1c can be used. In this configuration, an additional lin-
ear layer is added after the z-layer. The output of this
linear layer is passed through a Softmax function to pro-
duce a distribution over the known classes. Although
Figure 1c shows a network with convolutional and fully
connected layers, combining ii-loss with cross-entropy
can also work with a network of fully connected layers
only. The network is trained using mini-batch stochas-
tic gradient descent with backpropagation. During each
training iteration, the network weights are first updated
to minimize on ii-loss and then in a separate step up-
dated to minimize cross entropy loss. Other researchers
have trained neural networks using more than one loss
function. For example, the encoder network of an Ad-
versarial autoencoder [17] is updated both to minimize
the reconstruction loss and the generators loss.

Outlier Score for Open Set Recognition Dur-
ing testing, we use an outlier score to indicate the degree
to which the network predicts an instance ~x to be an
outlier. This outlier score is calculated as the distance
of an instance to the closest class mean from among K
known classes.

(3.2) outlier score(~x) = min
1≤j≤K

‖~µj − ~z‖22

where ~z = g(~x). Because the network is trained to
project the members of a class as close to the class mean
as possible the further away the projection ~z of instance
~x is from the closest class mean, the more likely the
instance is an outlier for that class.

Threshold Estimation Once an outlier score
identified, the next step is determining what threshold
value of this score will indicate an outlier. In other
words, how far does the projection of an instance need
to be from the closest class mean for it to be deemed an
outlier. For this work, we propose a simple threshold es-
timation. To pick an outlier threshold, we assume that
a certain percent of the training set to be noise/outliers
. We refer to this percentage as the contamination ra-
tio. For example, if we set the contamination ratio to be
0.01, it will be like assuming 1% of the training data to
be noise/outliers. Then, we calculate the outlier score
on the training set instances, sort the scores in ascending
order and pick the 99 percentile outlier score value as the
outlier threshold value. The reader might notice that
the threshold proposed in this section is a global thresh-
old. This means that the same outlier threshold value
is used for all classes. An alternative to this approach
is to estimate the outlier threshold per-class. However,
in our evaluation, we observe that global threshold con-
sistently gives more accurate results than the per-class
threshold.

Performing Open Set Recognition Open set
recognition is a classification over K + 1 class labels,

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Linear Layer Z

Convolutional
Layers

Fully
Connected

Layers

II Loss

g

Input X

(a) Convolutional network
with ii-loss

Linear Layer Z

Fully
Connected

Layers

II Loss

g

Input X

(b) Fully connected net-
work
with ii-loss

Linear Layer Z

Linear Layer

Softmax Layer

Convolutional
Layers

Fully
Connected

Layers

II Loss

Cross
Entropy

Loss

g

Input X

(c) Combining ii-loss
with Cross Entropy Loss

Figure 1: Network architecture with ii-loss.

where the first K labels are from the known classes the
classifier is trained on, and the K + 1st label represents
the unknown class. This is performed using the outlier
score in Equation 3.2 and the associated threshold τ .
The outlier score of a test instance is first calculated.
If the score is greater than τ , the test instance is labeled
as K+1, which in our case corresponds to the unknown
class; otherwise, the appropriate class label is assigned
to the instance from among the known classes, Equation
3.3. The predicted class probability over the known
classes can be expressed as the softmax of the negative
distance of a projection ~z, of the test instance ~x (i.e.,
~z = g(~x)), from all the known class means, Equation
3.4. However, when a network is trained on both ii-loss
and cross entropy loss then P (y = k | ~x) is calculated
by the Softmax layer in Figure 1c.

(3.3)

y =

{
K + 1, if outlier score > τ
argmax
1≤j≤K

P (y = j | ~x), otherwise

(3.4) P (y = j | ~x) =
e−‖~µj−~z‖22∑K

m=1 e
−‖~µm−~z‖22

4 Evaluation

Datasets and Simulating Open Set Dataset
We evaluate our approach using three datasets. The
first is the Microsoft Malware Challenge Dataset [4]
which consists of disassembled windows malware sam-
ples from 9 malware families/classes. We use 10260
samples which our disassembled file parser was able
to process correctly. The second dataset is the An-
droid Genome Project Dataset [2] which consists of ma-
licious Android apps. In our evaluation, we use only
9 classes that have at least 40 samples. After remov-
ing the smaller classes, the dataset has 986 samples.

We extract function call graph (FCG) features from the
malware samples as proposed by Hassen and Chan [13]
. In case of the Android samples Android dataset we
first use [1] to extract the functions and the function
instructions and then used [13] to extract the FCG fea-
tures. For MS Challenge dataset, we reformat the FCG
features as a graph adjacency matrix by taking the edge
frequency features in [13] and rearranging them to form
an adjacency matrix. Formatting the features this way
allowed us to use convolutional layers on the MS Chal-
lenge dataset. To show that our approach can be ap-
plied to other domains we also evaluate our work on the
MNIST Dataset[3], which consists of images of hand-
written digits from 0 to 9.

To simulate an open world dataset for our evalua-
tion datasets, we randomly choose K number of classes
from the dataset, which we will refer to as known classes
in the remainder of this evaluation section, and keep
only training instances from these classes in the train-
ing set. We will refer to the other classes as unknown
classes. In case of the MS Dataset and Android Dataset,
first, we randomly chose 6 known classes and treat
the remaining 3 classes as unknown classes. We then
randomly select 75% of the instances from the known
classes for the training set and the remaining for the
test set. We further withhold one-third of the test set
to serve as a validation set for hyperparameter tuning.
We only use the known class instances for tuning. In
these two datasets, all the unknown class instances are
placed into the test set. In case of the MNIST dataset,
first, we randomly chose 6 known classes and the re-
maining 4 classes are used as unknown classes. We
then remove the unknown class instances from the train-
ing set. We leave the test set, which has both known
and unknown class instances, as it is. For each of our
evaluation datasets, we create 3 open set datasets. We
will refer to these open set datasets as OpenMNIST1,

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

OpenMNIST2, and OpenMNIST3 for the three open set
evaluation datasets created from MNIST. Similarly, we
also create OpenMS1, OpenMS2, and OpenMS3 for MS
Challenge dataset and OPenAndroid1, OpenAndroid2,
and OpenAndroid3 for Android Genom Project dataset.

Evaluated Approaches We evaluate five ap-
proaches; all implemented using Tensorflow. The first
(ii) is a network setup to be trained using ii-loss. The
second (ii+ce) is a network setup to be simultaneously
trained using ii-loss and cross entropy (Section 8). The
third (ce) is a network which we use to represent the
baseline, is trained using cross-entropy only (network
setup in Figure 1c without the ii-loss.) The forth ap-
proach is Openmax[6] (a state-of-art algorithm), which
we re-implemented based on the original paper and the
authors’ source code to fit our evaluation framework.
The authors of Openmax state that the choice of dis-
tance function Euclidean or combined Euclidean and
Cosine distance give similar performance in the case of
their evaluation datasets [6]. In our experiments, how-
ever, we observed that the combined Euclidean and Co-
sine distance gives a much better performance. So we re-
port the better result from combined Euclidean and Co-
sine distance. The final approach is Generative Open-
max (G-Openmax) [12]. The networks used for MS and
MNIST datasets have convolutional layers at the begin-
ning followed by fully connected layers, whereas for the
android dataset we use only fully connected layers. The
network architecture used for these experiments and our
source code is available on Github1. The evaluation
datasets are available online on their respective web-
sites.

4.1 Detecting Unknown Class Instances and
Open Set Recognition We start our evaluation by
showing how well outlier score (in Equation 3.2) is
able to identify unknown class instances. We evaluate
it using 3 random open set datasets created from
MS, Android and MNIST datasets as discussed in the
Section on simulating open set dataset. For example, in
the case of MNIST dataset, we run 10 experiments on
OpenMNIST1, 10 experiments on OpenMNIST2, and
10 experiments on OpenMNIST3. We then report the
average of the 30 runs. We do the same for the other
two datasets.

Table 1 shows the results of this evaluation. To
report the results in such a way that is independent of
outlier threshold, we report the area under ROC curve
(AUC). This area is calculated using the outlier score
and computing the true positive rate (TPR) and the
false positive rate (FPR) at different thresholds. We

1https://github.com/shrtCKT/opennet

use the t-test to measure the statistical significance of
the difference in AUC values. Looking at the AUC up
to 100% FPR in all three datasets, our approach ii and
ii+ce perform significantly better(with p-value of 0.04
or less) in identifying unknown class instances than the
baseline approach ce (using only cross entropy loss.)
Although AUC up to 100% FPR gives a full picture,
in practice it is desirable to have good performance at
lower false positive rates. That is is why we report
AUC up to 10% FPR. Our two approaches report
a significantly better AUC than the baseline network
trained to only minimize cross entropy loss. We didn’t
include Openmax in this section’s evaluation because it
doesn’t have an explicit outlier score.

When the proposed approach is used for open set
recognition, the final prediction is a class label, which
can be one of the K known class labels if the test
instances has an outlier score less than a threshold value
or it can be an “unknown” label if the instance has
an outlier score greater than the threshold, Eq. 3.3.
In addition to the three approaches evaluated in the
previous section, we also include Openmax [6] and G-
Openmax [12] in these evaluations because they give
final class label predictions.

We use average F-score to evaluate open set recogni-
tion performance and t-test for statistical significance.
Using the same experimental setup the earlier experi-
ment, we report the result of the average f-score, av-
eraged across all class labels and across 30 experiment
runs in Table 2. On all three datasets the ii and ii+ce
networks gives significantly better f-score compared to
the other two configurations (with p-value of 0.0002 or
less). In case of the Android dataset, all networks per-
form lower compared to the other two datasets. We
attribute this to the small number of samples in the
Android datasets. The dataset is also imbalanced with
many classes only having less than 60 samples.

Two limitations of Openmax can explain its weaker
performance compared to our proposed approaches: 1)
it does not use a loss function that directly incentivizes
projecting class instances around the mean class activa-
tion vector and 2) the distance function used by Open-
max is not necessarily the right distance function for
final activation vector space since it is not used in train-
ing. We addressed these limitations by training a neural
network with a loss function that explicitly encourages
properties P1 and P2. Also, we use the same distance
function during training and test.

4.2 Discussions Figure 2 provides evidence on how
our network projects unknown class instances in the
space between the known classes. In the figure the z-
layer projection of 2000 random test instances of an

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Average AUC of 30 runs up to 100% FPR and 10% FPR (the positive label represented instances from
unknown classes and the negative label represented instances from the known classes when calculating the AUC).
The underlined average AUC values are higher with statistical significance (p-value < 0.05 with a t-test) compared
to the values that are not underlined on the same row. The average AUC values in bold are the largest average
AUC values in each row.

FPR central ce ii ii+ce

MNIST
100% 0.9264 (±0.0215) 0.9282 (±0.0179) 0.9588 (±0.0140) 0.9475 (±0.0151)
10% 0.0771 (±0.0059) 0.0775 (±0.0044) 0.0830 (±0.0045) 0.0801 (±0.0044)

MS Challenge
100% 0.9235 (±0.0315) 0.9143 (±0.0433) 0.9387 (±0.0083) 0.9407 (±0.0135)
10% 0.0566 (±0.0056) 0.0526 (±0.0091) 0.0623 (±0.0030) 0.0596 (±0.0035)

Android Genom
100% 0.7514 (±0.1297) 0.7755 (±0.1114) 0.8563 (±0.0941) 0.9007 (±0.0426)
10% 0.0325 (±0.0182) 0.0066 (±0.0052) 0.0300 (±0.0193) 0.0326 (±0.0182)

Table 2: Average F-Score of 30 Runs. The underlined average AUC values are higher with statistical significance
(p-value ¡ 0.05 with a t-test) compared to the values that are not underlined on the same row. The average AUC
values in bold are the largest average AUC values in each row.

Central Openmax G-Openmax ce ceii ii

MNIST 0.69 (±0.20) 0.88(±0.05) 0.69(±0.02) 0.74(±0.20) 0.92(±0.02) 0.93(±0.02)
MS 0.86 (±0.03) 0.87(±0.01) 0.83(±0.02) 0.86(±0.04) 0.89(±0.01) 0.88(±0.01)

Android 0.47 (±0.12) 0.30(±0.12) 0.60(±0.11) 0.46(±0.10) 0.71(±0.17) 0.69(±0.15)

open set dataset created from MNIST with 6 known
and 4 unknown classes. The class labels 0, 2, 3, 4,
6, and 9 in the figure represent the 6 known classes
while the “unknown” label represents all the unknown
classes. The network with ii-loss is set up to have a
z-layer dimension of 6, and the figure shows a 2D plot
of dimension (z0,z1), (z0,z2). The Openmax network
also has a similar network architecture and last layer
dimension of 6. In case of ii-loss based projection,
the instances from the known classes (Figures 2a)
are projected close to their respective class while the
unknown class instances (Figures 2c) are projected, for
the most part, in the region between the classes. In
case of Openmax, Figures 2b and 2d, the unknown class
instances do not fully occupy the open space between
the known classes. In Openmax, most instances are
projected along the axis; this is because of the one-hot
encoding induced by cross-entropy loss. So compared
to Openmax, ii-loss appears to better utilize space
“among” the classes.

Performance of Openmax is especially low in case
of the Android dataset because of low recall on known
classes with small number training instances. The low
recall was caused by test instances from the smaller
classes being projected further away from the class’s
mean activation vector (MAV). For example, in Figure
3a we see that test instances of class 2 are further

away from the MAV of class 2 (marked by ’?’). As
a result, these test instances are predicted as unknown.
Similarly, in Figure 3b instances of class 3 are far away
from the MAV of class 3(marked by ’X’). Performance of
network trained with only cross entropy (ce) is also low
for Android dataset because unknown class instances
were projected close to the known classes (Figure 4). As
a result, these instances get labeled as known classes. In
turn, resulting in a lower precision score for the known
classes.

In our experiments, we have observed batch nor-
malization [14] to be extremely important when using
ii-loss. Because batch normalization fixes the mean
and variance of a layer, it bounds the output of our
z-layer in a certain hypercube, in turn preventing the
inter separation term in ii-loss from increasing indefi-
nitely. This is evident in Figures 5a and 5b. Figure 5a
shows the inter separation of the network where batch
normalization used in all layers including the z-layer;
here, the inter separation increases in the beginning
but levels off. Whereas when batch normalization is
not used in the z-layer the inter separation term keeps
on increasing as seen in Figure 5b; as a result, ii-loss
would not converge.

Autoencoders can also be considered as another
way to learn a representation. However, autoencoders
do not try to achieve properties P1 and P2. One of

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

−1 0 1 2
Z0

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Z1

−1 0 1 2
Z0

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Z2

0
2
3
4
6
9

(a) ii-loss

0 2 4
Z0

−2

−1

0

1

2

3

Z1

0 2 4
Z0

−2

−1

0

1

2

3

Z2

0
2
3
4
6
9

(b) openmax

−1 0 1 2
Z0

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Z1

−1 0 1 2
Z0

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Z2

unknown

(c) ii-loss

0 2 4
Z0

−2

−1

0

1

2

3

Z1

0 2 4
Z0

−2

−1

0

1

2

3

Z2

unknown

(d) openmax

Figure 2: The z-layer projection of (a, b) known and (c, d) unknown class instances from test set of MNIST
dataset. The labels 0,2,3,4,6,9 represent the known classes while the label “unknown” represents the unknown
classes.

0 1 2 3
Z0

−2

−1

0

1

2

3

Z1

(a)

0 1 2 3
Z0

−2

−1

0

1

2

3

Z2

(b)

0
2
3
4
6
8
class_2_MAV
class_3_MAV

Figure 3: Projections of Android dataset known class
test instances from final activation layer of Openmax.

the reasons is autoencoder training is unsupervised.
Another reason is that non-regularized autoencoders
fracture the manifold into different domains resulting
in the representation of instances from the same class
being further apart [17]. Therefore, in the learned
representation, the known classes are not well separated.
Additionally, outliers get projected to roughly the same
area as the known classes. Figure 6 shows the output
of an encoder in an autoencoder.

5 Conclusion

We presented an approach for learning a neural net-
work based representation that projects instances of the
same class closer together while projecting instances
of the different classes further apart. Our empirical
evaluation shows that the two properties lead to larger

spaces among classes for instances of unknown classes
to occupy, hence facilitating open set recognition. We
compared our proposed approach with a baseline net-
work trained to minimize a cross entropy loss and with
Openmax (a state-of-art neural network based open set
recognition approach). We evaluated the approaches on
datasets of malware samples and images and observed
that our proposed approach achieves statistically sig-
nificant improvement. We proposed a simple thresh-
old estimation technique in this paper. However, there
is room to explore a more robust way to estimate the
threshold. We leave this for future work.

References

[1] Adagio. https://github.com/hgascon/adagio.
[2] Android malware genome project.

http://www.malgenomeproject.org/.
[3] Mnist hand written digit dataset.

http://yann.lecun.com/exdb/mnist/.
[4] Microsoft malware classification challenge (big 2015).

https://www.kaggle.com/c/malware-classification,
2015. [Online; accessed 27-April-2015].

[5] A. Bendale and T. Boult. Towards open world recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1893–
1902, 2015.

[6] A. Bendale and T. E. Boult. Towards open set deep
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1563–
1572, 2016.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

−2.5 0.0 2.5
Z0

−2

0

2

4

Z1

0
2
3
4
6
8

(a)

−2.5 0.0 2.5
Z0

−2

0

2

4

Z1

unknown

(b)

Figure 4: Projections of Android dataset (a) known
class and (b) unknown class test instances from z-layer
of a network trained with only cross entropy.

[7] P. Bodesheim, A. Freytag, E. Rodner, and J. Den-
zler. Local novelty detection in multi-class recogni-
tion problems. In Applications of Computer Vision
(WACV), 2015 IEEE Winter Conference on, pages
813–820. IEEE, 2015.

[8] P. Bodesheim, A. Freytag, E. Rodner, M. Kemmler,
and J. Denzler. Kernel null space methods for novelty
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3374–
3381, 2013.

[9] D. O. Cardoso, F. França, and J. Gama. A bounded
neural network for open set recognition. In Neural Net-
works (IJCNN), 2015 International Joint Conference
on, pages 1–7. IEEE, 2015.

[10] Q. Da, Y. Yu, and Z.-H. Zhou. Learning with aug-
mented class by exploiting unlabeled data. In Twenty-
Eighth AAAI Conference on Artificial Intelligence,
2014.

[11] T. G. Dietterich. Steps toward robust artificial intelli-
gence. AI Magazine, 38(3):3–24, 2017.

[12] Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi. Gen-
erative openmax for multi-class open set classification.
arXiv preprint arXiv:1707.07418, 2017.

[13] M. Hassen and P. K. Chan. Scalable function call
graph-based malware classification. In 7th Conference
on Data and Application Security and Privacy, pages
239–248. ACM, 2017.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[15] L. P. Jain, W. J. Scheirer, and T. E. Boult. Multi-Class

0 2000 4000
Training Iteration

5

10

In
te

r C
la

ss
 S

ep
ar

at
io

n

(a)

0 2000 4000
Training Iteration

0

200000

400000

In
te

r C
la

ss
 S

ep
ar

at
io

n

(b)

Figure 5: Inter class separation for networks trained
(a) with batch normalization used in all layers and (b)
without batch normalization at the z-layer.

Open Set Recognition Using Probability of Inclusion.
pages 393–409, 2014.

[16] K. Lee, H. Lee, K. Lee, and J. Shin. Training
confidence-calibrated classifiers for detecting out-of-
distribution samples. In Proc. ICLR 2018, 2018.

[17] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and
B. Frey. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

[18] E. G. Ortiz and B. C. Becker. Face recognition
for web-scale datasets. Computer Vision and Image
Understanding, 118:153–170, 2014.

[19] A. Radford, L. Metz, and S. Chintala. Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[20] K. Rieck, P. Trinius, C. Willems, and T. Holz. Au-
tomatic analysis of malware behavior using machine
learning. Journal of Computer Security, 19(4):639–
668, 2011.

[21] E. Rudd, A. Rozsa, M. Gunther, and T. Boult. A sur-
vey of stealth malware: Attacks, mitigation measures,
and steps toward autonomous open world solutions.
IEEE Communications Surveys & Tutorials, 2017.

[22] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota,
and T. E. Boult. Toward open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 35(7):1757–1772, 2013.

[23] Y. Yu, W. Qu, N. Li, and Z. Guo. Open-category
classification by adversarial sample generation. In
Proc. IJCAI 2017, pages 3357–3363, 2017.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z1

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z2

0
2
3
4
6
9

(a)

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z1

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z2

unknown

(b)

Figure 6: Projections of (a) known and (b) unknown
class instances using the hidden layer of an Autoen-
coder. The labels 0,2,3,4,6,9 represent the known classes
while the label “unknown” represents the unknown
classes.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related Work
	Approach
	Evaluation
	Detecting Unknown Class Instances and Open Set Recognition
	Discussions

	Conclusion

