
Supplementary Material: Learning a Neural-network-based

Representation for Open Set Recognition

Mehadi Hassen
School of Computing

Florida Institute of Technology
Melbourne, FL 32901

mhassen2005@my.fit.edu

Philip K. Chan
School of Computing

Florida Institute of Technology
Melbourne, FL 32901
pkc@cs.fit.edu

February 24, 2020

A Evaluation Network Architectures

We evaluate 5 networks: ii, ce, ii+ce, Openmax and
G-Openmax. The first four networks and the final
classifier of G-Openmax have the same architecture up
to the fully connected z-layer. In case of the MNIST
dataset, the input images are of size (28,28) and are
padded to get an input layer size (32,32) with 1 channel.
Following the input, layer are 2 non-linear convolutional
layers with 32 and 64 units (filters) which have a
kernel size of (4,4) with a (1,1) strides and SAME
padding. The network also has max polling layers with a
kernel size of (3,3), strides of (2,2), and SAME padding
after each convolutional layer. Two fully connected
non-linear layers with 256 and 128 units follow the
second max pooling layer. Then a linear z-layer with
a dimension of 6 follows the fully connected layers. In
the case of ii+ce and ce networks, the output of the z-
layer is fed to an additional linear layer of dimension 6
which is then given to a softmax function. We use Relu
activation function for all the non-linear layers. Batch
normalization is used throughout all the layers. We also
use Dropout with keep probability of 0.2 for the fully
connected layers. Adam optimizer with a learning rate
of 0.001, beta1 of 0.5, and beta2 of 0.999 is used to
train our networks for 5000 iterations. In case of the
Openmax network, the output of the z-layer is directly
fed to a softmax layer. Similar to the Openmax paper
we use a distance that is a weighted combination of
normalized Euclidean and cosine distances. For the ce,
ii, and ii+ce we use contamination ratio of 0.01 for the
threshold selection.

The open set experiments for MS Challenge dataset
also used similar architectures as the four networks used
for MNIST dataset with the following differences. The
input layer size MS Challenge dataset is (67,67) with
1 channel after padding the original input of (63,63).

Instead of the two fully connected non-linear layers,
we use one fully connected layer with 256 units. We
use dropout in the fully connected layer with keep
probability of 0.9. Finally, the network was trained
using Adam optimizer with 0.001 learning rate, 0.9
beta1, and 0.999 beta2.

We do not use a convolutional network for the
Android dataset open set experiments. We use a
network with one fully connected layer of 64 units. This
is followed by a z-layer with a dimension of 6. For ii+ce
and ce networks we further add a linear layer with a
dimension of 6 and the output of this layer is fed to a
softmax layer. In case of Openmax, the output of the z-
layer is directly fed to the softmax layer. For Openmax
we use a distance that is a weighted combination of
normalized Euclidean and cosine distances. We use Relu
activation function for all the nonlinear layers. We used
batch normalization for all layers. We also used Dropout
with keep probability of 0.9 for the fully connected
layers. We used Adam optimizer with a learning rate
of 0.1 and first momentum of 0.9 to train our networks
for 10000 iterations. For the ce, ii, and ii+ce we use
contamination ratio of 0.01 for the threshold selection.

The closed set experiments use the same set up
as the open set experiments with the only difference
coming from the dimension of the z-layer. For the
MNIST dataset, we used z dimension of 10. For the
MS and Android datasets, we use z dimension of 9.

B Closed Set Classification

In this section, we would like to show that on a
closed dataset, a network trained using ii-loss performs
comparably to the same network trained using cross
entropy loss. For closed set classification, all the classes
in the dataset are used for both training and test.
For MS and Android datasets, we randomly divide the

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



datasets into training, validation, and test and report
the results on the test set. The MNIST dataset is
already divided into training, validation, and test.

On closed MNIST dataset, a network trained with
cross-entropy achieved a 10-run average classification
accuracy of 99.42%. The same network trained using
ii-loss achieved an average accuracy of 99.31%. The net-
work trained only on cross-entropy gives better perfor-
mance than the network trained on ii-loss. The results
from a network trained both ii-loss cross entropy loss
to achieve an average classification accuracy of 99.40%.
This result makes it comparable to the performance of
the same network trained using cross-entropy only (with
a p-value of 0.22). We acknowledge that both results
are not state-of-art as we are using simple network ar-
chitectures. The primary goal of these experiments is
to show that the ii-loss trained network can give com-
parable results to a cross entropy trained network. On
the Android dataset, the network trained on a cross en-
tropy gets an average classification accuracy of 93.10%
while ii-loss records 92.68%, but the difference is not
significant (with a p-value at 0.43).

C Discussion

We mentioned earlier that we used function call graph
(FCG) feature for the malware dataset. We also men-
tioned that in case of the MS Challenge dataset we re-
formatted the FCG features proposed in [1] to form a
(63, 63) adjacency matrix representation of the graph.
We feed this matrix as an input to the convolutional
network with a (4,4) kernel. Such kernel shape makes
sense when it comes to image input because in images
proximity of pixels hold essential information. However,
it is not apparent to us how nearby cells in a graph ad-
jacency matrix hold meaning full information. We tried
different kernel shapes, for example taking an entire row
of the matrix at once (because a row of the matrix rep-
resents single nodes outgoing edge weights). However
the simple (4,4) gives a better close set performance.

References

[1] M. Hassen and P. K. Chan. Scalable function call
graph-based malware classification. In 7th Conference
on Data and Application Security and Privacy, pages
239–248. ACM, 2017.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited


	Evaluation Network Architectures
	Closed Set Classification
	Discussion

