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ABSTRACT


An Extensible Meta-Learning Approach for


Scalable and Accurate Inductive Learning


Philip Kin-Wah Chan


Much of the research in inductive learning concentrates on problems with relatively


small amounts of data. With the coming age of ubiquitous network computing, it is


likely that orders of magnitude more data in databases will be available for various


learning problems of real world importance. Some learning algorithms assume that


the entire data set �ts into main memory, which is not feasible for massive amounts


of data, especially for applications in data mining. One approach to handling a large


data set is to partition the data set into subsets, run the learning algorithm on each


of the subsets, and combine the results. Moreover, data can be inherently distributed


across multiple sites on the network and merging all the data in one location can be


expensive or prohibitive.


In this thesis we propose, investigate, and evaluate a meta-learning approach to


integrating the results of multiple learning processes. Our approach utilizes machine


learning to guide the integration. We identi�ed two main meta-learning strategies:


combiner and arbiter. Both strategies are independent to the learning algorithms


used in generating the classi�ers. The combiner strategy attempts to reveal relation-


ships among the learned classi�ers' prediction patterns. The arbiter strategy tries to


determine the correct prediction when the classi�ers have di�erent opinions. Vari-


ous schemes under these two strategies have been developed. Empirical results show


that our schemes can obtain accurate classi�ers from inaccurate classi�ers trained


from data subsets. We also implemented and analyzed the schemes in a parallel and


distributed environment to demonstrate their scalability.
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Chapter 1


Introduction


The key to intelligence is the ability to learn. Research in the �eld ofmachine learning


(Carbonell, 1989) attempts to endow computers with this intrinsic capability that


exists in all higher-order organisms to one degree or another. Learning can be loosely


de�ned as a process that improves performance of an agent by acquiring knowledge


through interactions with a changing environment.


In this thesis research we concentrate on a particular type of learning called in-


ductive learning (Michalski, 1983). Given some examples (data) obtained from the


environment, inductive learning aims to discover patterns in the examples and form


concepts that describe the examples. For instance, given some examples of chairs and


tables, one can form a concept that suggests that the surface of tables is usually hard,


whereas the surface of chairs is usually soft.


There are many desirable characteristics of a learning process. Probably the most


important is that it composes concepts that reect reality. In other words, the con-


cepts should be accurate and predictive. Given an instance that has not been en-


countered before, the learned concept should be able to correctly identify it. This has


been the central issue for most inductive learning research e�orts.


Another desirable characteristic is how fast a concept can be learned. It is impor-
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tant that a learning system process examples e�ciently. Because of the advancement


of computer technology, enormous amounts of data can easily be generated, and with


\high-capacity" and \high-speed" networks, these data can be made available widely


and quickly. For instance, the Human Genome Project (DeLisi, 1988), initiated by


the National Institutes of Health (NIH) and Department of Energy (DOE), aims to


map the entire human genome and will inevitably generate orders of magnitude more


sequence data than exist today. The HPCC Grand Challenges (Wah, 1993) research


e�orts will generate more data and faster than ever before. Also, �nancial institutions


and market analysis �rms are already dealing with overwhelming amounts of global


information that in time will undoubtedly grow in size faster than improvements in


machine resources. However, much of the research in inductive learning concentrates


on problems with relatively small amounts of data. The algorithms developed so far


are generally not scalable to large databases as envisaged by the Genome Project.


The complexity of typical machine learning algorithms renders their use infeasible in


problems with massive amounts of data (Chan & Stolfo, 1993d). A more concrete


testimony of the e�ciency problem is from Catlett (1991), who projects that ID3


(Quinlan, 1986) (a popular inductive learning algorithm) on modern machines will


take several months to learn from a million records in the ight data set obtained


from NASA, which is clearly unacceptable.


Moreover, typical learning algorithms like ID3 rely on a monolithic memory to


�t all of its training data. However, it is clear that main memory can easily be ex-


ceeded with massive amounts of data. Even with large virtual memory, constantly


swapping data in and out of memory becomes a signi�cant overhead. Furthermore,


it is not inconceivable that the amount of data can exceed the virtual memory.


This is also why data are disk-resident in database management systems. There-


fore, to e�ciently process huge databases, learning algorithms need to be scalable.


We refer scalability as the ability to e�ciently process increasing amounts of in-


formation, given that a machine has a limited amount of resources. (A more for-


mal de�nition is in Section 9.2.3) On a single machine, its limited resources can
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get completely saturated by a learning algorithm when it is presented with large


amounts of data, which results in intolerable performance or inability of the algo-


rithm to execute. More importantly, machine learning is central to knowledge dis-


covery in databases / data mining (KDD/DM) (Piatesky-Shapiro & Frawley, 1991;


Matheus et al., 1993) systems. In most cases research in this area is faced with mas-


sive databases. That is, learning systems are facing vast amounts of information and


scaling them up is a critical issue facing machine learning research.


In the next section we explore the relationship between inductive learning and


other related areas where scalability is an important issue.


1.1 Inductive Learning, Knowledge-Based Systems


and Data Mining


Inductive learning is the task of identifying regularities in some given set of ex-


amples with little or no knowledge about the domain from which the examples are


drawn. Inductive learning systems process examples that include class labels and


generate concepts which accurately describe the classes present in the examples.


The learned concepts can also be used as knowledge in knowledge-based systems;


learning provides a means for these systems to evolve over time and adapt to changing


environments. For instance, in a rule-based expert system each rule consists of an


antecedent, which is a pattern matching expression in some symbolic formalism, and


a consequent, which speci�es the actions to be taken if the antecedent is matched.


Hence, each rule can be learned from examples by treating it as a concept to be


learned, where the antecedent is the pattern describing the concept and the conse-


quent is its classi�cation. Inductive learning in this context can be viewed as auto-


mated knowledge acquisition for building knowledge-based systems. Much as knowl-


edge engineering via human is the bottleneck in knowledge acquisition (Boose, 1986),


ine�cient machine learning is the bottleneck in automated knowledge acquisition.
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Machine learning can be a continual process, as in people, for revising outdated the-


ories in knowledge-based systems (Ourston & Mooney, 1990; Towell & Shavlik, 1993;


Brunk & Pazzani, 1995).


Many believe that we are poised once again for a radical shift in the way we


learn and work, and in the amount of new knowledge we will acquire. The coming


age of high performance network computing, and widely available \data highways"


will transform the \information age" into the \knowledge age" by providing new


opportunities in defense, commerce, education and science for sharing and utilizing


information. However, with this new technological capability comes along a number


of hard technical problems, many centered on the issue of scale. It is perhaps obvious


that having massive amounts of data and information available anywhere and anytime


enables many new opportunities to acquire new knowledge. Yet it is unclear how


precisely this will be achieved in an e�cient and transparent fashion.


One means of acquiring new knowledge from databases is to apply various machine


learning algorithms that compute descriptive representations of the data as well as


patterns that may be exhibited in the data. The �eld of machine learning has made


substantial progress over the years and a number of algorithms have been popularized


and applied to a host of applications in diverse �elds (Langley & Simon, 1995; Bratko


& Muggleton, 1995; Fayyad et al., 1993; Craven & Shavlik, 1994). Thus, we may


simply apply the current generation of learning algorithms to very large databases


and wait for a response! However, the question is how long might we wait? Indeed,


do the current generation of machine learning algorithms scale from tasks common


today that include thousands of data items to new learning tasks encompassing as


much as two orders of magnitude or more of data that is physically distributed?


Furthermore, many existing learning algorithms require all the data to be resident


in main memory, which is clearly untenable in many realistic databases. In certain


cases, data is inherently distributed and cannot be localized on any one machine for


a variety of practical reasons. In such situations it is infeasible to inspect all of the


data at one processing site to compute one primary \global" classi�er. We call the
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problem of learning useful new knowledge from large inherently distributed databases


the scaling problem for machine learning.


In a relational database context, a typical data mining task is to explain and


predict the value of some attribute of the data given a collection of �elds of some tuples


with known attribute values. An existing relation with attribute values drawn from


some domain is thus treated as training data for a learning algorithm that computes


a logical expression, a concept description or a classi�er, that is later used to predict


a value of the desired attribute for some \test datum" whose desired attribute value


is unknown.


In a federated or integrated multi-database context, a similar data mining task


may be de�ned over the universal relation embodying the constituent databases.


Here, however, the problem is more daunting. We presume all component databases


of a federated system share common (or at least \provably equivalent") attributes


with values drawn from a common domain of values. However, each component


relation may include attributes that are unique to that database. In such situations,


a data mining or machine learning task applied to the universal relation de�ned by


the constituents would necessarily include null values in some tuples. The problem


of logically forming the universal relation in preparation for a data mining process is


itself a di�cult problem studied by a large research community (e.g. (Hernandez &


Stolfo, 1995)). For this study, we make the simplifying assumption that the universal


relation is available over a distributed set of processing sites. Our focus is on various


means that seek to integrate the entirety of distributed data to learn one \global


classi�er" able to predict unknown values of some desired attribute, or to classify data


into semantically meaningful abstractions. Such a capability is useful in systems that


aim to provide Intelligent Integration of Information. Here, mediator services may


include data mining as a means of providing value-added services to learn concepts


or to organize information in some reasoned fashion.


There are many useful applications of inductively learned classi�ers computed over
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databases that support other useful query and transaction processing functions. For


example, many large business institutions and market analysis �rms have for years


attempted to learn simple categorical classi�cations of their potential customer base,


i.e., relevant patterns of attribute values of consumer data that predict a low-risk


(high pro�t) customer versus a high-risk (low-pro�t) customer. In such applications,


a variety of data about a customer are integrated and merged together into a single


structured database to which learning programs are applied. Credit bureau data


is frequently merged with magazine subscription data as well as a company's own


customer data to compose one universal relation for a data mining task. Similarly,


defense and intelligence operations utilize similar methodologies on vast information


sources to predict a wide range of conditions in various contexts (location of the


enemy, conditions for political uprisings, the appearance of bioluminescence in the


oceans, and so forth). Many organizations seeking similar added value from their


data are already dealing with overwhelming amounts of global information that in


time will likely grow in size faster than available improvements in machine resources.


1.2 Problem Statement and Our Approach


The central problem we study in this thesis is succinctly stated as:


We seek a means to improve the e�ciency and accuracy of inductive learn-


ing systems applied to very large amounts of data that can be distributed


among remote sites.


Meta-learning (Chan & Stolfo, 1993b) is proposed as one such approach. This ap-


proach encompasses the use of learning algorithms to learn how to integrate results


from multiple learning systems.


The accuracy and e�ciency issues can be, and have been, approached separately,


but is there a uni�ed approach that can address both of them simultaneously or


separately? One advantage of such a uni�ed approach is the generality of applying
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the same method to each issue. Another is the cohesiveness of the combined solution


for both issues. Thus, the central question we pose in this thesis is: \Is there a


uni�ed machine learning approach that can achieve high accuracy and e�ciency when


applied to massive databases of examples?" The research described here is an attempt


to provide such a uni�ed approach that we call meta-learning, and demonstrate its


use for learning concepts accurately and e�ciently. Meta-learning is a process that


learns how to combine separate and distinct learning systems. Our approach to


solve the scaling problem is data reduction, meaning to partition the data set into


smaller subsets, apply learning algorithms on each subset, followed by a phase that


combines the learned results. Each subset is sized to �t into main memory. In


addition to alleviating the memory restriction problem, we can speed up the process


by running the learning programs in parallel on multiple processors. In fact, parallel


and distributed learning motivated us to investigate learning from partitioned data.


Our ultimate goal is to develop a sound approach to scalable and accurate learning


systems for massive amounts of distributed data. However, in such schemes one may


presume that accuracy will su�er; i.e., combining results for separate classi�ers may


not be as accurate as learning from the entire data set. Thus, it is important to


determine which schemes for combining results have minimal impact on the quality


of the �nal result. High accuracy is achieved by intelligently combining separately


learned concepts to derive a �nal learned concept that explains a large data base more


accurately than any of the individual learners.


That is, we are trying to build learners that can learn from massive amounts


of data e�ciently in processing time and in memory usage. Furthermore, data can


be inherently partitioned and cannot be brought together at a single location. One


example is that di�erent data sets are owned by diverse parties and data sharing is


prohibited.


One approach to speed up a learning algorithm is to parallelize the algorithm.


However, this approach requires optimizing the code of a particular algorithm for a


speci�c architecture. That is, for each algorithm-architecture combination, the opti-
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mized code is probably, if not always, di�erent. With the growing number of learning


algorithms and architectures, this requires substantial amount of optimization work


to be performed for the desirable algorithm-architecture combination for a learning


task.


The e�ciency of classifying instances by the resulting learned system is a related


and important issue. Our strategies generally produce components that can be exe-


cuted concurrently, but detail schemes for parallelizing the classi�cation process are


beyond the scope of this thesis research.


Since di�erent algorithms have di�erent representations and search heuristics, dif-


ferent search spaces may be explored and hence potentially diverse results can be


obtained from di�erent algorithms. Mitchell (1980) refers to this phenomenon as


inductive bias. That is, the outcome of running an algorithm is biased in a cer-


tain direction. Furthermore, di�erent data sets have di�erent characteristics and the


performance of di�erent algorithms on these data sets might di�er.


Our proposed approach to improve accuracy is to combine di�erent learning sys-


tems in a loose fashion by essentially meta-learning a new system that is taught how


to combine the collective outputs of the constituent systems. One advantage of this


approach is its simplicity in treating the individual learning systems as black boxes


with little or no modi�cation required to achieve a �nal system. Therefore, individual


systems can be added or replaced with relative ease.


We note with interest that this general meta-learning approach is independent


of the underlying learning algorithms that may be employed. Furthermore, it is


independent of the computing platform used. Thus, our meta-learning approach is


intended to be scalable as well as portable and extensible.


However, we may not be able to guarantee the accuracy of the �nal result to be


as good as an individual learning algorithm applied to the entire data set since a


considerable amount of information may not be accessible to each of the separate


learning processes. It is one of the primary issues we study in this thesis.
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As our investigation progressed, the space of possible variations of our approach


rapidly increased. To limit the scope of this thesis, we focus on the utility of meta-


learning as a general and uni�ed approach for scalable and accurate inductive learning


in diverse situations. The more important, in our opinion, ideas were explored, but


the less important ones were not fully investigated and were left as pointers for further


studies.


1.3 Brief Summary of Results and Contributions


We proposed meta-learning as an uni�ed approach to improving the e�ciency


and accuracy of inductive learning systems applied to massive amounts of data that


can be distributed among remote sites. Here we briey summarize the results and


contributions:


� Several meta-learning strategies have been identi�ed and speci�c schemes have


been developed. A substantial number of systematic empirical evaluations with


di�erent permutations of learning algorithms and tasks have been performed.


� The meta-learning strategies do show a consistent improvement in classi�cation


accuracy over any of the base classi�ers trained on a subsets of available training


data. Our studies show that classi�ers trained individually from random subsets


of a large data set are not as accurate as integrating a collection of separately


learned classi�ers.


� The meta-learning strategies can outperform the other more common one-level


voting-based or Bayesian techniques. In the learning tasks and domains we


studied, the one-level meta-learning schemes do not consistently maintain high


accuracy as the number of subsets increases (and the amount of available data


thus decreases). However, the results show that the hierarchical meta-learning


approach is able to sustain the same level of accuracy as a global classi�er


trained on the entire data set distributed among a number of sites.
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� Under the arbiter tree strategy allowing unbounded meta-level training sets, we


determined that, over the variety of algorithms employed, at most 30%, and in


certain cases at most 10%, of the entire training data was required at any one


processing site to maintain the equivalent predictive accuracy of a single global


classi�er computed from all available data. In other words, with the arbiter


tree strategy, a site can process a larger learning task (at least 3 times in the


domain we studied) without increasing memory resources.


� Unbounded meta-level training sets are not necessary to achieve good results.


Limiting the meta-level training set size to twice the size of the data subsets


used to compute base classi�ers usually yielded a system able to maintain the


same level of accuracy achieved by the global classi�er.


� Combiner and arbiter trees of lower order perform better than ones with higher


order. This seems mainly attributed to the increase in the number of opportu-


nities in correcting the base classi�ers since there are more levels in the lower


order trees to �lter and compose good training data.


� The class-attribute-combiner tree strategy was demonstrated to consistently


boost the predictive accuracy of a global classi�er under certain circumstances.


This suggests that a properly con�gured meta-learning strategy combining mul-


tiple knowledge sources provides a more accurate view of all available data than


any one learning algorithm alone can achieve.


� In many cases, replication buys nothing, meaning that learning over fully dis-


tributed disjoint training data with an appropriate distribution of class informa-


tion is as e�ective as learning from distributed partially replicated data. This


suggests that the various meta-learning strategies indeed do an e�ective job of


sharing knowledge distributed among a set of independently trained classi�ers.


� Local meta-learning can improve a classi�er at a site by integrating imported


remote classi�ers. The remote classi�ers are treated as \black boxes" and data


at remote sites are not shared.
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� Deeper analysis of our empirical results show that increase in accuracy improve-


ment can be attributed to greater diversity and fewer correlated errors among


more accurate base classi�ers.


� The �ve learning algorithms used in this thesis were analyzed for time complex-


ity. Three out of �ve algorithms exhibit linear complexity with respect to the


number of training examples. However, none of them were linear in practice


when very large data sets were used.


� Our parallel implementation demonstrates that our schemes are bene�cial to


some learning algorithms in terms of speed and others in terms of scalability.


� Meta-learning with multiple learning algorithms and whole data sets achieved


as least the accuracy of the most accurate underlying learning algorithm. Since


the best learner is not known apriori, meta-learning provides a mechanism to


at least match the best.


� Combiner and stacked generalization were comparable in terms of accuracy as


well as the resultant concept. However, stacked generalization is computation-


ally more expensive.


Lastly, much of this thesis work has been published at various forums; their cita-


tions appear throughout this document.


1.4 Organization of the Thesis


In Chapter 2 we overview the machine learning area of inductive learning. Tech-


niques in the literature for improving the accuracy and e�ciency of learning algo-


rithms are discussed.


In Chapter 3 we describe our meta-learning approach. The combiner, arbiter, and


hybrid strategies are identi�ed and the di�erent speci�c schemes under these strategies
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are detailed.


To evaluate our proposed schemes and techniques, we performed a substantial


number of experiments across di�erent learning algorithms and tasks. the apparatus


and methodology used in our experiments are described in Chapter 4.


In Chapter 5 we present how meta-learning is applied to integrating classi�ers


that are trained from partitioned data in disjoint subsets and empirically compares


meta-learning to techniques found in the literature. Our techniques are also evaluated


on data subsets with partially replicated data.


Techniques explored in Chapter 5 can be characterized as one-level techniques.


The combiner tree and arbiter tree strategies are hierarchical techniques and are dis-


cussed in Chapter 6 to demonstrate that they can further improve the one-level meta-


learning strategies.


In Chapter 7 we investigate how meta-learning can be used to improve a local


classi�er by integrating it with imported classi�ers from remote sites. We assume no


\raw data" can be shared among di�erent sites and only the learned classi�ers can


be exchanged.


In Chapter 8 we formulate several metrics that can be used to analyze the inte-


gration of multiple classi�ers. These metrics are then used to analyze our empirical


results.


In Chapter 9 we perform a formal analysis on the time complexity of the various


learning algorithms used in this thesis and the potential speed-up and degree of scala-


bility of using meta-learning techniques. Our parallel and distributed implementation


is discussed and evaluated.


Up to this point, this thesis has been discussing results from integrating classi�ers


trained by a single learning algorithm. In Chapter 10 we explore the integration of


classi�ers generated by di�erent learning algorithms.
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We conclude, in Chapter 11, by discussing the contributions and research direc-


tions of this work.
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Chapter 2


Inductive Learning and Related


Work


Inductive learning (Michalski, 1983) is the task of identifying regularities in some


given set of training examples with little or no knowledge about the domain from


which the examples are drawn. Given a set of training data, each interpreted as a


set of feature vectors, x, and a class label y associated with each vector, the task is


to compute a classi�er that correctly labels any feature vector drawn from the same


source as the training set. It is common to call the body of knowledge that classi�es


data with the label y as the concept y. Figure 2.1 depicts the inductive learning


process.


For examples, Table 2.1 displays a tiny fraction of the congressional voting record


Learning


Algorithm
Training


Data


Classifier


Figure 2.1: Inductive Learning.
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Party Mx-missile Edu-spending Crime


REP n y y


REP n y y


DEM n n y


DEM n n n


Table 2.1: A data set on congressional voting record.


data set obtained from the Machine Learning Database at the University of California,


Irvine (Merz & Murphy, 1996). The data set records how lawmakers vote in the


House on di�erent legislative issues. One might want to determine if a lawmaker


is a republican or a democrat by observing how he/she votes. From this data set


and using party a�liation as a class label, a learning algorithm might produce this


concept/classi�er (in rule representation):


(Edu-spending = y) => REP


(Edu-spending = n) => DEM


denoting if a lawmaker votes yes on education spending, he/she is a republican,


otherwise, the lawmaker is a democrat. This learned concept can then provide an


\educated guess" for the following question (what is Smith's party a�liation?):


(Name = smith, Mx-missile = n, Edu-spending = y, Crime = n)


=>


Party = ?


Inductive learning can be supervised or unsupervised. In supervised inductive


learning, the class labels of training examples are supplied and the learned concepts


describe these class labels (or learning from examples (Dietterich & Michalski, 1983)).


However, in unsupervised inductive learning (or learning from observations (Michalski


& Stepp, 1983)), the class labels are not supplied or known. The learning algorithm


induces clusters, which can later be identi�ed as individual concepts. CLUSTER/2


(Michalski & Stepp, 1983), COBWEB (Fisher, 1987), and AUTOCLASS (Chesse-
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man et al., 1988) are such conceptual clustering algorithms. Our work focuses on


supervised inductive learning.


Inductive learning can be performed in two modes: non-incremental or incremen-


tal. In non-incremental learning all of the examples are presented to the learning


algorithm as an aggregation (for example, ID3 (Quinlan, 1986)) . However, in in-


cremental learning training examples are assimilated one at a time and the learning


algorithms do not have control over the order of presentation (for example, ID5 (Ut-


go�, 1989), an incremental version of ID3). This research concentrates on supervised


inductive learning in non-incremental mode.


In inductive learning, examples are usually presented as attribute-value pairs with


the corresponding class labels (or classi�cations). Here, a concept (or classi�er) is


loosely de�ned as a description (pattern) and a conclusion (classi�cation). That is,


a concept can be used to draw a conclusion (classifying an instance) based on a


matching description. Concepts generated by the learning algorithms can be used in


classifying instances that have not been seen before. In other words, given a set of


unseen and unclassi�ed instances, the learned concepts merely predict the instances'


classi�cation.


Some of the common representations used for the generated classi�ers are deci-


sion trees, rules, version spaces, neural networks, distance functions, and probability


distributions. In general, these representations are associated with di�erent types of


algorithms that extract di�erent information from the database and provide alter-


native capabilities besides the common ability to classify unknown exemplars drawn


from some domain. For example, decision trees are declarative and thus more com-


prehensible to humans than weights computed within a neural network architecture.


However, both are capable of classifying data in meaningful ways.


Decision trees are used in ID3 (Quinlan, 1986) and CART (Breiman et al., 1984),


where each concept is represented as a conjunction of terms on a path from the root


of a tree to a leaf. Rules in AQ (Michalski et al., 1986), Decision Lists (Rivest,
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1987), CN2 (Clark & Niblett, 1989), and ITRULE (Goodman & Smyth, 1989) are


if-then expressions, where the antecedent is a pattern expression and the consequent


is a class label. Each version space learned in the Candidate Elimination algorithm


(Mitchell, 1982) de�nes the most general and speci�c description boundaries of a


concept using a restricted version of �rst order formulae. Neural networks com-


pute a weighted network to classify data (Fahlman & Hinton, 1987; Lippmann, 1987;


Hinton, 1989). The learned distance functions in exemplar-based learning algorithms


(or nearest neighbor algorithms) de�ne a similarity or \closeness" measure between


two instances (Stan�ll & Waltz, 1986; Aha et al., 1991; Cost & Salzberg, 1993). Con-


ditional probability distributions used by Bayesian classi�ers are derived from the fre-


quency distributions of attribute values and reect the likelihood of a certain instance


belonging to a particular classi�cation (Duda & Hart, 1973; Langley et al., 1992;


Langley & Sage, 1994). Implicit decision rules classify according to maximal proba-


bilities. Chromosomes composed of three-valued pattern vectors constitute a popu-


lation (classi�er) in genetic algorithms (DeJong, 1988; Booker et al., 1989). Learning


involves evolving the chromosomes to maximize a �tness function.


These algorithms and their variants have been put to practical use in a wide range


of data mining activities. In this thesis we do not seek new learning algorithms to


add to this broad list. Rather, we propose meta-learning as an approach whereby


any of these algorithm can be used in a \plug-and-play fashion." We utilize inductive


learning algorithms to not only explain databases of information drawn from some


arbitrary domain, but also we apply these same algorithms to a distributed database


of predictions generated by a set of underlying classi�ers! This means, we apply


inductive learning to the task of \learning how distributed classi�ers correlate with


each other" to improve the accuracy of the desired classi�cation process. This is the


essence of what we mean by meta-learning. Our ultimate goal is to provide scalable


inductive learning and classi�cation capabilities in wide area computing networks to


be able to learn globally what is only partially learned locally.
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2.1 Improving Accuracy


Machine learning researchers clearly desire more accurate learning algorithms.


One direction is to generate diverse classi�ers by some method using a single learning


algorithm and the classi�ers are combined via some mechanism. Another approach


has focussed on integrating by some means multiple strategies or multiple algorithms.


Here we summarize a few of the most relevant e�orts.


2.1.1 Single learning algorithm and diverse classi�ers


Some research has concentrated on methods to improve an existing algorithm by


using the algorithm itself to generate purposely biased distributions of training data.


The most notable work in this area is due to Schapire (1990), which he refers to as


hypothesis boosting. Based on an initial learned hypothesis for some concept derived


from a random distribution of training data, Schapire's scheme iteratively generates


two additional distributions of examples. The �rst newly derived distribution in-


cludes randomly chosen training examples that are equally likely to be correctly or


incorrectly classi�ed by the �rst learned classi�er. A new classi�er is formed from


this distribution. The second distribution is formed from the training examples on


which both of the �rst two classi�ers disagree. A third classi�er is computed from


this distribution. The predictions of the three learned classi�ers are combined using


a simple voting rule. Schapire proves that the overall accuracy is higher than the one


achieved by simply applying the learning algorithm to the initial distribution under


the PAC (Probabilistic Approximately Correct) learning model (Valiant, 1984). In


fact, he shows that arbitrarily high accuracy can be achieved by recursively applying


the same procedure. Although his approach is limited to the PAC model of learn-


ing, some success was achieved in the domain of character recognition, using neural


networks (Drucker et al., 1993). Freund (1992) has a similar approach, but with


potentially many more sequentially generated distributions involved.
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Hansen and Salamon (1990) integrate an ensemble of neural networks by simple


voting. The di�erent networks in an ensemble are generated by randomized parame-


ters. Kwok and Carter (1990) generate di�erent decision trees by choosing di�erent


tests at the root and combine their predictions by simple voting. Breiman's (1994)


bagging utilizes bootstrapping to generate many di�erent training distributions and


voting to combine the predictions. Optiz and Shavlik (1996) perturb neural networks


using genetic algorithms and combine the networks using weighted voting.


Dietterich and Bakiri (1991; 1995) augment the output representation of a multi-


class problem using error-correcting codes. Generated classi�ers are integrated by


choosing the code with the fewest errors in the code book.


Other work in this direction includes Qian and Sejnowski's (1988) cascaded neural


networks, where the output of one neural network is fed into another to learn higher-


level correlations. Kohavi and John (1995) search for the best algorithm parameters


using extensive cross validation runs. Naik and Mammone (1992) apply learning


to selecting parameters for neural networks. Pomerleau (1992) uses a rule-based


approach to combining multiple driving experts for guiding a vehicle in a variety of


circumstances. The driving experts are trained neural networks.


2.1.2 Integrating multiple learning algorithms


Other researchers have proposed implementing learning systems by integrating in


some fashion a number of di�erent algorithms to boost overall accuracy. The basic


notion behind this integration is to complement the di�erent underlying learning


strategies embodied by di�erent learning algorithms by e�ectively reducing the space


of incorrect classi�cations of a learned concept.


There are mainly two strategies that we may consider in integrating di�erent


learning strategies. One strategy is to increase the amount of knowledge in the learn-


ing system. For example, some work has been reported on integrating inductive and
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explanation-based learning (Flann & Dietterich, 1989; Danyluk, 1991). Explanation-


based techniques are integrated to provide the appropriate domain knowledge that


complements inductive learning, which is knowledge poor. This approach requires a


complicated new algorithm that implements both strategies to learning in a single


system. A less knowledge-intensive direction uses heuristics to combine multiple clas-


si�ers in a tree structure (Tcheng et al., 1989; Brodley, 1995). The space of training


examples is recursively partitioned into subspaces, from each of which a classi�er is


generated using a heuristically selected learning algorithm. (Further details on these


methods are provided in Section 6.3).


Another strategy is to loosely integrate a number of di�erent inductive learning


algorithms by integrating their collective output concepts in some fashion. Some of


these techniques are described below and later evaluated from our empirical results.


For example, Silver et al.'s (1990) work on using a coordinator to gather votes from


three di�erent classi�ers and Holder's (1991) work on selecting learning strategies


based on their relative utility.


Many of the simpler techniques that aim to combine multiple evidence into a


singular prediction are based on voting. The �rst scheme we examine is simple voting.


That is, based on the predictions of di�erent base classi�ers, a �nal prediction is


chosen as the classi�cation with a plurality of votes. A variation of simple voting


is weighted voting. Each classi�er is associated with a weight, which is determined


by how accurate the classi�er performs on a validation set. (A validation set is a


set of examples randomly selected from all available data. Since each classi�er is


trained on only one subset, examples in the other subsets that contribute to the


validation set provide a measure of predictiveness.) Each prediction is weighted by


the classi�er's assigned weight. The weights of each classi�cation are summed and


the �nal prediction is the classi�cation with the most weight.


Littlestone and Warmuth (1989) propose several weighted majority algorithms for


combining di�erent classi�ers. (In their work the classi�ers are di�erent prediction
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algorithms, which are not necessarily learned. The training data are only used for


calculating the weights.) These combining algorithms are similar to the weighted


voting method described above; the main di�erence is how the weights are obtained.


The basic algorithm, called WM , associates each learned classi�er with an initial


weight. Each example in the training set is then processed by the classi�ers. The


�nal prediction for each example is generated as in weighted voting. If the �nal


prediction is wrong, the weights of the classi�ers whose predictions are incorrect are


multiplied by a �xed discount �, where 0 � � < 1, that decreases their contribution


to �nal predictions.


A variation of the basicWM algorithm, calledWML, does not allow the weights


to be discounted beyond a prede�ned limit. A discount can only occur if the weight


is larger than





number of classifiers


times the total weight of all classi�ers, where 0 �  < :5. Another variation, called


WMR, produces randomized responses. The probability of a classi�cation selected


as the �nal prediction is the total weight of that classi�cation divided by the total


weight of all classi�cations; i.e.,


P (class


x


) =


total weight(class


x


)


P


i


total weight(class


i


)


:


The weights are trained as in the WM algorithm.


Littlestone and Warmuth's (1989) weighted majority work is mainly theoretical.


Their model assumes that the classi�ers make binary predictions. They show that


if the worst classi�er makes at most m mistakes, the weighted majority algorithms


will make at most O(log(number of classifiers) + m) mistakes. We adapt their


techniques in this study to include classi�ers that predict an arbitrary number of


classes. Again, we use a validation set to train the weights in the weighted majority


algorithms.


Xu et al. (1992) developed a method for integrating predictions from multiple clas-


si�ers based on the Bayesian formalism. The belief function they derived (Equation
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32) is simpli�ed as:


bel(class


i


; x) �


classifiers


Y


k


P (class


i


j classifier


k


(x));


where x is an instance and classifier


k


(x) is the classi�cation of instance x predicted


by classifier


k


. The �nal prediction is class


j


where bel(class


j


; x) is the largest among


all classes. In our experiments reported below, we estimate the conditional probabil-


ities from the frequencies generated from the validation set. Xu et al. (1992) also


developed integrating methods based on the Dempster-Shafer theory.


A more interesting approach to loosely combine learning programs is to learn how


to combine independently learned concepts. Stolfo et al. (1989) propose learning


rules by training weighted voting schemes, for merging di�erent phoneme output


representations from multiple trained speech recognizers. Wolpert (1992) presents a


theory of stacked generalization to combine several classi�ers. (Indeed, this work is


closest to what we mean by meta-learning as we will describe later.) Several (level


0) classi�ers are �rst learned from the same training set. The predictions made by


these classi�ers on the training set and the correct classi�cations form the training


set of the next level (level 1) classi�er. When an instance is being classi�ed, the level


0 classi�ers �rst make their predictions on the instance. The predictions are then


presented to the level 1 classi�er, which makes the �nal prediction. Zhang et al.'s


(1992) work utilizes a similar approach to learn a combiner based on the predictions


made by three di�erent classi�ers. Breiman (1996b) applied the stacking idea to


regression. The techniques are closest to our meta-learning approach proposed here.


2.2 Improving E�ciency


Quinlan (1979) approached the problem of e�ciently applying learning systems


to data that are substantially larger than available main memory with a windowing


technique. A learning algorithm is applied to a small subset of training data, called


a window, and the learned concept is tested on the remaining training data. This
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is repeated on a new window of the same size with some of the incorrectly classi�ed


data replacing some of the data in the old window until all the data are correctly


classi�ed. Wirth and Catlett (1988) show that the windowing technique does not sig-


ni�cantly improve speed on reliable data. On the contrary, for noisy data, windowing


considerably slows down the computation. Catlett (1991) demonstrates that larger


amounts of data improves accuracy, but he projects that ID3 (Quinlan, 1986) on mod-


ern machines will take several months to learn from a million records in the ight data


set obtained from NASA. Using data reduction techniques, Domingos (1996) signi�-


cantly improves the e�ciency of RISE (a speci�c-to-general rule induction algorithm)


(Domingos, 1995).


Catlett (1991) proposes some improvements to the ID3 algorithm particularly for


handling attributes with real numbers. For each real-numbered attribute, ID3 sorts


the attribute values present in the examples, considers a two-way split of the values


(a threshold) between each pair of adjacent values, and selects the most e�ective split


according to an objective function. That is, n� 1 splits are considered for n values.


Catlett devised a scheme to skip some of the splits that are considered statistically


not likely to be picked (Catlett, 1992). This scheme applies only to real-numbered


attributes and the processing time can still be prohibitive due to ID3's non-linear


complexity (Chan & Stolfo, 1993d).


Another approach to solving the scaling problem is simply to increase the number


of processors and available memory, parallelize the learning algorithms and apply


the parallelized algorithm to the entire data set. Zhang et al.'s (1989) work on


parallelizing the backpropagation algorithm on a Connection Machine is one example.


This approach requires optimizing the code for a particular algorithm on a speci�c


parallel architecture.


Other researchers use a more coarse-grain parallel/distributed approach. Classi-


�ers are trained from data subsets and are combined via some mechanism. Provost et


al. (Provost & Aronis, 1996; Provost & Hennessy, 1996) exchange and evaluate rules
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to provably and optimally combine rule sets learned by RL (Clearwater & Provost,


1990). Our meta-learning approach is similar, however, it is not restricted to a par-


ticular learning algorithm.


2.3 Incremental Learning


Incremental learning algorithms have been proposed that allow the exibility of


not requiring all training examples to be inspected at once. However, some incremen-


tal algorithms do require the storage of all examples for future examination during


learning, for example, ID5 (Utgo�, 1989). That is, these incremental learning algo-


rithms still demand that all examples �t in the main memory, which is not plausible


for massive amounts of data. For those incremental algorithms that do not require all


examples to be resident in memory, like neural nets, many demand multiple passes


over the data to achieve convergence, which usually consumes substantial processing


time. Incremental IBL (Aha & Kibler, 1989) makes only one pass over the data and


stores only a subset of the training examples; however, it does not bound the number


of examples retained during training.


2.4 Our Approach


Again, our approach for improving e�ciency and accuracy for learning algorithms


focuses on data reduction and meta-learning techniques. The meta-learning tech-


niques attempt to learn correlations among the classi�ers trained on multiple data


sets. That is, they try to learn how to e�ectively integrate learned classi�ers to


achieve an accuracy higher than any of the individual classi�ers. Data reduction


techniques reduce and limit the amount of data inspected by any individual learn-


ing process. Unlike many related techniques, our meta-learning approach is scalable


(by data reduction partitioning), extensible (algorithm-independent), and portable
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(architecture-independent). In the next chapter our meta-learning approach is dis-


cussed in detail.


2.5 Community


Because of the growing interest and importance in the area of integrating diverse


learning systems, Prof. Sal Stolfo, Dr. Dave Wolpert, and I organized a workshop


at the Fourteen National Conference on Arti�cial Intelligence (AAAI-96) in Port-


land, Oregon. The workshop was entitled \Integrating Multiple Learned Models for


Improving and Scaling Machine Learning Algorithms" (Chan et al., 1996) and was


held on August 4th and 5th. 33 paper submissions were received from around the


world. Because of the unexpected relatively large number of submissions, reviewers


other than the organizers were enlisted. After evaluating two reviews for each sub-


mission, we accepted 24 papers for presentation. About 80 researchers and developers


expressed interest in attending the two-day workshop; around 50 of them came and


participated.
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Chapter 3


Meta-Learning


Meta-learning (Chan & Stolfo, 1993b) is loosely de�ned as learning of meta-knowledge


about learned knowledge. In our work we concentrate on learning from the output


of concept learning systems. In this case meta-learning means learning from the


predictions of these classi�ers on common training data. A classi�er (or concept) is


the output of a concept learning system and a prediction (or classi�cation) is the


predicted class generated by a classi�er when an instance is supplied. Thus, we are


interested in the output of the classi�ers, not the internal structure and strategies of


the learning algorithms themselves. Moreover, in several of the schemes we de�ne,


the training data presented to the learning algorithms initially are also available to


the meta-learner under certain circumstances.


Figure 3.1 depicts the di�erent stages in a simpli�ed meta-learning scenario:


1. The classi�ers (base classi�ers) are trained from the initial (base-level) training


sets.


2. Predictions are generated by the learned classi�ers on the training sets.


3. A meta-level training set is composed from the predictions generated by the


classi�ers.
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Figure 3.1: Meta-learning.


4. The �nal classi�er meta-classi�er is trained from the meta-level training set.


In meta-learning a learning algorithm is used to learn how to integrate the learned


classi�ers. That is, rather than having a predetermined and �xed integration rule (for


example, voting), the integration rule is learned based on the behavior of the trained


classi�ers.


Sections 3.1 and 3.2 discuss how the base classi�ers can be generated and how


they can be integrated. Section 3.4 details our meta-learning strategies. Section 3.3


summarizes our methods by contrasting them with others in the literature.
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3.1 Computing Initial Base Classi�ers


We consider two distinct phases in meta-learning in which data reduction is ap-


plied in two di�erent fashions. In the �rst phase, \base level classi�ers" are computed


from the initial input database. Thus, the initial input database D, where N =j D j,


is divided into s random and unbiased subsets of training data, each of (roughly)


size N=s. These subsets are input to s learning processes, executed concurrently. In


the second phase when meta-learning over a number of computed base classi�ers, we


may similarly partition \meta-data" across subsets of classi�ers who are integrated


in smaller groups. However, here we may compose distributions of meta-level train-


ing data that are purposefully biased by the classi�cations of the underlying base


classi�ers (i.e., we �lter the data according to the predictions of the precomputed


classi�ers).


There are, however, several important considerations. We must be concerned


with the bias introduced by the particular distribution formed by the data reduction


method. For example, if the data are partitioned over the \class label" (i.e., the


target concept of inductive learning) then the resultant classi�ers would be speci�c


to only a single class, and no others. This may be a poor strategy for at least two


important reasons.


First, under this scheme important information that distinguishes between two


classes will not be available to any learning algorithm. Thus, \near-misses", \out-


liers," and \counter-factuals" will not be available to a learning algorithm. This may


lead to \overly general" inductively inferred descriptions of the data, putting a heav-


ier burden on meta-learning to correct the mistakes of the base classi�ers. Indeed,


many \discrimination based" learning algorithms require negative training examples


to compute useful results. Secondly, the independent subsets of training data may


still be too large to process e�ciently. For example, for very large N , and a rel-


atively small number of classes, c, the quantity N=c may itself be a large number.


This implies that other attributes of the data must participate in the data reduction
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scheme to distribute the computation. But then we must be concerned with choosing


\good distributions" that minimize any potential severe bias or skew that may lead


to faulty or misleading classi�ers. The importance of choosing the right attributes


and the resultant impact on learning cannot be understated.


Random selection of the partitioned data sets with a uniform distribution of classes


is perhaps the most sensible solution. Here we may attempt to maintain the same


frequency distribution over the \class attribute" so that each partition represents


a good but smaller model of the entire training set. Otherwise, a totally random


selection strategy may result in the absence of some classes we wish to discriminate


among in some of the training subsets. Several experiments have been conducted and


are reported below to explore these issues. Unfortunately, there is no strong theory


to guide us on how to optimally solve this problem.


An alternative to partitioning data into disjoint training subsets is to apply \par-


tial data reduction," meaning that we may allow for some amount of replication in the


partitioned data sets. In this way, the separately learned base classi�ers have some


hope of analyzing common data, some of which may include \near-misses." However,


this strategy implies that we are not making maximal use of our parallel resources,


since a considerable amount of the original training database is being replicated at


various distributed computing sites. However, the extreme bias in the data that may


be derived from purely disjoint data partitioning can be relaxed to some degree with


partial replication.


Several experiments have been conducted and are reported in later chapters detail-


ing the surprising outcome of these two strategies. Disjoint partitioning of training


data versus partially replicating information among the base training data sets is


compared over two learning tasks, varying the amount of replication in a series of


tests. The results show that partial replication essentially buys nothing: no improve-


ment, nor any reduction, in accuracy is seen! Thus, meta-learning over disjoint sets


of training data is e�ective provided the distribution of training data is not highly
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skewed or severely biased.


3.2 Integrating Base Classi�ers


Since di�erent learning algorithms employ di�erent knowledge representations and


search heuristics, di�erent search spaces may be explored by each and hence poten-


tially diverse results can be obtained. Mitchell (1980) refers to this phenomenon


as inductive bias; the outcome of running an algorithm is biased towards a certain


outcome. Furthermore, di�erent partitions of a data set have di�erent statistical


characteristics and the performance of any single learning algorithm might di�er sub-


stantially over these partitions. These observations imply that great care must be


taken in designing an appropriate distributed meta-learning architecture. A number


of these issues are explored in this section.


How precisely do we integrate a number of separately learned classi�ers? Bayesian


statistics theory provides one possible approach to combining several learned classi-


�ers based upon the statistics of the behavior of the classi�ers on the training set.


Given some set of classi�ers, C


i


; i = 1::n and a feature vector x, we seek to compute


a class label y for x. Bayes theorem suggests an \optimal" strategy as follows:


P (y j x) =


X


i


P (C


i


)� P (y j C


i


; x)


P (C


i


) is the probability that C


i


predicts correctly, (i.e., the probability it is the true


model), while P (y j C


i


; x) is the probability that x is of class y given by C


i


. Of


course, this makes sense only when the probabilities are indeed known, and our clas-


si�ers are probabilistic and not categorical. The best we can do to estimate P (C


i


) is


to calculate the appropriate statistics from observing the behavior of each classi�er on


the training set as an approximation to the actual probabilities (which may be quite


inaccurate.) (Furthermore, Bayes theorem would be optimal if we knew all possible


classi�ers, not just those that we happen to compute.) This information, however,


provides only statistics about each classi�er's behavior with respect to the training
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set, and no information about how the classi�ers are related to each other. For ex-


ample, learning that two classi�ers rarely agree with each other when predicting a


class label y (meaning that when one classi�er predicts y, the other does not) might


have much more predictive value (eg. when combined with a third classi�er) than


merely knowing that the two classi�ers predict y with equal probability! We view


the Bayesian approach as a baseline, and use methods derived from this approach,


Bayesian Belief (Xu et al., 1992), for comparative purposes in our experiments re-


ported later. There are many other approaches we might imagine that are based


upon learning relationships between classi�ers. The manner in which we learn the


relationship between classi�ers is to learn a new classi�er (a \meta-level classi�er")


whose input is the set of predictions of two or more classi�ers on common data. It is


this latter view that we call meta-learning.


In the following sections we detail meta-learning by arbitration, and by combining


where in both cases a variety of inductive learning algorithms are employed to generate


the appropriate meta-classi�ers. Each strategy is treated in great detail including the


variety of training data distributions generated in each scheme.


There are a number of important questions only poorly understood but for which


substantial experimental evidence suggests directions for future exploration. In par-


ticular:


� Can meta-learning over data partitions maintain or boost the accuracy of a


single global classi�er?


� How do voting and Bayesian techniques compare to meta-learning in accuracy?


� How do arbiters compare to combiners in accuracy?


� A meta-learned classi�er may be treated as a base classi�er. Thus, might hi-


erarchically meta-learned classi�ers perform better than a single layered meta-


learned architecture?
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� How much training data and of what distribution should an arbiter or combiner


be provided in order to produce accurate results?


� Might meta-learned classi�ers be improved by learning over partitions of par-


tially replicated training data, or is disjoint training data su�cient to achieve


high accuracy?


A substantial number of exploratory evaluations have been completed. Details of


these results are in the following chapters.


We have discovered through experimentation three very interesting behaviors ex-


hibited by various meta-learning strategies that warrant further elaboration. We


demonstrate that under certain circumstances, a meta-learning architecture can learn


e�ectively with a fraction of the total available information at any one site, that ac-


curacy can be boosted over the global classi�er trained from all available data, and


that maximal parallelism can be e�ectively exploited by meta-learning over disjoint


data partitions without a substantial loss of accuracy (Chan & Stolfo, 1996a). These


results suggest strongly that a \�eld test" of these techniques over a real world net-


work computing environment (eg. over database server sites on the web) is not only


technically feasible, but also an important next step in the development of these ideas.


In the following sections we present some of the di�erent strategies used in our


meta-learning study.


3.3 Voting, Combining and Arbitration


We distinguish three distinct strategies for combining multiple predictions from


separately learned classi�ers. Voting generally is understood to mean that each clas-


si�er gets one vote, and the majority (or plurality) wins. Weighted voting provides


preferential treatment to some voting classi�ers, as may be predicted by observing


performance on some common test set. The outcome of voting is simply to choose
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one of the predictions from one or more of the classi�ers. The second major strategy


is arbitration, which entails the use of an \objective" judge whose own prediction is


selected if the participating classi�ers cannot reach a consensus decision. Thus, the


arbiter is itself a classi�er, and may choose a �nal outcome based upon its own pre-


diction but cognizant of the other classi�ers' predictions. Finally, combining refers to


the use of knowledge about how classi�ers behave with respect to each other. Thus, if


we learn, for example, that when two classi�ers predict the same class they are always


correct (relative to some test set), this simple fact may lead to a powerful predictive


tool. Indeed, we may wish to ignore all other classi�ers when they predict a common


outcome. Figures 3.2 and 3.6 contrast the primary di�erences between combiners and


arbiters, which are now detailed.


3.4 Meta-learning by Combining and Arbitration


We distinguish between base classi�ers and combiners/arbiters as follows. A base


classi�er is the outcome of applying a learning algorithm directly to \raw" training


data. The base classi�er is a program that given a test datum provides a prediction of


its unknown class. An combiner or arbiter, as detailed below, is a program generated


by a learning algorithm that is trained on the predictions produced by a set of base


classi�ers and the raw training data. The arbiter/combiner is also a classi�er, and


hence other arbiters or combiners can be computed from the set of predictions of


other combiners/arbiters in a hierarchical manner.


Before we detail the di�erent strategies, for concreteness, we de�ne the following


notations. Let x be an instance whose classi�cation we seek, C


1


(x), C


2


(x), ... C


k


(x)


are the predicted classi�cations of x from k base classi�ers, C


1


, C


2


, ... C


k


. Examples


randomly drawn from the entire original training set constitute the validation set, E,


which is used to generate the meta-level training set according to the following strate-


gies. class(x) and attribute vector(x) denote the correct classi�cation and attribute


vector of example x as speci�ed in the validation set, E.







34


Combiner


Classifier 1


Classifier 2


Instance


Prediction 1


Prediction 2


Final


Prediction


Figure 3.2: A combiner with two classi�ers.


3.4.1 Combiner strategy


In the combiner strategy, the predictions of the learned base classi�ers on the


training set form the basis of the meta-learner's training set. A composition rule,


which varies in di�erent schemes, determines the content of training examples for the


meta-learner. From these examples, the meta-learner generates a meta-classi�er, that


we call a combiner. In classifying an instance, the base classi�ers �rst generate their


predictions. Based on the same composition rule, a new instance is generated from


the predictions, which is then classi�ed by the combiner (see Figure 3.2). The aim


of this strategy is to \coalesce" the predictions from the base classi�ers by learning


the relationship between these predictions and the correct prediction. A combiner


computes a prediction that may be entirely di�erent from any proposed by a base


classi�er, whereas an arbiter chooses one of the predictions from the base classi�ers


and the arbiter itself.


We experimented with three schemes for the composition rule. First, the predic-


tions, C


1


(x), C


2


(x), ... C


k


(x), for each example x in the validation set of examples,


E, are generated by the k base classi�ers. These predicted classi�cations are used


to form a new set of \meta-level training instances," T , which is used as input to a


learning algorithm that computes a combiner. The manner in which T is computed


varies as de�ned below:
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Example Class Attribute vector Base classi�ers' predictions


x class(x) attrvec(x) C


1


(x) C


2


(x)


x


1


table attrvec


1


table table


x


2


chair attrvec


2


table chair


x


3


table attrvec


3


chair chair


Training set from


the class-combiner scheme


Instance Class Attribute vector


1 table (table, table)


2 chair (table, chair)


3 table (chair, chair)


Training set from


the class-attribute-combiner scheme


Instance Class Attribute vector


1 table (table, table, attrvec


1


)


2 chair (table, chair, attrvec


2


)


3 table (chair, chair, attrvec


3


)


Figure 3.3: Sample training sets generated by the class-combiner and class-attribute-


combiner schemes with two base classi�ers.


class-combiner Return meta-level training instances with the correct classi�cation


and the predictions; i.e., T = f(class(x); C


1


(x); C


2


(x); :::C


k


(x)) j x 2 Eg: This


scheme was also used by Wolpert (1992). See Figure 3.3 for a sample training set.


class-attribute-combiner Return meta-level training instances as in class-combiner


with the addition of the attribute vectors; i.e., T = f(class(x); C


1


(x); C


2


(x); ::::C


k


(x);


attribute vector(x)) j x 2 Eg: See Figure 3.3 for a sample training set.


binary-class-combiner Return meta-level training instances similar to those in


the class-combiner scheme except that each prediction, C


i


(x), has m binary pre-


dictions, C


i


1


(x); : : : ; C


i


m


(x), where m is the number of classes. Each prediction,
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Example Class Attribute Base classi�er1's Base classi�er2's


vector predictions predictions


x class(x) attrvec(x) C


1


table


(x) C


1


chair


(x) C


2


table


(x) C


2


chair


(x)


x


1


table attrvec


1


yes no yes no


x


2


chair attrvec


2


yes yes no yes


x


3


table attrvec


3


no yes no yes


Training set from


the binary-class-combiner scheme


Instance Class Attribute vector


1 table (yes, no, yes, no)


2 chair (yes, yes, no, yes)


3 table (no, yes, no, yes)


Figure 3.4: Sample training set generated by the binary-class-combiner scheme with


two base classi�ers.


C


i


j


(x), is produced from a binary classi�er, which is trained on examples that are


labeled with classes j and :j. In other words, we are using more specialized base


classi�ers and attempting to learn the correlation between the binary predictions


and the correct prediction. For concreteness, T = f(class(x); C


1


1


(x); : : : ; C


1


m


(x);


C


2


1


(x); : : : ; C


2


m


(x); : : : C


k


1


(x); : : : ; C


3


m


(x)) j x 2 Eg: See Figure 3.4 for a sample


training set.


These three schemes for the composition rule are de�ned in the context of forming


a training set for the combiner. These composition rules are also used in a similar


manner during classi�cation after a combiner has been computed. Given an instance


whose classi�cation is sought, we �rst compute the classi�cations predicted by each


of the base classi�ers. The composition rule is then applied to generate a single


meta-level test instance, which is then classi�ed by the combiner to produce the �nal


predicted class of the original test datum.


Figure 3.5 shows a combiner (in decision tree format) that is learned from 4 base


classi�ers in the RNA splice junction domain (Section 4.2.1). The combiner strategy


discovers that base-classifier-1 is much more relevant than the others that only
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base-classifier-1 = EI: EI


base-classifier-1 = IE:


| p-3 = A: N


| p-3 = C: IE


| p-3 = G: N


| p-3 = T: IE


base-classifier-1 = N:


| p1 = A: N


| p1 = C: N


| p1 = G:


| | p5 = A: N


| | p5 = C: N


| | p5 = G:


| | | p2 = A: N


| | | p2 = C: N


| | | p2 = G: N


| | | p2 = T: EI


| | p5 = T: N


| p1 = T: N


Figure 3.5: A sample combiner learned from 4 base classi�ers. One classi�er c1


survived.


base-classifier-1 appears in the combiner.


3.4.2 Arbiter strategy


In the arbiter strategy, the training set for the meta-learner is a subset of the


training set for the base learners; i.e. the meta-level training instances are a particular


distribution of the raw training set. The predictions of the learned base classi�ers


for the training set and a selection rule, which varies in di�erent schemes, determines
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Classifier 1


Classifier 2


Instance


Prediction 1


Prediction 2


Final


Prediction


Arbiter


Arbitration


Rule


Arbiter’s


Prediction


Figure 3.6: An arbiter with two classi�ers.


which subset will constitute the meta-learner's training set. (This contrasts with the


combiner strategy, which has the same number of examples for the base classi�er as


for the combiner. Also, the meta-level training instances for a combiner incorporate


additional information than just the raw training data.) Based on this training set, the


meta-learner generates a meta-classi�er, in this case called an arbiter. In classifying


an instance, the base classi�ers �rst generate their predictions. These predictions,


together with the arbiter's prediction and a corresponding arbitration rule, generate


the �nal prediction (see Figure 3.6). In this strategy one learns to arbitrate among


the potentially di�erent predictions from the base classi�ers, instead of learning to


coalesce the predictions as in the combiner strategy. We �rst describe the schemes


for the selection rule and then those for the arbitration rule.


We experimented with three schemes for the selection rule, which chooses training


examples for an arbiter. In essence the schemes select examples that are confusing to


the base classi�ers, from which an arbiter is learned. A training set T for the arbiter


is generated by picking examples from the validation set E. The choice of examples


selected from E is dictated by a selection rule, that purposefully biases the arbiter


training data. The three versions of this selection rule implemented and reported
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here include:


di�erent-arbiter Select an instance from E if none of the classes in the k base


predictions gathers a majority classi�cation (> k=2 votes); i.e., T = T


d


= fx 2


E j no majority(C


1


(x); C


2


(x); :::C


k


(x))g: The purpose of this rule is to choose data


that are in some sense \confusing"; i.e., the majority of classi�ers do not agree on


how the data should be classi�ed (di�erent opinions). As we will show later, this


rule has comparable performance to the other more complex rules, hence, when the


speci�cation of a selection rule is absent, this rule is implied. That is, this is the


default arbiter strategy. For further reference, this scheme is denoted as arbiter


or di�erent-arbiter.


di�erent-incorrect-arbiter Select instances with predictions that does not gather


a majority, T


d


, as in the �rst case, but also instances with predictions that have a


majority but are incorrect; i.e, T = D [ I, where I = T


i


= fx 2 E j majority(C


1


(x);


C


2


(x); :::; C


k


(x)) 6= class(x)g: Note that we lump together both cases of data that


are incorrectly classi�ed or in disagreement (no majority).


di�erent-incorrect-correct-arbiter Return a set of three training sets: T


d


and


T


i


, as de�ned above, and T


c


with examples that have the same correct predictions; i.e.,


T = fT


d


; T


i


; T


c


g, where T


c


= fx 2 E j majority(C


1


(x); C


2


(x); :::; C


k


(x)) = class(x)g:


Here we attempt to separate the data into three cases and distinguish each case by


learning a separate \subarbiter." T


d


, T


i


, and T


c


generate A


d


, A


i


, and A


c


, respectively.


The �rst arbiter is like the one computed in the �rst case to arbitrate disagreements.


The second and third arbiters attempt to distinguish the cases when the predictions


have a majority but are either incorrect or correct.


Figure 3.7 depicts sample training sets for the three arbiter schemes. Note the


di�erence in training data for the arbitration and combining. Arbiters are computed


from a distinguished and biased subset of data selected from the input database
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Example Class Attribute vector Base classi�ers' predictions


x class(x) attrvec(x) C


1


(x) C


2


(x)


x


1


table attrvec


1


table table


x


2


chair attrvec


2


table chair


x


3


table attrvec


3


chair chair


Training set from


the di�erent-arbiter scheme


Instance Example Class Attribute vector


1 x


2


chair attrvec


2


Training set from


the di�erent-incorrect-arbiter scheme


Instance Example Class Attribute vector


1 x


2


chair attrvec


2


2 x


3


table attrvec


3


Training sets from


the di�erent-incorrect-correct-arbiter scheme


Set Instance Example Class Attribute vector


Di�erent (T


d


) 1 x


2


chair attrvec


2


Incorrect (T


i


) 1 x


3


table attrvec


3


Correct (T


c


) 1 x


1


table attrvec


1


Figure 3.7: Sample training sets generated by the three arbiter schemes with two base


classi�ers.


used to train the base classi�ers. Combiners, however, are trained on the predicted


classi�cations of that data generated by the base classi�ers, as well as the data itself.


The learned arbiters are trained by some learning algorithm on the particular


distinguished distributions of training data and are used in generating predictions.


During the classi�cation of an instance, y, an arbitration rule and the learned arbiter,


A, produce a �nal prediction based on the k predictions, C


1


(y), C


2


(y) ... C


k


(y), from


the k base classi�ers and the arbiter's own prediction, A(y).


Two versions of the arbitration rule have been implemented. The �rst version
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corresponds to the �rst two selection strategies, while the second version corresponds


to the third strategy.


di�erent-arbiter or di�erent-incorrect-arbiter Return the class with a plural-


ity of occurrences in C


1


(y), C


2


(y), ... C


k


(y), and A(y), with preference given to the


arbiter's choice in case of a tie. For example, if the three classi�ers predict table,


chair, and table and the arbiter predicts chair (i.e., a tie), the �nal prediction is


chair.


di�erent-incorrect-correct-arbiter Return a class label according to:


if no majority(C


1


(y); C


2


(y); :::C


k


(y))


return A


d


(y)


else if majority(C


1


(y); C


2


(y); :::C


k


(y)) = A


c


(y)


return A


c


(y)


else


return A


i


(y),


where A = fA


d


; A


i


; A


c


g.


This rule tries to di�erentiate the three di�erent circumstances so that the three


specialized \subarbiters" can be utilized.


We described the combiner and arbiter strategies for meta-learning. It is impor-


tant to note the di�erence between the combiner and arbiter strategies. The combiner


strategy tries to �nd relationships among the predictions generated by the classi�ers


and the correct predictions. A combiner is a \learned function" that determines the


�nal prediction given a set of predictions. For example, given an unlabeled instance


x, the combiner may learn a rule stating that if classi�er C


1


predicts table, and C


2


predicts chair, then the combiner predicts lamp (i.e., possibly a completely di�erent


prediction from either classi�er). However, the arbiter strategy attempts to arbi-


trate among the conicting predictions and an arbiter is just another classi�er, but


trained on a biased distribution of the original examples. Here, for example, when
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C


1


, and C


2


's predictions disagree, the arbiter makes its own prediction, which could


be completely di�erent from the two base predictions, and a vote determines the �nal


prediction.


We next discuss hybrid schemes that merge some of ideas from the arbiter and


combiner strategies.


3.4.3 Hybrid strategy


We integrate the combiner and arbiter strategies in the hybrid strategy. Given the


predictions of the base classi�ers on the original training set, a selection rule picks


examples from the training set as in the arbiter strategy. However, the training set


for the meta-learner is generated by a composition rule applied to the distribution of


training data (a subset of E) as de�ned in the combiner strategy. Thus, the hybrid


strategy attempts to improve the arbiter strategy by correcting the predictions of


the \confused" examples. It does so by using the combiner strategy to coalesce the


predicted classi�cations of data in disagreement by the base classi�ers. A learning


algorithm then generates a meta-classi�er, e�ectively a combiner, from this training


set.


When a test instance is classi�ed, the base classi�ers �rst generate their pre-


dictions. These predictions are then composed to form a meta-level instance for the


learned meta-classi�er using the same composition rule. The meta-classi�er then pro-


duces the �nal prediction. The hybrid strategy thus attempts to improve the arbiter


strategy by coalescing predictions instead of purely arbitrating among them.


We experimented with two combinations of composition and selection rules, though


any combination of the rules is possible:


di�erent-class-attribute-hybrid Select examples that have di�erent predictions


from the base classi�ers and the predictions, together with the correct classes and
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Example Class Attribute vector Base classi�ers' predictions


x class(x) attrvec(x) C


1


(x) C


2


(x)


x


1


table attrvec


1


table table


x


2


chair attrvec


2


table chair


x


3


table attrvec


3


chair chair


Training set from


the di�erent-class-attribute-hybrid scheme


Instance Class Attribute vector


1 chair (table, chair, attrvec


2


)


Training set from


the di�erent-incorrect-class-attribute-hybrid scheme


Instance Class Attribute vector


1 chair (table, chair, attrvec


2


)


2 table (chair, chair, attrvec


3


)


Figure 3.8: Sample training sets generated by the hybrid schemes.


attribute vectors form the training set for the meta-learner. This integrates the


di�erent-arbiter and class-attribute-combiner schemes.


di�erent-incorrect-class-attribute-hybrid Select examples that have di�erent


or incorrect predictions from the base classi�ers and the predictions, together with


the correct classes and attribute vectors form the training set for the meta-learner.


This integrates the di�erent-incorrect-arbiter and class-attribute-combiner schemes.


Sample training sets for these two hybrid schemes are displayed in Figure 3.8.


Much of our investigation in this thesis focuses on the class-combiner, class-


attribute-combiner, and di�erent-arbiter schemes. The other more complex schemes


were not examined as much because preliminary experiments indicate that they do


not gain much upon the simpler schemes. The next chapter details our experimental


apparatus and methodology.
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Chapter 4


Experimental Apparatus and


Methodology


To evaluate our meta-learning approach and other techniques in the literature, we


performed a substantial numbers of experiments using a variety of learning algo-


rithms and tasks. We �rst discuss the apparatus and then the methodology for our


experiments.


4.1 Learning Algorithms


Five inductive learning algorithms were used in our experiments. Implementa-


tions of these algorithms are \o�-the-shelf" and were not modi�ed. The variety of


algorithms provide some generality for our empirical results.


We obtained ID3 (Quinlan, 1986) and CART (Breiman et al., 1984) as part of


the IND package (Buntine & Caruana, 1991) from NASA Ames Research Center;


both algorithms compute decision trees. CN2 (Clark & Niblett, 1989) is a rule learn-


ing algorithm and was obtained from Dr. Clark (Boswell, 1990). WPEBLS is the


weighted version of PEBLS (Cost & Salzberg, 1993), which is a nearest-neighbor
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learning algorithm. BAYES is a naive Bayesian learning algorithm that is based on


computing conditional probabilities as described in (Clark & Niblett, 1989). The last


two algorithms were reimplemented in C++.


4.2 Learning Tasks


Various machine learning techniques have been applied to di�erent molecular bi-


ology sequence analysis tasks (Chan, 1991; Craven & Shavlik, 1994). For our study,


we chose three sequence analysis tasks obtained from the Machine Learning Database


Repository at University of California, Irvine (Merz & Murphy, 1996). Moreover, we


also used an arti�cial data set that can be generated at random.


4.2.1 Molecular biology sequence analysis data


Molecular biologists in genetics have been focusing on analyzing sequences ob-


tained from proteins, DNA (DeoxyriboNucleic Acid), and RNA (RiboNucleic Acid).


These sequences are divided into two groups: amino acid sequences and nucleotide se-


quences. These two groups are briey discussed in the following two sections. Further


readings can be found in (Schleif, 1986; Lewin, 1987; Hunter, 1993).


The basic building blocks of genetics are nucleotides. DNA consists of two chem-


ically linked sequences of nucleotides (or polynucleotide chains) in double helix form


whereas RNA consists of only one polynucleotide chain. In DNA the nucleotide se-


quence of one strand complements the other strand in such a way that one strand


can be used to synthesize the other. There are four di�erent kinds of nucleotides in


DNA (adenine, cytosine, guanine, and thymine) and RNA (adenine, cytosine, gua-


nine, and uracil). That is, a DNA or RNA segment can be represented as a sequence


of symbols, where each symbol denotes one of the four nucleotides. For example,


GGGACGGUCC is a segment of ten nucleotides of the U1 RNA (Nakata et al.,
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1985).


Although a DNA molecule consists of two nucleotide strands, one strand is the


complement of the other, which is more or less redundant in terms of encoding genetic


information. If one constructs the sequence of all the DNA molecules in an organism's


genome, one can represent the organism as a long sequence of just four letters. The


length of the human DNA sequence is estimated to be 3� 10


9


.


Characteristics and functions of organisms are controlled by proteins, whose pro-


duction is regulated by the information encoded in the nucleotide sequences of DNA.


A gene is basically a DNA fragment that carries the information representing a par-


ticular protein. This genetic information is primarily the order of nucleotides in the


DNA. Proteins are not directly produced from the information on DNA. Instead,


information in a gene is copied to another type of nucleotide sequence, called RNA,


whose nucleotide order is used to produce proteins. Speci�cally, a sequence of three


nucleotides, a codon, encodes one amino acid. Of the 64 possible codons, 61 represent


amino acids and the remaining three signify the end of the encoded proteins. Since


there are only 20 amino acids, all except two amino acids are represented by multiple


codons.


As in analyzing amino acid sequences, we can gain more structural and functional


information about DNA and RNA from studying their nucleotide sequences. For ex-


ample, the decoding process of producing a protein always starts at a certain location


in a DNA segment called the promoter. Molecular biologists try to identify the initi-


ation region in a given DNA sequence so that they can understand more about the


interactions between DNA and protein production.


Proteins are fundamental and instrumental in every aspect of biological function


even though they are relatively simple in their sequence structure. Proteins consist of


polypeptide chains. Each polypeptide chain is an unbranched sequence of amino acids


linked by peptide bonds. There are a total of twenty di�erent primary amino acids;


others are derived from the primary ones. A protein segment can thus be represented
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as a sequence of symbols, where each symbol signi�es a distinct amino acid. For


example, PIVDTGSVAP is a segment of ten amino acids in Hemoglobin V (Qian &


Sejnowski, 1988).


Due to the physical and chemical interactions among amino acids, proteins do not


appear as linear ropes. Interacting segments create twists and turns (called protein


folding). Scientists have identi�ed structural patterns in proteins and classi�ed four


structural levels. The primary structure is the sequence of amino acids, a linear chain


of speci�c acids. The main conformational states in the secondary structure are �-


helix, �-sheet, and coil (not helix or sheet), which are three-dimensional shapes formed


from this linear chain. Features in the secondary structure induce the tertiary struc-


ture. For proteins that consist of multiple polypeptide chains, multimeric proteins,


interactions among chains generate the quaternary structure.


The shape of a protein largely determines its functions. Various structural features


provide sites for biochemical activities


1


. A lot of the enzymatic activities hinge on


lock-and-key type reactions, which highly rely on structural properties.


The purpose of analyzing amino acid sequences is to gain information about pro-


teins both structurally and functionally. Consider, for example, the secondary struc-


ture is important in determining the function of the protein. Scientists have been


trying to �nd ways to predict the secondary structures from amino acid sequences so


they can learn more about the functional properties of proteins (more in Sec. 4.2.1).


RNA splice junction


Protein synthesis begins with the construction of an mRNA molecule (messenger


RNA (ribonucleic acid)) based on the nucleotide sequence of a DNA molecule. This


process is called transcription. The composition of RNA is similar to that of DNA,


1


Imagine a rope with a series of knots, each knot representing an amino acid. Our imaginary


protein rope can be twisted and folded into a globule, the most frequent shape in protein, exposing


some knots externally while hiding others internally. The exposed external knots generate various


shapes, which largely determine the protein's biochemical behavior.
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DNA


Transcription


Intron


Exon


mRNA


Exon-intron
junction junction


precursor RNA


Splicing


Intron-exon


Figure 4.1: Splice junctions and mRNA.


except RNA is single-stranded, the ribose component replaces the deoxyribose one,


and uracil (U) replaces thymine. The second process is translation, where each coding


triplet of nucleotides on an mRNA molecule is mapped to an amino acid and a chain


of amino acids forms a protein.


In eukaryotes' (organisms with cells that have nuclear membrane (for example,


human)) DNA, there are interrupted genes. That is, some regions of a gene do


not encode protein information. During transcription, these non-protein-encoding


regions (called introns) are passed to the precursor RNA. Introns are sliced o� before


translation begins. The regions that encode protein information (called exons), are


spliced together and the resultant intron-free mRNA is used in translation. Figure 4.1


schematically depicts the process of generating an mRNA molecule.


The RNA splice junction (SJ) data set (courtesy of Towell, Shavlik, and No-


ordewier (1990)) contains sequences of nucleotides and the type of splice junction, if


any, at the center of each sequence. Exon-intron, intron-exon, and non-junction are


the three classes in this task. Each sequence has 60 nucleotides with eight di�erent


values per nucleotide (four base ones plus four combinations). The data set contains


3,190 training instances. The learning task is to identify the type of splice junction


with high accuracy.
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Protein coding region


As discussed previously, amino acids are encoded by nucleotide triplets (codons)


in a DNA sequence. It is important to know how the nucleotides are grouped into


codons (reading frames). Starting at position x and position x+1 gives two di�erent


sequences of codons and hence two di�erent sequences of amino acids. One amino


acid sequence might constitute a known protein, the other might be a structure of


unknown nature.


The protein coding region (PCR) data set (courtesy of Craven and Shavlik (1993))


contains DNA nucleotide sequences and their binary classi�cations (coding or non-


coding). Each sequence has 15 nucleotides with four di�erent values per nucleotide. If


the 15 nucleotides represent 5 codons which are part of a known protein, the sequence


is labeled coding, otherwise, it is labeled non-coding. The PCR data set has 20,000


sequences. The learning task is to recognize coding regions accurately.


Protein secondary structure


There have been quite a number of research attempts to use machine learning


techniques to identify conformational states in the protein secondary structure from


amino acid sequences. The task is to learn the rules governing the formation of,


say an �-helix, given a particular amino acid sequence. That is, given an amino acid


sequence, we want to predict the conformational state around the mid point (usually)


of that sequence. The windowing technique is commonly used for generating training


sequences. Each training sequence consists of a �xed number of neighboring amino


acids in sequence and a window, a �xed number of amino acids considered as a


subsequence. The window slides over the protein sequence, one amino acid at a time,


to generate di�erent training sequences. The window size varies according to the


method applied in di�erent tasks.


The protein secondary structure (SS) data set (courtesy of Qian and Sejnowski







50


(1988)) contains sequences of amino acids and the secondary structures at the cor-


responding positions. There are three structures (alpha-helix, beta-sheet, and coil)


and 20 amino acids (21 attributes, including a spacer (Qian & Sejnowski, 1988)) in


the data. The amino acid sequences were split into shorter sequences of length 13


according to a windowing technique used in (Qian & Sejnowski, 1988). The SS data


set has 21,625 sequences.


These three data sets represent di�erent degrees of di�culty in learning an accu-


rate concept. Typical learning algorithms can achieve an accuracy of 90+% in the


splice junction data set, 70+% in the protein coding region data set, and 50+% ac-


curacy in the protein secondary structure data set. The learning task is to identify


the di�erent secondary structures.


4.2.2 Arti�cial data


A fourth data set was also employed. This arti�cial (ART) data set has 10,000 in-


stances randomly generated from a disjunctive boolean expression that has 4 symbolic


(26 values) and 4 numeric (1,000 values) variables. The expression is:


(x


0


< `N


0


^ x


1


< 500 ^ x


2


< `N


0


) _ (x


1


> 500 ^ x


2


> `N


0


^ x


3


> 500) _


(x


4


< `N


0


^ x


5


< 500^ x


6


< `N


0


) _ (x


5


> 500^ x


6


> `N


0


^ x


7


> 500);


where x


0


, x


2


, x


4


, and x


6


are symbolic variables with values `A' through `Z', and x


1


,


x


3


, x


5


, and x


7


are numeric variables with values 0 through 999. A total of 4:6� 10


17


instances are possible. Arbitrarily large data sets can be generated at will and are


used in experiments destinated for measuring e�ciency performance.


Although these data sets (except the arti�cial data sets used in e�ciency exper-


iments) are not very large data sets, they do provide us with an idea of how our


strategies behave in practice. Since the data sets are su�ciently small, we are able


to generate base line statistics on the accuracy of each learning algorithm we have


chosen to use in this study. Otherwise, using a massive database would imply that
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we have unbounded resources and time in order to compute baseline statistics. As


we have noted (as well as (Catlett, 1991)) this might take many years of computing.


Furthermore, scaling studies are possible on these smaller sets simply by varying the


number and size of the subsets formed in the initial data reduction schemes and ex-


trapolating. However, larger data sets are being sought for use in this study which


will be the focus of our work. Stated another way, if we cannot display useful and


interesting results of meta-learning on these small test cases, larger-scale studies are


probably not warranted.


4.3 Experimental Methodology


One of the more common techniques used in evaluating the accuracy of a learning


program is cross validation (Breiman et al., 1984). In an n-fold cross validation,


the entire data set is divided into n disjoint subsets and n train-and-test runs are


performed. In each run, two disjoint sets are formed: a training set and a test set.


One of the n subsets form the test set and the remaining n � 1 subsets merged to


form the training set. A classi�er is generated by applying a learning algorithm to the


training set and is evaluated on the test set. Note that the classi�er is evaluated on


data not used in training. That is, the accuracy obtained from the test set estimates


the accuracy/predictiveness of the learned classi�er. A di�erent subset (out of n


subsets) is used as the test set (hence a di�erent training set) in each of the n runs.


The accuracies of the n di�erent classi�ers measured over the n di�erent test sets are


averaged as the �nal prediction accuracy for the learning algorithm employed.


The learning algorithms and the learning tasks we evaluate here by cross validation


are detailed in the following pages. In most of the experimental results reported below,


the average from 10-fold cross validation runs is plotted. This represents hundreds of


experimental runs over the various meta-learning strategies in-toto. Also, statistical


signi�cance in di�erence of averages is measured by using the one-sided t-test with a


90% con�dence value.
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To simulate the multiple-site scenario, in our experiments, we divided the training


set into equi-sized subsets (each subset representing a site) and varied the number


of subsets (sites) from 2 to 64. Base-classi�ers are learned from these subsets. In


most experiments we also ensured that each subset was disjoint but with proportional


distribution of examples of each class (i.e., the ratio of examples in each class in the


whole data set is preserved). Prediction accuracy of meta-learned classi�ers (or meta-


classi�ers) are compared to the accuracy of global classi�ers, which are learned from


the entire data set before partitioning. As the number of subsets increases, each of


the subset becomes smaller, which result in signi�cant loss of information. Therefore,


it is particularly important that the meta-classi�ers are at least as as accurate as the


global classi�ers.


4.4 Limitations in Experiments


Experiments in this thesis were performed at di�erent time periods (not in chapter


order) and the choice of di�erent learning tasks and algorithms in di�erent sets of


experiments changed when more learning tasks and algorithms were acquired. WPE-


BLS was used in earlier studies and was later excluded because it is signi�cantly


slower than the other algorithms and it needs much more space to store its classi�ers


since each of the classi�ers stores the corresponding training examples. CN2 was


included in our studies later when it became available. Earlier experiments focused


on ID3 and CART because they are the more popular learning algorithms. In fact,


they were used in almost every experiment.


Data for splice junctions and secondary structures were used in earlier experi-


ments. Data for protein coding regions were later included when it became available.


Since various learning algorithms are not suitable to generate accurate classi�ers for


the secondary structure data (as experienced by other researchers), the data set was


not used in later experiments. The arti�cial data set was added to our study for


large-scale studies when we could not obtain a real-world data set large enough for
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our scalability experiments.


De�nitive results can only be obtained from very large-scale experiments, which


are beyond the scope of this study. Our results are limited to the di�erent learning


algorithms and tasks employed in our experiments. However, each set of experiments


was performed on quite a number of di�erent combinations of learning tasks, learning


algorithms, and other parameters. That is, our results do provide some degree of


generality.
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Chapter 5


One-level Meta-Learning on


Partitioned Data


As we discussed previously, our approach to solve the scaling problem is to partition


the data set into smaller subsets, apply learning algorithms to each subset, followed


by a meta-learning phase that combines the learned results. In this study we focus on


using the same learning algorithm on each of the subsets as well as for generating the


integrated (meta-learned) structures. Figure 5.1 depicts this process with the same


learning algorithm L generating classi�ers C


1


through C


n


from training data subsets


T


1


through T


n


. Multistrategy meta-learning (using multiple learning algorithms) will


be discussed in Chapter 10. Each subset is sized to �t into main memory. In ad-


dition to alleviating the memory restriction problem, we can speed up the process


by running the learning programs in parallel on multiple processors. However, in


such schemes one may presume that accuracy will su�er; i.e., combining results for


separate classi�ers may not be as accurate as learning from the entire data set. Thus,


it is important to determine which schemes for combining results have minimal im-


pact on the quality of the �nal result. Furthermore, we note that the partitioned


data approach reported here is di�erent from much of the similar work which com-


bines multiple classi�ers trained from the \entire" data set for accuracy improvement
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Meta-Learning


C1 C2 C3 Cn


T1 T2 T3 Tn


Training


Data


L L L L


...


Figure 5.1: Meta-learning from partitioned data.


(sometimes called \boosting" (Schapire, 1990)).


In this chapter we study di�erent techniques for integrating predictions generated


by a set of base classi�ers, each of which is computed by a learning algorithm applied


to a distinct partitioned data subset. Common voting and statistical techniques are


evaluated. Techniques described in Section 2.1.2 that are included in this study are:


� Voting


� Weighted Voting


� Weighted Majority (WM) (Littlestone & Warmuth, 1989)


� Weighted Majority-Limit (WML) (Littlestone & Warmuth, 1989)


� Weighted Majority-Random (WMR) (Littlestone & Warmuth, 1989)
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� Bayesian Belief (Xu et al., 1992)


These familiar techniques are empirically compared to our proposed meta-learning


techniques (arbiter, class-combiner, and class-attribute-combiner) described in Chap-


ter 3. All the meta-learning strategies discussed so far have only one level of meta-


learning to create the integrating structures. Hence, we characterize these strategies


as one-level meta-learning methods (Chan & Stolfo, 1995a).


5.1 Issues


Before we compare the other techniques in the literature with ours, several issues


have to be addressed and are discussed as follows.


Number and size of training subsets: The number of initially partitioned train-


ing data subsets largely depends on the number of processors available, the inherent


distribution of data across multiple platforms (some possibly mobile and periodically


disconnected), the total size of the available training set, and the complexity of the


learning algorithms. The available resources at each processing sites naturally de�nes


an upper bound on the size of each subset. If the number of subsets exceeds the


number of processors available, each processor can simulate the work of multiple ones


by serially executing the task of each processor. Another consideration is the desired


accuracy we wish to achieve. As we will see in our experimental results, there may be


a tradeo� between the number of subsets and the �nal accuracy of a meta-learning


system. Moreover, the size of each subset cannot be too small because su�cient data


must be available for each learning process to produce an e�ective base classi�er in


the initial stage of training.


Distribution of examples, disjoint or replicated: Since a totally random distri-


bution of examples may result in the absence of one or more classes in the partitioned
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data subsets, the classi�ers formed from those subsets will be ignorant about those


classes. That is, more \disagreements" may occur between classi�ers, which leads to


larger arbiter training sets. Maintaining the class distribution in each subset as in the


total available training set may alleviate this problem. The classi�ers generated from


these subsets may be closer in behavior to the global classi�er produced from the


entire training set than those trained on random class distributions. In addition, dis-


joint data subsets promote the maximum amount of parallelism and hence are more


desirable. Yet partial replication (Chan & Stolfo, 1996a) may mitigate the problem


of extreme bias potentially introduced by disjoint data.


Strategies: There are indeed many strategies for arbitration and combining as


detailed here, each impacting the size of training data required to implement them


e�ectively. Several experiments were run to determine the relative e�ectiveness of


some of these strategies. They vary in the type of information or biased distributions


of training data the arbiter is allowed to see. Thus far, the meta-learning strategies


we discussed are applied solely to a single collection of base classi�ers. (These are


called \one-level" meta-learners.) We also studied building hierarchical structures


in a recursive fashion, i.e., meta-learning arbiters and combiners from a collection of


\lower level" arbiters and combiners. These hierarchical classi�ers attempt to improve


the prediction accuracy that may be achieved by one-level meta-learned classi�ers and


are described in Chapter 6.


5.2 Experiments and Results


Di�erent combinations of two learning algorithms (ID3 and CART) and two data


sets (Splice Junctions and Protein Coding Regions) were explored in our experiments.


The experimental procedures in Section 4.3 were followed and results are summarized


in the following sections.
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5.2.1 Voting, statistical, and meta-learning techniques


We �rst consider whether meta-learning performs as well as the common voting


and Bayesian techniques reported in the literature. In our experiments, we varied the


number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint


but with proportional distribution of examples of each class. The size of a valida-


tion set used for generating the integrating structures (weights/probabilities/arbiters/


combiners) is twice the size of the underlying training set for a base classi�er. (Since


the arbiter approach selects a subset of the validation set, a larger validation set


size than the base set size provides more training examples at the meta-level.) The


prediction accuracy on a separate test set is our primary comparison measure. The


di�erent strategies were run on the two data sets with the two learning algorithms.


The results from the splice junctions data set are plotted in Figure 5.2 and the protein


coding regions data set in Figure 5.3. In each �gure the �rst row of graphs depicts


results from the di�erent integrating techniques using ID3 and the second row using


CART. The accuracy for the global classi�er is plotted as \one subset," meaning the


learning algorithm was applied to the entire training set to produce the baseline ac-


curacy results for comparison. The average accuracy of the base classi�ers for each


number of subsets is also plotted, labeled as \avg-base." By way of comparison, the


average accuracy of the most accurate base classi�ers is plotted as \max-base." The


plotted accuracy is the average of 10-fold cross-validation runs.


Experiments run over the splice junctions data set indicate that all the methods


sustain a drop in accuracy when the number of subsets increases (i.e., the size of


each distinct subset of training data decreases). For either algorithm, the class-


combiner and class-attribute-combiner schemes exhibit higher accuracy than all the


other techniques. The di�erence is statistically signi�cant for ID3 with most subset


sizes and for CART with a few subset sizes. At 64 subsets, with � 45 examples each,


while the other methods sustain signi�cantly more than 10% in accuracy degradation,


the combiner methods incur around 10% or less decrease in accuracy. The weighted-


majority-random method performs the worst and signi�cantly worse than the others.
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Figure 5.2: Accuracy for the one-level integrating techniques in the splice junctions


domain.
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Figure 5.3: Accuracy for the one-level integrating techniques in the protein coding


regions domain.
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For the protein coding regions data set, only the arbiter scheme can maintain,


and sometimes exceeds, the original accuracy level. Most other techniques su�er a


signi�cant drop in accuracy for 2 subsets and climb back to the original accuracy level


when the number of subsets increases. Again, the weighted-majority-random method


performs much worse than the others.


In general all the methods, except the weighted-majority-random scheme, consid-


erably outperform the average base classi�er (\avg-base"). The gap is statistically


signi�cant. Furthermore, they outperform the average most accurate base classi�er


(\max-base") except with CART in the splice junction domain. That is, random sam-


pling of the training data is de�nitely not su�cient to generate accurate classi�ers in


the two data sets we studied. Hence, combining techniques are necessary.


The results of our experiments indicate that the meta-learning strategies dominate


over the weighted voting techniques across domains and learners used in this study.


However, the meta-learning techniques do not always outperform the weighted voting


schemes. In the SJ domain, the combiner techniques are more favorable while in the


PCR domain the arbiter technique is. It is not clear under what circumstances a par-


ticular meta-learning strategy will perform better. Additional studies are underway


in an attempt to gain an understanding of these circumstances.


As we observe in the SJ domain, none of the schemes can maintain the baseline


accuracy when the number of subsets increases. Next, we investigate the relaxation


of the disjoint subset property.


5.2.2 Partitioned data with replication


In our previous set of experiments the accuracy level of the global classi�er cannot


always be achieved. One possible problem is the lack of su�cient data in each disjoint


subset. To solve this problem, we allow each data partition to have some amount of


replicated data from other partitions. We prepare each learning task by generating
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Figure 5.4: Accuracy for the class-combiner scheme trained over varying amounts of


replicated data. � ranges from 0% to 30%.
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Figure 5.5: Accuracy for the class-attribute-combiner scheme trained over varying


amounts of replicated data. � ranges from 0% to 30%.







64


80


85


90


95


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


Splice Junctions (ID3)


arbiter
arbiter (5%)


arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)


80


85


90


95


1 2 4 8 16 32 64
A


c
c
u


r
a


c
y
 (


%
)


Number of subsets


Splice Junctions (CART)


arbiter
arbiter (5%)


arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)


60


65


70


75


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


Protein Coding Regions (ID3)


arbiter
arbiter (5%)


arbiter (10%)
arbiter (15%)
arbiter (20%)


60


65


70


75


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


Protein Coding Regions (CART)


arbiter
arbiter (5%)


arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)


Figure 5.6: Accuracy for the arbiter scheme trained over varying amounts of replicated


data. � ranges from 0% to 30%.
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Figure 5.7: Accuracy for the bayesian-belief scheme trained over varying amounts of


replicated data. � ranges from 0% to 30%.
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subsets of training data for the base classi�ers according to the following generative


scheme (Chan & Stolfo, 1996a):


1. Starting with N disjoint subsets, randomly choose from any of these sets one


example X, distinct from any other previously chosen in a prior iteration.


2. Randomly choose a number r from 1:::(N � 1), i.e. the number of times this


example will be replicated.


3. Randomly choose r subsets (not including the subset from which X was drawn)


and assign X to those r subsets.


4. Repeat this process until the size of the largest (replicated) subset is reached to


some maximum (as a percentage, �, of the original training subset size).


In the experiments reported here, � ranged from 0% to 30%. Again, we used


di�erent combinations of two learning algorithms (ID3 and CART) and two learning


tasks (Splice Junctions and Protein Coding Regions). Each set of incremental exper-


imental runs, however, chooses an entirely new distribution of replicated values. No


attempt was made to maintain a prior distribution of training data when increment-


ing the amount of replication. This \shot gun" approach provides us with some sense


of a \random learning problem" that we may be faced with in real world scenarios


where replication of information is likely inevitable or purposefully orchestrated.


The graphs in Figures 5.4 through 5.7 plot the results for the class-combiner, class-


attribute-combiner, arbiter, and bayesian-belief schemes. The results in all cases are


conclusive: replication essentially buys nothing! In each case no measurable improve-


ment in predictive accuracy is seen no matter which learning algorithm or combining


scheme is used.


These negative results for replication are in fact positive from the perspective of


computational performance! One may presume that applying a number of instances


of a learning algorithm to disjoint training data results in a set of base classi�ers each
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biased towards its own partition of data. Combining two or more such biased base


classi�ers by meta-learning attempts to share knowledge among the base classi�ers


and to reduce each individual's bias. Replication of training data is an alternative


attempt to reduce this bias. Common or shared information replicated across subsets


of training data at the onset of learning attempts to provide each learned base classi�er


with a \common view" of the learning task. The results here show that meta-learning


from disjoint training data does an e�ective job of sharing knowledge among separate


classi�ers anyway. In fact, the overhead that may be attributed to replicated data


(since the same data is being treated multiple times by separate learning processes)


may be comfortably avoided, i.e. meta-learning on purely disjoint data seems to


achieve good performance, at perhaps optimal speeds due to optimal data reduction.


These rather surprising results are of course limited to the learning algorithms and


data sets used in this study. Further support for this behavior is found in experimental


results reported in Section 7.3.


5.3 Summary


We systematically compare schemes reported in the literature to our proposed


meta-learning techniques and demonstrate empirically that the arbiter scheme pro-


duces more accurate trained classi�ers than the other schemes. However, we observe


that our techniques (and others) cannot always maintain the baseline accuracy (of


the global classi�ers) when the number of data subsets increases. Moreover, partially


replicating some of the data from other subsets in each subset does not alleviate


the problem. As a result, from a multiprocessing perspective, each concurrent base


learning process need not consume more data than necessary.


All the techniques presented so far are one-level methods. They only perform


one level of processing to generate the integrating structures. In the next chapter we


consider the behavior of hierarchical meta-learning structures.
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Chapter 6


Hierarchical Meta-Learning on


Partitioned Data


In this chapter we study more sophisticated techniques for combining predictions


generated by a set of base classi�ers, each of which is computed by a learning algorithm


applied to a distinct data subset. In the previous chapter we demonstrate that our


meta-learning techniques outperform the voting-based and statistical techniques in


terms of prediction accuracy. However, the one-level techniques cannot always achieve


the same level of accuracy as the global classi�er. Here we describe our hierarchical


(multi-level) meta-learning methods called arbiter tree and combiner tree (Chan &


Stolfo, 1993d; Chan & Stolfo, 1995b). We empirically compare these two schemes


and discuss the relative merits of each scheme. Surprisingly, we have observed that


combiner trees e�ectively boost the accuracy of the single global classi�er that is


trained on the entire data set, as well as the constituent base classi�ers.


We �rst present our hierarchical meta-learning methods in Sections 6.1 and 6.2.


Section 6.3 examines some related work. Evaluation of our schemes based on experi-


mental results are discussed in Sections 6.4 and 6.5.
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Figure 6.1: Sample arbiter tree.


6.1 Arbiter Tree


An arbiter tree is a hierarchical structure composed of arbiters that are computed


in a bottom-up, binary-tree fashion. (The choice of a binary tree is to simplify our


discussion. Higher order trees are also studied.) An arbiter is initially learned from


the output of a pair of base classi�ers and recursively, an arbiter is learned from


the output of two arbiters. For k subsets and k classi�ers, there are log


2


(k) levels


generated.


When an instance is classi�ed by the arbiter tree, predictions ow from the leaves


to the root. First, each of the leaf classi�ers produces an initial classi�cation of the


test instance. From a pair of predictions and the parent arbiter's prediction, another


prediction is produced by an arbitration rule. This process is applied at each level


until a �nal prediction is produced at the root of the tree. We now proceed to describe


how to build an arbiter tree in detail.


Suppose there are initially four training data subsets (T


1


� T


4


), processed by


some learning algorithm, L. First, four classi�ers (C


1


� C


4


) are generated from four


instances of L applied to T


1


� T


4


. The union of the subsets T


1


and T


2


, U


12


, is


then classi�ed by C


1


and C


2


, which generates two sets of predictions, P


1


and P


2


. A


selection rule as detailed earlier generates a training set (T


12


) for the arbiter from the


predictions P


1


and P


2


, and the subset U


12


. The arbiter (A


12


) is then trained from
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the set T


12


by algorithm L. Similarly, arbiter A


34


is generated from T


3


and T


4


and


hence all the �rst-level arbiters are produced. Then U


14


is formed by the union of


subsets T


1


through T


4


and is classi�ed by the arbiter trees rooted with A


12


and A


34


.


Similarly, T


14


and A


14


(root arbiter) are generated and the arbiter tree is complete.


The resultant tree is depicted in Figure 6.1.


This process can be generalized to arbiter trees of higher order. The higher the


order is, the shallower the tree becomes. In a parallel environment this translates


to faster execution. However, there will logically be an increase in the number of


disagreements (and hence data items selected for training) and higher communication


overhead at each level in the tree due to the arbitration of many more predictions at


a single arbitration site.


We note with interest that in a distributed computing environment, the union sets


need not be formed at one processing site. Rather, we can classify each subset by


transmitting each learned classi�er to each site which is used to scan the local data


set that is labeled with the classi�er's predictions. Each classi�er is a computational


object far smaller in size than the training sets from which they are derived. For


example, in a network computing environment each classi�er may be encapsulated as


an \agent" that is communicated among sites.


6.1.1 Discussion


Since an arbiter training set is constructed from the results of the arbiter's two


subtrees (more subtrees in higher order arbiter trees), each node in the arbiter tree is


a synchronization point. That is, arbitrary subtrees can be run asynchronously with


no communication until a pair of subtrees join at the same parent. The time to learn


an arbiter tree is proportional to the longest path in the tree, which is bounded by the


path with the most training data. To reduce the complexity of learning arbiter trees,


the size of the training sets for arbiters is purposefully restricted to be no larger than


the training sets used to compute base classi�ers. Thus, the parallel processing time
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at each level of the tree is relatively equal throughout the tree. However, in several of


our experiments, this restriction on the allowable size of the training sets for arbiters


was removed to explore two key issues: whether higher accuracy could be achieved


by providing more information for each arbiter, and what might be the number of


disagreements so generated, and hence the size of training data that would naturally


be formed by our selection rules.


Notice that the maximum training set size doubles as one moves up one level in


the tree and is equal to the size of the entire training set when the root is reached.


Obviously, we do not desire forming a training set at the root as large as the original


training set. Indeed, meta-learning in this case is of no use, and at great expense.


Therefore, we desire a means to control the size of the arbiter training sets as we


move up the tree without a signi�cant reduction in accuracy of the �nal result.


Since the training sets selected at an arbiter node depends on the classi�cation


results from the two descendant subtrees during run time, the con�guration of an


arbiter tree cannot be optimized during compile time. The size of these sets (i.e., the


number of disagreements) is not known until the base classi�ers are �rst computed.


However, we may optimize the con�guration of a tree during run time by clever pairing


of classi�ers. The con�guration of the resulting tree depends upon the manner in


which the classi�ers and arbiters are paired and ordered at each level. Our goal here


is to devise a pairing strategy that favors smaller training sets near the root.


One strategy we may consider is to pair the classi�ers and arbiters at each level


that would produce the fewest disagreements and hence the smallest arbiter training


sets (denoted as min-size). Another possible strategy is to pair those classi�ers that


produce the highest number of disagreements (max-size). At �rst glance the �rst


strategy would seem to be more attractive. However, if the disagreements between


classi�ers are not resolved at the bottom of the tree, the data that are not commonly


classi�ed will surface near the root of the tree, which is also where there are fewer


choices of pairings of classi�ers to control the growth of the training sets. Hence, it
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may be advantageous to resolve the disagreements near the leaves producing fewer


disagreements near the root. That is, it may be more desirable to pair classi�ers and


arbiters that produce the largest sets lower in the tree, which is perhaps counterin-


tuitive. These sophisticated pairing schemes might decrease the arbiter training set


size, but they might also increase the communication overhead in a distributed com-


puting environment. They also create synchronization points at each level, instead of


at each node when no special pairings are performed. A compromise strategy might


be to perform pairing only at the leaf level. This indirectly a�ects the subsequent


training sets at each level, but synchronization occurs only at each node and not at


each level.


6.2 Combiner Tree


The way combiner trees are learned and used is very similar to arbiter trees. A


combiner tree is trained bottom-up. A combiner, instead of an arbiter, is computed


at each non-leaf node of a combiner tree. To simplify our discussion here, we describe


how a binary combiner tree is used and trained. (Our experiments reported later


included higher order trees as well.)


To classify an instance, each of the leaf classi�ers produces an initial prediction.


From a pair of predictions, the composition rule is used to generate a meta-level


instance, which is then classi�ed by the parent combiner. This process is applied at


each level until a �nal prediction is produced at the root of the tree.


Another signi�cant departure from arbiter trees is that for combiner trees, a ran-


dom set of examples (a validation set) is selected at each level of learning in generating


a combiner tree instead of choosing a set from the union of the underlying data subsets.


Before learning commences, a random set of examples is picked from the underlying


subsets for each level of the combiner tree. To ensure e�cient processing, the size of


these random training sets is limited to the size of the initial subsets used to train
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base classi�ers. Base classi�ers are learned at the leaf level from disjoint training


data. Each pair of base classi�ers produces predictions for the random training set at


the �rst level. Following the composition rule, a meta-level training set is generated


from the predictions and training examples. A combiner is then learned from the


meta-level training set by applying a learning algorithm. This process is repeated at


each level until the root combiner is created. Again, in a network computing envi-


ronment classi�ers may be represented as remote agent processes to distribute the


meta-learning process.


The arbiter and combiner tree strategies have di�erent impact on e�ciency. The


arbiter tree approach we have implemented requires the classi�cation of, possibly, the


entire data set at the root level. Signi�cant speed up might not be easily obtained.


The combiner tree approach, however, always classi�es a set of data that is bounded


by the size of a relatively small validation set. Therefore, combiner trees can be


generated more e�ciently than arbiter trees. In a later section, we also examine


arbiter training sets of bounded size. Nevertheless, it remains to be seen what impact


on accuracy either scheme may exhibit.


6.3 Related Work


Brodley (1995) and Tcheng et al. (1989) also build trees with a classi�er in each


of the tree nodes. Their top-down tree building (root to leaves) approach is the same


as the one used in common decision tree algorithms like ID3 (Quinlan, 1986). Like


training the tree, classi�cation of instances using the tree is also performed in a top-


down fashion. On the contrary, our arbiter and combiner trees are built bottom-up


(leaves to root) and classi�cation of instances is performed bottom-up as well. Their


approach in training is to recursively partition the space of examples and heuristically


choose a learning algorithm to generate a classi�er from each subspace. That is, the


system has to initially process the entire set of examples to generate the classi�er at


the root node. Their goal is to build a hybrid classi�er in a tree structure to improve
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accuracy (not training e�ciency). On the other hand, our goal is to improve training


e�ciency and the tree structure is built to integrate base classi�ers learned from


data subsets at the leaf level. The entire set of examples is never used to generate a


classi�er that is part of the �nal tree structure|only subsets are used.


A number of experiments were performed on the arbiter tree and combiner tree


strategies. The experiments and their results for the arbiter tree strategy are discussed


next, followed by those for the combiner tree strategy.


6.4 Experimental Results for Arbiter Tree


We ran a series of experiments to test our strategies based on the splice junction


prediction task described in Section 4.2.1. Four di�erent learning algorithms (ID3,


CART,WPEBLS, and BAYES) were used to show that our strategies are applicable to


diverse algorithms. The prediction accuracy on the test set is our primary comparison


measure. All the empirical results presented in this paper are averages from �ve-fold


cross-validation runs (except in the experiments for random partitioning, which is


further discussed in Section 6.4.4). That is, the entire training set is divided into


�ve partitions, each partition takes turn in being the test set and the remaining


partitions constitute the training set. We varied the number of subsets from 2 to 64


and the equal-size subsets were disjoint with proportional partitioning of classes. The


accuracy for the global classi�er as \one subset."


Here we �rst compare the di�erent arbiter schemes. Then we examine the results


from bounded arbiter training sets and arbiter trees of di�erent orders (from binary


trees up to 8-ary trees). This is followed by our results achieved in the case that


arbiter training sets are unbounded under di�erent pairing schemes.
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Figure 6.2: Results on di�erent arbiter schemes.
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6.4.1 Bounded arbiter training sets


Two arbiter schemes (di�erent-arbiter and di�erent-incorrect-arbiter) were run on


the splice junction data set with the four learning algorithms. In addition, we applied


a simple voting scheme on the leaf classi�ers for comparison.


In Figure 6.2, for the two arbiter schemes, we observe that the accuracy slightly


decreased when the number of subsets increased. With 64 subsets, most of the learners


exhibited at most an 8% drop in accuracy, with the exception of BAYES. The sudden


drop in accuracy in BAYES was likely due to the lack of information in the training


data subsets. In the splice junction data set there are only � 40 training examples


in each of the 64 subsets. If we look at the case with 32 subsets (� 80 examples


each), all the learners sustained a drop in accuracy of at most 3%. This shows


that the data subset size cannot be too small. The voting scheme performed poorly.


Furthermore, the two arbiter schemes had comparable performance and since the


di�erent-arbiter scheme produces fewer examples in the arbiter training sets, it is the


preferred scheme. This scheme is also our default scheme{when a particular arbiter


scheme is not speci�ed, the di�erent-arbiter scheme is assumed.


6.4.2 Order of arbiter trees and training set size limit


We performed experiments on the splice junctions and protein coding regions


data to evaluate the arbiter trees of di�erent orders. Again, we varied the number


of subsets from 2 to 64 and measured the prediction accuracy on a disjoint test set.


The plotted results in Figure 6.3 are averages from 10-fold cross-validation runs.


We varied the order of the arbiter trees from two to eight. For the splice junction


data set the plots display a drop in accuracy when the number of subsets increases.


Also, the higher order trees are generally less accurate than the lower ones. However,


in the protein coding region data set experiments the accuracy is maintained, or


exceeded in some circumstances, regardless of the order of the trees.
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Figure 6.3: Accuracy for di�erent orders of arbiter trees and limits for training set


size.
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Recall that at each tree level, the size of the arbiter training set is �xed to the size of


a data subset used in training the base classi�ers. If we relax the restriction on the size


of the data set for training an arbiter, we might expect an improvement in accuracy


at the expense in processing time. To test this hypothesis, a set of experiments


was performed to double the maximum training set size for the arbiters. As we


observe in Figure 6.3, by doubling the arbiter training set size, the original accuracy


is roughly maintained by the binary trees in the splice junction domain, regardless


of the learner. For 4-ary and 8-ary trees, the accuracy results show no signi�cant


improvement. However, this multi-level arbiter tree approach does demonstrate an


accuracy improvement over the one-level techniques, which generally cannot maintain


the accuracy obtained from the whole data set in our experiments.


6.4.3 Unbounded arbiter training sets


If we further relax the restriction on the size of the data set for training an arbiter,


we might expect additional improvement in accuracy, but decline in execution speed.


Again, the di�erent sizes are constant multiples of the size of a data subset. We


evaluated sizes that doubles and triples the subset size. In one set of experiments


the size limit was lifted. The results plotted in Figure 6.4 were obtained from using


the di�erent-arbiter scheme on the splice junction data using four di�erent learning


algorithms.


As we expected, by increasing the maximum arbiter training set size, higher ac-


curacy can be achieved. A signi�cant improvement is observed when the maximum


size is just two times the size of the original subsets. As discussed in the previous


set of experiment, doubling the set size roughly maintains the accuracy of the global


classi�er (except in for the BAYES algorithm with 64 subsets). Further increase in


size limit yields smaller improvement. When the maximum size is unlimited (i.e., al-


lowing each arbiter to be trained on the entire union set), the accuracy is the highest.


In fact, we observed an increase of 2% in accuracy for ID3 with 64 subsets.







79


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


ID3


Max x1
Max x2
Max x3


Unlimited


80


85


90


95


100


1 2 4 8 16 32 64
A


c
c
u


r
a


c
y
 (


%
)


Number of subsets


CART


Max x1
Max x2
Max x3


Unlimited


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


WPEBLS


Max x1
Max x2
Max x3


Unlimited


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


BAYES


Max x1
Max x2
Max x3


Unlimited


Figure 6.4: Results on di�erent maximum arbiter training set sizes.
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Figure 6.5: Largest set sizes with unlimited maximum arbiter training set size.


Next, we investigate the size and location of the largest arbiter training set in


the entire arbiter tree. (Recall, an arbiter training set is produced by a selection


rule.) This gives us a notion of the memory requirement at any processing site and


the location of the main potential bottleneck during meta-learning. Our empirical


results presented in Figure 6.5 indicate that the largest arbiter training set size was


never signi�cantly greater than 10% of the total training set (except for BAYES with


64 subsets) and always happened at the root level, independent of the number of


subsets at the leaves (that was greater than four). (Note that when the number


of subsets is two and four, the training set sizes are 50% and 25%, respectively, of


the original set at the leaves and become the largest in the tree.) This implies that


the bottleneck was in processing around 10% of the entire training data set at the


root level. This also implies that our arbiter tree strategy required only around 10%


of the memory used by the serial case at any single processing site. This has a


signi�cant impact on scalability. Suppose a single processor is limited in memory and
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able to solve a learning task of size n. Our experiments suggest that meta-learning


allows that single processor to solve a problem of size 10n. (Strategies for reducing


the largest arbiter training set size even further are discussed in the next section.)


Recall that the accuracy level of this strategy is roughly the same as the serial case.


Thus, the arbiter tree strategy (with no restrictions on the arbiter training set size)


can perform the same job as the serial case with less time and memory without


parallelizing the learning algorithms. With restricted training set sizes, our strategies


can theoretically scale to arbitrarily large problems by setting the size restriction to


the memory capacity of a single processor and using more processors.


In summary, when the arbiter training set size is bounded to the size of each initial


training data subset, a small degradation in prediction accuracy (at most 3%) was


observed with 32 subsets. A further increase in the number of subsets (64 subsets)


produced a much larger decline in accuracy. This indicates that each of the subsets


cannot be too small in the training of the initial classi�ers. Accuracy was preserved


when the bound on the size of the arbiter training set was lifted. However, we


observe that the size of the arbiter training sets was limited to about 10% of the


entire training set in the splice junction domain. Recall that the arbiter training


sets consist of \disagreed" instances, hence, classi�ers with higher error rates and/or


signi�cantly diverse behaviors will have a size limit larger than 10%.


6.4.4 Reducing the largest arbiter training set size


As mentioned in the previous section, we discovered that our scheme required at


most 10% of the entire training set at any processing site to maintain the same predic-


tion accuracy as in the global classi�er case for the splice junction data. However, the


percentage is dependent on several factors: the prediction accuracy of the algorithm


on the given data set, the partitioning of the data in the leaf subsets, and the pairing


of learned classi�ers and arbiters at each level.
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Class partitioning


If the prediction accuracy is high, the arbiter training sets will be small because


the predictions will usually be correct and few disagreements will occur. In our


earlier experiments reported in (Chan & Stolfo, 1993d), the partitioning of data in


the subsets was random and later we discovered that half of the �nal arbiter tree was


trained on examples with only two of the three classes. That is, half of the tree was


not aware of the third class appearing in the entire training data. We postulate that if


the class partitioning in the subsets is proportional, the leaf classi�ers and arbiters in


the arbiter tree will be more accurate and hence the training sets for the arbiter will


be smaller. Indeed, results from experiments reported in here signi�cantly lower the


largest size observed from 30% to 10%. We ran additional experiments on training


sets with a more randomized partitioning scheme. A randomly chosen training set is


used in each run and the results averaged from �ve runs are presented in Figure 6.6.


As one might expect, a \truly randomized" partitioning scheme approximates our


proportional partitioning scheme and therefore the accuracy obtained using the two


schemes should be roughly the same. Indeed the accuracy curves in Figure 6.6 are


very close.


Classi�er Pairing


Some experiments were performed on the two pairing strategies applied only at


the leaf level and the results are shown in Figure 6.7. All these experiments used the


di�erent-arbiter scheme for meta-learning arbiters. Di�erent pairing schemes were


used with proportional partitioning and \non-random" partitioning of classes. In non-


random partitioning, examples are not proportionally partitioned according to their


classes and each partitioned subset is usually dominated by examples of a single class.


In addition, with the no (or \neighbor") pairing schemes, a class might be absent from


half of the arbiter tree. The pairing schemes with proportional partitioning did not


a�ect the arbiter training sets sizes signi�cantly and are not shown here. However,







83


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


ID3


Prop. part., different
Prop. part., different-incorrect


Random part., different
Random part., different-incorrect


80


85


90


95


100


1 2 4 8 16 32 64
A


c
c
u


r
a


c
y
 (


%
)


Number of subsets


CART


Prop. part., different
Prop. part., different-incorrect


Random part., different
Random part., different-incorrect


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


WPEBLS


Prop. part., different
Prop. part., different-incorrect


Random part., different
Random part., different-incorrect


80


85


90


95


100


1 2 4 8 16 32 64


A
c
c
u


r
a


c
y
 (


%
)


Number of subsets


BAYES


Prop. part., different
Prop. part., different-incorrect


Random part., different
Random part., different-incorrect


Figure 6.6: Accuracy with di�erent class partitioning schemes.
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Figure 6.7: Arbiter training set size with di�erent class partitioning and pairing


strategies.
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as shown in Figure 6.7, with non-random partitioning, both max-size and min-size


pairing scheme signi�cantly reduce the training set sizes in our experiments. Between


the two schemes, max-size pairing empirically exhibited greater reduction in set sizes


than min-size pairing. The largest arbiter training set sizes were around 10% of the


original data when the number of subsets was larger than eight (except for BAYES


with 64 subsets). (BAYES seemed to be not able to gather enough statistics on small


subsets, which can also be observed from results presented earlier). Note that when


the number of subsets is eight or fewer, the training sets for the leaf classi�ers are


larger than 10% of the original data set and become the largest in the arbiter tree.


As mentioned before, the two pairing schemes did not a�ect the sizes of the arbiter


training sets for the proportional partitioning. One possible explanation is that the


proportional partitioning scheme produced the smallest training sets possible and the


pairing schemes did not matter. In summary, proportional class partitioning tends


to produce the smallest training sets and the max-size pairing scheme can reduce the


set sizes in partitioning schemes that do not maintain the proportional partitioning


of classes.


In our discussion so far, we have assumed that the arbiter training set is unbounded


in order to determine how the pairing strategies may behave in the case where the


training set size is bounded. The max-size strategy aims at resolving conicts near


the leaves where the maximum possible arbiter training set size is small (the union


of the two subtrees) leaving fewer conicts near the root. If the training set size is


bounded at each node, a random sample (with the bounded size) of a relatively small


set near the root would be representative of the set chosen when the size is restricted.


6.5 Experimental Results for Combiner Tree


Here we consider the accuracy of combiner trees. In our experiments, we varied the


number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint


but with proportional distribution of examples of each class. We also varied the
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Figure 6.8: Accuracy for the class-combiner tree techniques.
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Figure 6.9: Accuracy for the class-attribute-combiner tree techniques.
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order of the combiner trees from two to eight. Di�erent combinations of two learning


algorithms (ID3 and CART) and two learning tasks (Splice Junctions and Protein


Coding Regions) were employed. The results of our experiments on the combiner


trees (under two di�erent training strategies) are displayed in Figure 6.8 and 6.9.


The baseline accuracy for comparative evaluation is plotted as \one subset," meaning


the learning algorithms were applied to the entire training set in-toto to produce the


global classi�er. The plots are derived from the average of 10-fold cross-validation


runs.


Results from the class-combiner tree strategy displayed in Figure 6.8 show a drop


in accuracy in both data sets in most cases, compared to the global classi�er, when


the number of subsets increases. The drop varies from 3% to 15%. (The percentage


decrease in the amount of data in each training subset is far larger!) The binary


combiner trees are less accurate than higher order trees in this case. This might


be due to the lack of information for �nding correlations among only two sets of


predictions. As in the experiments for arbiter trees, we doubled the size of meta-level


training sets. Statistically signi�cant improvements were observed in the SJ data set


with CART as the learner.


In another experiment using the class-attribute-combiner tree strategy, Figure 6.9


suggests that the binary trees appear to maintain the accuracy of the global classi�er


except in the splice junctions data set with CART as the learner. Higher-order trees


were generally less accurate.


We note with interest that doubling the size of the training sets for combiners


improved accuracy signi�cantly. For the protein coding regions data set, the accu-


racy of the binary trees was consistently higher than that from the global classi�er;


i.e., this meta-learning strategy has demonstrated a means of boosting accuracy of a


single classi�er trained on the entire data set. The improvement is statistically sig-


ni�cant. This is a particularly interesting �nding since the information loss due to


data partitioning was more than recovered by the combiner tree. Thus, this scheme
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demonstrates a means of integrating the collective knowledge distributed among the


individual base classi�ers.


6.6 Summary


We detailed two hierarchical meta-learning strategies: arbiter tree and combiner


tree. Empirical results from bounded arbiter training sets indicate that the strategies


are viable in speeding up learning algorithms with a small degradation in prediction


accuracy. In addition, the algorithms can scale to arbitrarily large problems by setting


the size limit of distinct training data subsets to the memory capacity of an individual


processor and increasing the number of processors. When the arbiter training sets are


unbounded, the strategies can preserve prediction accuracy with less training time


and required memory than the serial version. Schemes for reducing the size of arbiter


training sets were also discussed. In particular, proportional partitioning of classes in


the training subsets and a particular classi�er pairing schemes have been empirically


observed to reduce the size of arbiter training sets.


Also, the class-combiner tree scheme does not perform as well in maintaining


or boosting accuracy as the arbiter or class-attribute-combiner tree scheme. Rela-


tively less information in the meta-level training sets is likely the contributing factor.


Higher order trees are usually less accurate. This is probably due to the decrease in


opportunities for correcting predictions when the height of the tree decreases. The


relatively poor performance of one-level (non-tree) meta-learning techniques, in the


previous chapter, compared to the hierarchical (tree) strategies also provides support


for this observation. Increasing the size of the meta-level training sets improves the


accuracy of the learned trees, a likely result from the simple observation that more


data are available for training. The experimental data convincingly demonstrate that


doubling the training set size of the meta-level partitions is su�cient to maintain the


same level of accuracy as the global classi�er, and indeed may boost accuracy as well.
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The reduced memory requirement and usage of multiple processors make our


strategies scalable to much larger problems, which will inevitably arise from the Hu-


man Genome Project and many other e�orts. Moreover, without the bene�t of multi-


ple processors, our strategies can still be used to handle problems larger than possible


on a single processor. Thus, by using meta-learning techniques, main-memory based


learning algorithms can scale to larger problems with or without the usage of multiple


processors.
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Chapter 7


Local Meta-Learning with


Imported Remote Classi�ers


Frequently, local databases represent only a partial view of the all the data available.


For example, in detecting credit card fraud, a bank has information on its credit card


transactions, from which it can learn fraud patterns. However, the patterns learned


usually don't reect all the fraud patterns found in transactions at other banks. That


is, a bank might not know a fraud pattern that is prevalent at other banks.


One approach to solving this problem is to merge transactions from all databases


into one database and locate all the fraud patterns. It is not uncommon that a


bank has millions of credit card transactions; pooling transactions from all banks will


create a database of astronomical dimension. Learning fraud patterns from millions


of transactions already creates e�ciency problems, processing transactions from all


banks will probably be infeasible. In addition, transactions at one bank are usu-


ally proprietary because sharing them with other banks means giving away valuable


customer purchasing information, which can be used to generate future pro�ts. Ex-


changing transactions might also violate customers' privacy.


Another solution is to share the fraud patterns instead of the transaction data.
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This approach bene�ts from a signi�cant reduction of information needed to be


merged and processed. Also, proprietary customer transaction information need not


be shared. You might now ask that if the data are proprietary, the fraud patterns


can also be proprietary. If the patterns are encoded in programs, the executables can


be treated as \black boxes." That is, by sharing the black boxes, one doesn't have to


worry about giving away valuable and proprietary information. The next question is


how we can merge the black boxes.


In this chapter we explore the use of meta-learning in improving the accuracy


performance of local learned models by merging them with ones imported from remote


sites (Chan & Stolfo, 1996b). That is, at each site, learned models from other sites


are also available. Furthermore, we investigate the e�ects on local accuracy when


the local underlying training data overlap with those at remote sites. This situation


arises in reality because, for example, the same person might be a customer at several


banks and/or the same person can commit the same credit card fraud at di�erent


banks. We next discuss how meta-learning can improve local learning. Sections 7.2


and 7.3 evaluate local meta-learning and the e�ect of data replication.


7.1 Local Meta-Learning


In previous chapters we assume a certain degree of \raw data" sharing. As we


discussed earlier, situations might arise when data sharing is not feasible, but sharing


of \black-box" learned models is. In this scenario a local site can \import" classi�ers


learned at remote sites and use them to improve local learning. The problem we face


is how we can take advantage of the imported \black-box" classi�ers. Our approach


is to treat it as an integration problem and use meta-learning techniques to integrate


the classi�ers.


Since only the local dataset, called T


i


at site i, is available at a site, we are


limited to that dataset for meta-learning. A classi�er, C


i


, is trained from T


i


locally
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Figure 7.1: Local meta-learning at a site with three remote sites.


and a classi�er, C


j


where j 6= i, is imported from each site j. Using T


i


, each C


j


then


generates predictions P


ij


and C


i


produces P


ii


. P


ij


and P


ii


form the meta-level training


set according to the strategies described in Chapter 3. That is, the local and remote


classi�ers are treated as base classi�ers in our previous discussion. Once the meta-


level training set is created, the corresponding meta-classi�er is learned. Figure 7.1
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Figure 7.2: Generating local meta-level training data.


shows the relationship among various classi�ers and sites during local meta-learning.


However, the predictions P


ii


of the local classi�erC


i


on the local training set T


i


will


be more correct than the predictions, P


ij


, generated by the remote classi�ers because


C


i


was trained from T


i


. As a result, during meta-learning, the trained meta-classi�er


will heavily bias toward the local classi�er since the local classi�er predicts much


more accurately than the remote classi�ers (recall that the remote classi�ers were not


trained on the local dataset T


i


). For example, a local nearest-neighbor classi�er can


predict the local training set perfectly and the meta-learner will ignore all the remote


classi�ers. That is, we can't use the remote classi�ers to improve local learning, which


defeats the purpose of importing the remote classi�ers initially.
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To resolve this situation, at the local site, we partition T


i


into two sets, T


i1


and T


i2


,


from which classi�ers C


i1


and C


i2


are trained. C


i1


then predicts on T


i2


and C


i2


on T


i1


.


The union of the two sets of predictions form the predictions for the local classi�er


(P


ii


). This method, called 2-fold cross-validation partitioning, tries to approximate


the behavior of C


i


on unseen data. The process of obtaining the predictions P


ij


from


the remote classi�ers remains unchanged. Figure 7.1 depicts this process of generating


local meta-level training data. Now, during meta-learning, remote classi�ers will not


be automatically ignored since the local classi�er is also judged on \unseen" data.


The next section discusses our experimental evaluation of the local meta-learning


approach.


7.2 Experimental Results


Di�erent combinations of four inductive learning algorithms (ID3, CART, BAYES,


and CN2) and four data sets (Splice Junctions, Protein Coding Regions, Protein Sec-


ondary Structures, and Arti�cial) were used in this set of experiments (as described in


Section 4.3). To simulate the multiple-site scenario, we divided the training set into


equi-sized subsets (each subset representing a site) and varied the number of subsets


(sites) from 2 to 64. We also ensured that each subset was disjoint but with propor-


tional distribution of examples of each class (i.e., the ratio of examples in each class


in the whole data set is preserved). The arbiter, class-combiner, and class-attribute-


combiner strategies were evaluated. The prediction accuracy on a separate test set is


our primary comparison measure. The di�erent strategies were run on the above four


data sets, each with the above four learning algorithms and the results are plotted in


Figures 7.3 through 7.6. The plotted accuracy is the average accuracy of local meta-


classi�ers over 10-fold cross-validation runs. In each run, m sites generate m local


classi�ers and m local meta-classi�ers. In the �gures, avg-base denotes the average


accuracy of the local/base classi�ers, which is our base line. Statistical signi�cance


was measured by using the one-sided t-test with a 90% con�dence value.
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Figure 7.3: Accuracy for local meta-learning vs. number of subsets in the splice


junction domain.
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Figure 7.4: Accuracy for local meta-learning vs. number of subsets in the protein


coding region domain.
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Figure 7.5: Accuracy for local meta-learning vs. number of subsets in the secondary


structure domain.
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Figure 7.6: Accuracy for local meta-learning vs. number of subsets in the arti�cial


domain.
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When compared to the base accuracy, at least one of three local meta-learning


strategies yields signi�cantly higher accuracy in 13 out of the 16 cases (mostly at 4


or more subsets). Local meta-learning still has higher accuracy (not signi�cantly) in


2 of the 3 remaining cases. Larger improvement usually occurs when the size of the


local dataset is smaller (the number of subsets/sites are larger). In many cases the


arbiter scheme improves accuracy more than the two combiner strategies.


While many of the base classi�ers drop in accuracy when the dataset size gets


smaller, some of the meta-learning strategies roughly maintain the same level of


accuracy. One apparent example is the arbiter scheme using ID3 as the learner


in the Coding Regions dataset (Figure 7.4). The arbiter scheme stays above 70%


accuracy while the base accuracy drops to below 60%. The arbiter scheme maintains


the accuracy in 8 out of 16 cases. For the Coding Regions dataset, the arbiter scheme


improves local learning by a wide margin when the learners are ID3, CART, and CN2


(3 of the 4 learners).


The results obtained here are consistent with those from non-localmeta-learning in


previous chapters, where raw data can be shared among sites. Meta-learning improves


accuracy in a distributed environment and the arbiter scheme is more e�ective than


the two combiner techniques. Next, we investigate the e�ects on accuracy of local


meta-learning when di�erent sites possess some degree of common data.


7.3 Experimental Results on Data Replication


As we discussed previously, di�erent sites might have some overlapping data. To


simulate this phenomenon, we allow some amount of replication in each partition of


data. We prepare each learning task by generating subsets of training data for the


local/base classi�ers according to the same generative scheme in Section 5.2.2.


In the experiments reported here, � ranged from 0% to 40%, with 10% incre-


ments. Each set of incremental experimental runs, however, chooses an entirely new
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Figure 7.7: Accuracy for the class-combiner scheme trained over varying amounts of


replicated splice junction data. � ranges from 0% to 40%.
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Figure 7.8: Accuracy for the class-combiner scheme trained over varying amounts of


replicated protein coding region data. � ranges from 0% to 40%.
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Figure 7.9: Accuracy for the class-combiner technique trained over varying amounts


of replicated secondary structure data. � ranges from 0% to 40%.
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Figure 7.10: Accuracy for the class-combiner technique trained over varying amounts


of replicated arti�cial data. � ranges from 0% to 40%.
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Figure 7.11: Accuracy for the class-attribute-combiner technique trained over varying


amounts of replicated splice junction data. � ranges from 0% to 40%.
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Figure 7.12: Accuracy for the class-attribute-combiner technique trained over varying


amounts of replicated protein coding region data. � ranges from 0% to 40%.
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Figure 7.13: Accuracy for the class-attribute-combiner technique trained over varying


amounts of replicated secondary structure data. � ranges from 0% to 40%.
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Figure 7.14: Accuracy for the class-attribute-combiner technique trained over varying


amounts of replicated arti�cial data. � ranges from 0% to 40%.
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distribution of replicated values. No attempt was made to maintain a prior distri-


bution of training data when incrementing the amount of replication. This \shot


gun" approach provides us with some sense of a \random learning problem" that we


may be faced with in real world scenarios where replication of information is likely


inevitable or purposefully orchestrated.


The same experimental setup was used as in the prior experiments. Results for the


replicated data scenario using the class-combiner and class-attr-combiner strategies


are plotted in Figures 7.7 through 7.14 (a total of 32 cases). 7 out of 32 cases show


signi�cant accuracy di�erence when the degree of replication increases; 6 of these 7


cases occur in the Coding Regions dataset. 20 out of 32 cases show no signi�cant


accuracy changes across all subset sizes and degrees of replication. The remaining 5


cases have some signi�cant accuracy di�erence at certain subset sizes.


In summary, the majority doesn't show signi�cant accuracy di�erence when the


degree of replication increases. This is contrary to one's intuition since one would


expect the accuracy to increase when the local sites have a higher percentage of all


the available data combined. That implies that local meta-learning is quite e�ective


in integrating models from remote sites without the help of replicated data. Our


�ndings here are consistent with those from one-local meta-learning in Section 5.2.2.


7.4 Summary


We have presented techniques for improving local learning by integrating remote


classi�ers through local meta-learning. Our experimental results suggest local meta-


learning techniques, especially the arbiter scheme, can signi�cantly raise the accuracy


of the local classi�ers. Furthermore, results from our data replication experiments


suggest local meta-learning can integrate local and remote classi�ers e�ectively with-


out having a larger share of global data at a local site.
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Chapter 8


Analyzing the Integration of


Multiple Learned Classi�ers


In previous chapters we demonstrated the e�ectiveness of integrating multiple learned


classi�ers. In this chapter we de�ne and apply analytical metrics to gain a deeper


understanding of the e�ectiveness, which can then guide us to develop improvements


for our methods.


8.1 Notations


To facilitate the formal de�nitions of metrics discussed in this chapter, we adhere


to the following notations:


� n = number of unseen instances used for evaluation


� y


i


= i-th instance


� b = number of base classi�ers


� C


j


= j-th base classi�er
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� C


j


(y


i


) = classi�cation of instance y


i


by base classi�er C


j


� OC = overall classi�er


� OC(y


i


) = classi�cation of y


i


by the overall classi�er OC


� c = number of classes


� class


k


= k-th class


� class(y


i


) = correct classi�cation of y


i


� OneIfTrue(pred) = a function that returns one if predicate pred is true and


zero otherwise. That is,


OneIfTrue(pred) =


8


>


<


>


:


1 if pred is true


0 otherwise


(8.1)


� � = overall prediction accuracy; formally,


� =


1


n


n


X


i


OneIfTrue(OC(y


i


) = class(y


i


)) (8.2)


� � = average prediction accuracy of base classi�ers; mathematically,


� =


1


b


b


X


j


1


n


n


X


i


OneIfTrue(C


j


(y


i


) = class(y


i


)) (8.3)


We next investigate some of the metrics we developed to analyze the di�erent


characteristics in integrating multiple learned classi�ers.


8.2 Metrics


Along with the de�nitions of metrics, empirical results using those metrics are


presented and discussed. The results are based on the di�erent permutations of 4


learning algorithms (ID3, CART, BAYES, and CN2) and 4 learning tasks (RNA Splice


Junctions, Protein Coding Regions, Protein Secondary Structures, and Arti�cial). 4
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integrating schemes (class-combiner, class-attribute-combiner, arbiter, and weighted


voting) were used to merge base classi�ers trained from 8 data subsets. We did not


vary the number of data subsets in this evaluation because the variation generates


vastly di�erent base classi�ers. The 3 meta-learning schemes were used in a one-


level manner (Chapter 5), that is, not hierarchical. 10-fold cross validation runs


were performed for each of the 64 permutations. Many of the �gures below have


four plots, one for each integrating schemes. Within each plot, results from the 16


permutations of learning algorithms and tasks are plotted. When a general trend


is observed, a line is �tted to the 16 data points using the Marquardt-Levenberg


algorithm (Ralston & Rabinowitz, 1978; Press et al., 1988), a nonlinear least squares


curve �tting mechanism, available in the GNUFIT (Grammes, 1993) package.


Before we discuss the di�erent metrics used in this study. We �rst inspect how


the average accuracy of base classi�ers (�) a�ects the overall accuracy (�). Their


relationship is plotted in Figure 8.1. We observe that having highly accurate base


classi�ers is a de�nite contributing factor for achieving high overall accuracy.


8.2.1 Accuracy Di�erence and Improvement


In order to measure how well the integrating structures perform, we �rst de�ne


accuracy di�erence as the di�erence between the accuracy of the overall accuracy and


the average accuracy of base classi�ers. Formally,


accuracy difference = (� � �)� 100% (8.4)


Since di�erent permutations of data sets and learning algorithms yield diverse


levels of prediction accuracy, in Figure 8.2, we shows the wide range of accuracy


achieved by the base classi�ers among di�erent permutations, and the resulting ac-


curacy di�erence. Base classi�ers learned from the secondary structure data set have


an accuracy at around 45{60%, whereas those from the splice junction data set have


a higher range from 80{95%.







113


40


50


60


70


80


90


100


40 50 60 70 80 90 100


O
v
e


r
a


ll
 A


c
c
u


r
a


c
y
 (


%
)


Average accuracy of base classifiers (%)


class-combiner
linear fit


40


50


60


70


80


90


100


40 50 60 70 80 90 100


O
v
e


r
a


ll
 A


c
c
u


r
a


c
y
 (


%
)


Average accuracy of base classifiers (%)


class-attribute-combiner
linear fit


40


50


60


70


80


90


100


40 50 60 70 80 90 100


O
v
e


r
a


ll
 A


c
c
u


r
a


c
y
 (


%
)


Average accuracy of base classifiers (%)


arbiter
linear fit


40


50


60


70


80


90


100


40 50 60 70 80 90 100


O
v
e


r
a


ll
 A


c
c
u


r
a


c
y
 (


%
)


Average accuracy of base classifiers (%)


weighted voting
linear fit


Figure 8.1: Average accuracy of base classi�ers vs. overall accuracy.
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Figure 8.2: Average accuracy of base classi�ers vs. accuracy di�erence.
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Moreover, we observe that the data points are quite scattered, suggesting that


the initial accuracy of base classi�ers does not have much e�ect on the amount of


improvement that can be achieved by the integrating structures. This might be due


to two opposing arguments. One side of the coin suggests it is harder to gain accuracy


from higher initial accuracy due to less room for improvement (imagine all the base


classi�ers have 100% accuracy). However, the other side of the coin suggests it is more


di�cult to gain accuracy from lower initial accuracy because of a weaker foundation


to build upon (imagine all the base classi�ers have 0% accuracy).


In an attempt to factor in the wide range of accuracy levels in the base classi�ers,


we de�ne relative accuracy di�erence or accuracy improvement as:


accuracy improvement =


accuracy difference


�


=


� � �


�


� 100% (8.5)


Figure 8.3 plots accuracy improvement against average accuracy of base classi�ers.


Ali and Pazzani (1996) use error ratio to measure the performance of the overall


classi�er. Error ratio is de�ned as the ratio between overall error and error of the


base classi�ers. That is, in our notations,


error ratio =


1� �


1� �


They also mentioned the option of using error di�erence ((1��)� (1��)), which is


the same as accuracy di�erence (�� �). They chose error ratio because they believe


that \it becomes increasingly di�cult to obtain reductions in error as the error of the


single model approaches zero."


8.2.2 Diversity


In information theory (Abramson, 1963), given the probabilities of di�erent events,


entropy measures the average amount of information required to represent each event.


For digital communication channels, amount of information is measured in bits. En-


tropy can also measure how random the di�erent events can occur. The larger the
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Figure 8.3: Average accuracy of base classi�ers vs. accuracy improvement.
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entropy is, the probabilities are more evenly distributed (more random). The smaller


the entropy is, the probabilities are more biased (some events are more likely).


entropy = �


m


X


i


p


i


log(p


i


) (8.6)


where m is the number of events and p


i


is the probability of event i. The range of


entropy is [0, logm]. In this study, because m varies within our metrics, entropy is


usually normalized by logm. That is, normalized entropy has a range of [0, 1]. Also,


we use base 2 for logarithm.


Our �rst metric is called diversity. It measures how di�erent the base classi�ers


are based on their predictions. For each instance y


i


, the fraction of base classi�ers,


p


ik


, predicting class


k


is calculated as follows:


p


ik


=


1


b


b


X


j


OneIfTrue(C


j


(y


i


) = class


k


))


Using p


ik


, the entropy in the predictions for each instance is calculated, which is


then normalized by log c and averaged by the number of instances, n. That is,


diversity =


1


n


n


X


i


1


log c


c


X


k


�p


ik


log(p


ik


) (8.7)


The range of diversity is [0 ,1]. When the value of diversity grows, the predictions


from the base classi�ers are more evenly distributed and, therefore, more diverse.


Figure 8.4 plots how diversity a�ects the amount of accuracy improvement. The


four graphs, as mentioned previously, present results from the four schemes evaluated


in this study. The �tted line shows a general trend of the relationship between


diversity and accuracy improvement. We observe that, in all four graphs, accuracy


improvement increases with diversity. That is, larger improvement in accuracy can be


achieved by integrating more diverse base classi�ers. This result concurs with other


results in the literature. However, we formally de�ne and quantitatively measure


diversity using entropy.


Krogh and Vedelsby (1995) measures diversity, called ambiguity, by calculating


the mean square di�erence between the prediction made by the ensemble and the
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Figure 8.4: Diversity of base classi�ers vs. accuracy improvement.
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base classi�ers. They proved that increasing ambiguity/diversity decreases overall


error. Our diversity metric does not involve the predictions generated by integrating


structures (ensemble) and only measures the variation among the base classi�ers.


Brodley and Lane (1996) measure diversity, called overlap, by counting the number


of instances that are classi�ed the same way by each of the base classi�ers. The


overlap metric does not di�erentiate instances that gather two di�erent predictions


from those that gather more.


Recent statistical work formulates classi�cation error via bias-variance decomposi-


tion. In short, bias measures, on the average over all possible training sets of a given


size, the error rate of the learned classi�ers and variance measures how di�erent the


learned classi�ers are when di�erent training sets are used. That is, classi�cation error


can be explained by errors caused by bias and variance. Kong and Dietterich (1995)


show that their error-correcting code method for combining binary classi�ers reduces


errors by correcting both bias and variance errors. Their decomposition is based on


the commonly used zero-one loss functions (misclassi�cation rates). Breiman (1996a)


explains that unstable methods/algorithms (those with high variance) bene�t from


aggregating/combining classi�ers learned from di�erent samples of the training set.


Kohavi and Wolpert (1996) provide a more robust decomposition that eliminates the


possibility of negative variance. Although not explicitly stated, Krogh and Vedelsby's


(1995) decomposition of squared classi�cation error follows the same spirit of bias-


variance decomposition and their ambiguity metric measures variance. Our diversity


metric tries to approximate the variance characteristics as well.


8.2.3 Coverage


Coverage (Brodley & Lane, 1996) measures the fraction of instances for which at


least one of the base classi�ers produces the correct predictions. That is, an instance


is not covered if and only if all the base classi�ers generate an incorrect prediction


for that instance. If an integrating method does not make a prediction other than
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those from the base classi�ers, coverage is the maximum possible accuracy. That is,


coverage is an upper bound on accuracy for certain integrating methods. Formally,


coverage =


1�


1


n


n


X


i


OneIfTrue((C


1


(y


i


) 6= class(y


i


)) ^ (C


2


(y


i


) 6= class(y


i


)) ^


� � � ^ (C


b


(y


i


) 6= class(y


i


))) (8.8)


The range of coverage is [0 ,1]. Coverage of one means that each of the instances is


correctly predicted by at least one base classi�er. A zero coverage implies none of the


base classi�ers can correctly predict any of the instances.


Figure 8.5 depicts the relationship between coverage and accuracy improvement.


We observe that, in all four schemes, an increase in coverage implies larger accuracy


improvement. A high coverage is particularly important for integrating schemes that


utilize only the predictions generated by the base classi�ers because the upper bound


on accuracy for these schemes is coverage. One such scheme is voting|the �nal


prediction is always one of the predictions generated by the base classi�ers.


Coverage-possible accuracy improvement


As stated earlier, coverage provides an upper bound on accuracy improvement


assuming the integrating structure does not make a prediction other than the ones


from the base classi�ers. Although the assumption does not hold for our meta-learning


strategies, we would like to see how close our strategies can get to that upper bound


or maybe beat it. We note that the ultimate upper bound is 100% correct, not the


coverage; however, coverage provides a practical and sensible yardstick for comparison.


We de�ne coverage-possible accuracy improvement as the largest possible improvement


in accuracy provided by coverage. Formally,


coverage�possible accuracy improvement =


coverage � �


�


� 100% (8.9)


That is, the metrics measures the accuracy improvement obtained when an integrating


scheme achieves the coverage level of accuracy.
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Figure 8.5: Coverage of base classi�ers vs. accuracy improvement.
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Figure 8.6: Coverage-possible accuracy improvement vs. realized accuracy improve-


ment.
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Figure 8.6 depicts the relationship between coverage-possible accuracy improve-


ment and realized accuracy improvement by the four integrating schemes. A linear


line, y = x, is also drawn in each graph. None of the cases achieve an improvement


larger than the coverage-possible. However, for the cases with smaller improvement,


�ve or six of them have improvement levels quite close to the coverage-possible ones.


8.2.4 Correlated error


Correlated error, introduced by Ali and Pazzani (1996), measures the fraction of


instances for which a pair of base classi�ers make the same incorrect prediction. The


fraction is calculated for each pair of base classi�ers (C


j


and C


k


):


1


n


n


X


i


OneIfTrue(C


j


(y


i


) = C


k


(y


i


) 6= class(y


i


))


This fraction is then summed and averaged over every possible pair of base classi�ers.


That is,


correlated error =


1


b� (b� 1) = 2


b


X


j


b


X


k=i+1


1


n


n


X


i


OneIfTrue(C


j


(y


i


) = C


k


(y


i


) 6= class(y


i


))(8.10)


The range of correlated error is [0, 1]. A value close to one indicates the errors made


by the base classi�ers are not likely to be independent.


Figure 8.7 depicts the relationship between the correlated error of base classi-


�ers and accuracy improvement. We observe a general decreasing trend in accuracy


improvement when correlated error increases. Our �ndings here are consistent with


those from (Ali & Pazzani, 1996).


Hansen and Salamon (1990) proved that for a neural-network ensemble, if the net-


works produce independent errors and have accuracy of at least 50%, the expected


ensemble error rate goes to zero as the number of networks approaches in�nity. Cor-


related error is attempt to characterize the degree of errors that are not independent.
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Figure 8.7: Correlated error of base classi�ers vs. accuracy improvement.
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8.2.5 Specialty


Some base classi�ers might be biased toward certain classes. That is, they are


more accurate in predicting certain classes than others. How specialized the base


classi�ers are can contribute to the behavior of various integrating schemes.


A specialty metric for the base classi�ers is de�ned as follows. For each base


classi�er, we calculate its accuracy of predicting the di�erent classes. a


jk


is the


accuracy of classi�er j on class k. Formally,


a


jk


=


P


n


i


OneIfTrue(C


j


(y


i


) = class(y


i


) = class


k


)


P


n


i


OneIfTrue(class(y


i


) = class


k


)


For each classi�er, a


jk


is normalized by the sum of a


jk


, yielding p


jk


. The sum of


p


jk


is one.


p


jk


=


a


jk


P


k


a


jk


For each classi�er, using p


jk


, the entropy is calculated, normalized by log c. Spe-


cialty is average normalized entropy (Equation 8.6) over b classi�ers. Formally,


specialty = 1�


1


b


b


X


j


1


log c


c


X


k


�p


jk


log(p


jk


) (8.11)


The range of specialty is [0 ,1]. The larger the value is, the base classi�ers are more


biased and specialized to certain classes.


Figure 8.8 depicts the relationship between the specialty metric for the base clas-


si�ers and accuracy improvement. The �tted line indicates a slightly decreasing trend


in accuracy improvement when specialty increases. A closer inspection reveals that


there is an outlier with a .34 specialty value (generated by ID3 in the Secondary


Structure data set). When we �t the data points except the outlier, we observe that


the decreasing trend is reversed to an increasing trend for the two combiner schemes


(top two graphs). This result is consistent with the notion that combiners are trained


to recognize the behavior and relationship among base classi�ers. Class bias or spe-


cialization is one such behavior. Specialty seems to have little e�ect on the arbiter


and weighted voting schemes.
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Figure 8.8: Specialty of base classi�ers vs. accuracy improvement.
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Figure 8.9: Average accuracy of base classi�ers vs. arbiter accuracy.


8.3 Analyzing Arbiters


In the previous sections we focus on analyzing the base classi�ers, here we con-


centrate on analyzing the behavior of the arbiter strategy.


8.3.1 Arbiter accuracy


Arbiter accuracy is de�ned as the accuracy of ARB on the unseen instances. Let


ARB be an arbiter and ARB(y


i


) be the ARB's classi�cation of y


i


. That is,


arbiter accuracy =


1


n


n


X


i


OneIfTrue(ARB(y


i


) = class(y


i


))� 100% (8.12)


Figure 8.9 plots the arbiter accuracy against the average accuracy of base classi-


�ers. We �rst observe that the arbiter accuracy is lower than the accuracy of base


classi�ers (to the right of the y = x line). Recall that the training set for an arbiter
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contains examples that are confusing to the base classi�ers. In other words, examples


that are di�cult to learn from are in the arbiter training set. This likely attributes


to lower accuracy of the arbiters relative to the base classi�ers.


Furthermore, the arbiter accuracy demonstrates an increasing trend when the base


classi�ers are more accurate. A higher accuracy in the base classi�ers implies the


employed learning algorithm is closely suited for the involved data set. Accordingly,


the arbiter, essentially another classi�er, also has a higher accuracy.


8.3.2 Arbiter usage


We next examine how frequent an arbiter is utilized. Recall that an arbiter is


called upon when the majority of base classi�ers do not agree on the same prediction.


That is, an arbiter is not always used in determining the overall prediction. We de�ne


arbiter usage as the percentage of instances that do not have a majority prediction


and uses the arbiter's prediction as the overall prediction. Let p


1


; p


2


; � � � ; p


b


be the


predictions generated by the b base classi�ers and class count


k


be the number of


predictions that are of class k. That is,


class count


k


=


b


X


i


OneIfTrue(p


i


= class


k


):


Furthermore, let


no majority(p


1


; p


2


; � � � ; p


b


) =


8


>


<


>


:


false 9k class count


k


> b=2


true otherwise


(8.13)


Finally,


arbiter usage =


1


n


n


X


i


OneIfTure(no majority(C


1


(y


i


); C


2


(y


i


); � � � ; C


b


(y


i


)) ^ (OC(y


i


) = ARB(y


i


)))


�100% (8.14)


Figure 8.10 depicts arbiter usage against the average accuracy of base classi�ers.


As expected, when the base classi�ers are highly accurate, their predictions frequently
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Figure 8.10: Average accuracy of base classi�ers vs. arbiter usage.


reach a majority, and hence the arbiters are scarcely utilized. That is, the arbiters


are only used when the base predictions are vastly di�erent, which suggests some of


the base predictions are incorrect.


8.3.3 Arbiter e�ectiveness


Arbiter e�ectiveness calculates the rate an arbiter is correct when its prediction


is used in the overall prediction. That is, it measures how useful an arbiter is when


it is used. We de�ne


arbiter effectiveness =


n


X


i


OneIfTure(no majority(C


1


(y


i


); C


2


(y


i


); � � � ; C


b


(y


i


)) ^ (OC(y


i


) = ARB(y


i


))^


(ARB(y


i


) = class(y


i


)))


OneIfTure(no majority(C


1


(y


i


); C


2


(y


i


); � � � ; C


b


(y


i


)) ^ (OC(y


i


) = ARB(y


i


)))


�100% (8.15)
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Figure 8.11: Average accuracy of base classi�ers vs. arbiter e�ectiveness.


The numerator is the number of times arbiter ARB's prediction is used as the over-


all prediction and is correct; the denominator is the number of times the arbiter's


prediction is used as the overall prediction.


Figure 8.11 plots arbiter e�ectiveness against the average accuracy of base classi-


�ers. We observe that arbiters are more e�ective when the average accuracy of base


classi�ers is higher. That is caused by lower arbiter usage and higher arbiter accuracy.


As mentioned previously, when the base classi�ers have a low accuracy, the arbiters


are more frequently used. In order to improve the arbiter e�ectiveness, we need to


improve the accuracy of arbiters. One approach is to more carefully choose the


training set for the arbiters when the base classi�ers are not very accurate. Another


approach is to use an alternative learning algorithm for the arbiter since the algorithm


used to generate the base classi�ers is not well suited for the particular data domain.
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8.4 Summary


We de�ned four metrics (diversity, coverage, correlated error, and specialty) for


characterizing the base classi�ers and explored the e�ects of these characteristics


on the behavior of various integrating schemes. From our results, larger accuracy


improvement can be achieved by more diverse base classi�ers with higher coverage


and fewer correlated errors. For integrating schemes (combiner in our case) that


recognize relationships among the base classi�ers, more specialized base classi�ers can


result in larger improvement in accuracy. Analyses on the arbiter strategy shows that


when the base classi�ers are less accurate, the arbiter needs to be built more carefully.
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Chapter 9


E�ciency and Scalability


So far in this thesis, we have been concentrating on the accuracy performance of


meta-learning. In this chapter we focus on the training time performance of meta-


learning. We refer to e�ciency as speed or how fast a system runs and scalability


as the ability of a system to handle increasing amounts of data without needing an


extra order of magnitude of increasing computational resources. Scalability is further


de�ned in Section 9.2.1.


We �rst analyze the training time complexity and performance of the individual


learning algorithms used in this thesis in a serial environment. We then examine the


speedup that can be obtained by utilizing meta-learning in a parallel and distributed


environment.


9.1 Serial Evaluation of Learning Algorithms


To evaluate the �ve learning algorithms (ID3, CART, BAYES, WPEBLS, CN2)


in a serial environment, we �rst formulate their theoretical time complexity and then


empirically investigate their speed with varying amounts of training data.
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9.1.1 Theoretical time complexity


In the following discussion we sketch the worst-case time complexity for each of


the �ve algorithms to help clarify the potential bene�ts of scaling by meta-learning


techniques. For simplicity, we assume all the attributes of the training data have


discrete values. Let


� a = the number of attributes,


� v = the largest number of distinct values for an attribute (i.e,., the size of its


domain), and


� n = the number of training examples.


The time complexity of ID3 (Quinlan, 1986) is a function of the number of levels


in the decision tree it forms. The height of the tree is bounded by the number


of attributes, O(a). Since at each level O(a) attributes are evaluated with O(n)


examples, the time spent at each level is O(an). Therefore, the time complexity of


ID3 is O(a


2


n) in the worst case.


In CART (Breiman et al., 1984; Buntine & Caruana, 1991) the values of each


attribute at each node are grouped into two disjoint subsets. Hence, each non-leaf


node has only two branches and the learned tree has O(2


a


) nodes. At each node,


CART uses a greedy scheme to group the values of each attribute, which takes roughly


O(v) time. That is, O(av + an) time is needed to group a attributes and evaluate


a attributes for n examples. Although, CART employs a ten-fold cross-validation


scheme to select the splitting attribute, the scheme only adds a constant factor to the


time complexity at each node and hence the complexity remains at O(av + an). The


total time complexity for CART is therefore O((av + an)2


a


) in the worst case.


BAYES (Clark & Niblett, 1989) calculates the conditional probabilities for each


attribute value given a class and the probabilities for each class. O(av) conditional


probabilities are calculated and each takes O(n) time, hence O(avn) time is needed.
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The class probabilities can be calculated in O(n) time. Therefore, the time complexity


of BAYES is O(avn+ n) or O(avn).


WPEBLS (Cost & Salzberg, 1993) calculates a set of value distance matrices


(VDMs) and a vector of weights for the exemplars. Each attribute has a VDM of size


v by v, which takes O(nv


2


) to calculate. For a attributes, O(anv


2


) time is needed


for a VDMs. The weight vector is incrementally updated and takes O(n


2


) time. The


time complexity for WPEBLS is therefore O(anv


2


+ n


2


) in the worst case.


The time complexity of CN2 (Clark & Niblett, 1989; Chan, 1988) is a function of


how many complexes (candidate antecedents (or LHS's) of a rule) are evaluated. Since


CN2 performs a general-to-speci�c beam search on the complexes, a �xed number of


complexes is retained at each specialization step. The beam size is called the star size,


which is denoted by s. At each specialization step, O(avs) complexes are generated.


Evaluating all the complexes against n examples takes O(avsn) time. The top s


complexes can be found in O(avs


2


) time. As a result, each step takes O(avs(n+ s))


time. This step could be repeated O(a) times to �nd a rule, which consequently takes


O(a


2


vs(n + s)) time to induce. Since at least one training example is covered by an


induced rule, O(n) rules can be produced. Accordingly, CN2's total time complexity


is O(a


2


vsn(n + s)). Because s is a �xed parameter and n is much larger than s,


the complexity can be reduced to O(a


2


vn


2


), which is quadratic in the number of


examples.


Since we are considering problems with potentially large amounts of data, the


dominating term is n. From the above analysis, onlyWPEBLS and CN2 are quadratic


in the number of training examples and the rest are linear with respect to the number


of examples. However, closer inspection reveals that v, the number of values of an


attribute, could be a function of n. One can easily see that some values of an attribute


which are present in a large data set might be absent from a small data set. That


is, in addition to n, v could be a signi�cant factor in time performance when large


amounts of data are used.
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Figure 9.1: Training time vs. number of examples in splice junctions.


9.1.2 Empirical time performance


We performed two sets of experiments: the �rst set used the splice junction data


with training set size up to 100,000 examples, the second set used the arti�cial data


with set size up to 10 million when all algorithms exceeded the main memory.


Splice junctions


In a set of experiments we measured the CPU training time of ID3, CART,


BAYES, and WPEBLS with the number of training examples varying from 10 to


100,000 in the splice junction domain (examples were randomly selected and dupli-


cated from the original data set, which has 3,190 examples) (Chan & Stolfo, 1994).


Thus, the training sets contain many duplicate examples. The results in CPU time


on Sun IPXs are plotted in Figure 9.1. We observe that WPEBLS performed com-


paratively worse than the other three algorithms when more training examples were


presented. With 100,000 examples, WPEBLS did not �nish running after a couple


of days. ID3 and BAYES were generally faster than CART. BAYES was faster than


ID3 until the crossover at 500 examples. CART was slower than WPEBLS until the
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training set grew to 1,000 examples.


Figure 9.2 depicts our results in four graphs. Each graph plots the CPU training


time against the number of training examples for a di�erent learning algorithm. Poly-


nomial curves are �tted to the data points to illustrate how the algorithms behave in


terms of speed. We tried linear (y = ax+ b), quadratic (y = ax


2


+ bx+ c), and cubic


(y = ax


3


+ bx


2


+ cx+d) equations for curve �tting, where x is the number of training


examples and y is training time in seconds. The curve approximations were computed


using GNUFIT (Grammes, 1993) with the Marquardt-Levenberg algorithm (Ralston


& Rabinowitz, 1978; Press et al., 1988), a nonlinear least squares �t mechanism. To


approximate the training speed with polynomial equations, we inspect how closely


the three polynomials �t the data points. Curve �tting errors near the bottom left


corner are less important since the values in question are much smaller due to the log


scale.


The three curves seem to �t ID3, equally well, hence ID3 appear to have linear


speed with up to 100,000 training examples. CART and BAYES seem to be close to


having linear speed. However, WPEBLS clearly exhibits superlinear speed|the linear


�tted curve does not �t at all. The quadratic and cubic curves �t much more closely.


(These two curves overlap in WPEBLS plot in Figure 9.2). Hence, WPEBLS' speed


appears to be quadratic in the number of examples. The �tted quadratic equation for


WPEBLS is y = :0000166x


2


+ :000916x+ :100 and it projects that WPEBLS takes


about 16.6 million CPU seconds (or 192 days or 6.4 months) to process 1 million


records.


Three of the algorithms appear to exhibit linear speed with up to 100,000 training


examples. We next investigate speed performance of the algorithms with much more


data.
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Figure 9.2: Training time vs. number of examples in splice junctions with polynomial


curve �tting.
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Figure 9.3: Training time vs. number of examples in arti�cial data.


Arti�cial data


In the second set of experiments we measured the elapsed training time of ID3,


CART, BAYES, and CN2 with di�erent numbers of examples in the arti�cial domain.


The experiments were performed on HP 9000/735 workstations, which are faster than


the SUN IPX workstations used in the previous set of experiments. The number of


training examples was exponentially increased until the algorithms/operating system


reported insu�cient-memory errors. That is, they ran out of memory when the


training set got too large, which was expected for main-memory based algorithms.


Figure 9.3 plots the relative performance of the four algorithms. Each data point


is an average of �ve runs using data sets generated by di�erent seeds for the random


number generator. Since 4:6 � 10


17


di�erent examples are possible, the chances of


having duplicates in a data set with up to 10 million examples are quite low. ID3,


CART, and BAYES ran out of memory while processing 10 million records, and CN2


while processing 50,000 records. Memory resources do pose a limit on how much


data learning algorithms can digest. With fewer than 10,000 examples, BAYES was


the fastest, followed by ID3, CART, and CN2. Crossovers among ID3, CART, and







139


BAYES occur between 100,000 and 1 million examples. With 5 million examples,


CART was faster than ID3 and BAYES was the slowest.


ID3 completed processing 5 million records in about 2,800 seconds (47 minutes),


which is much less than Catlett's (1991) projection of several months for ID3 to


process 1 million records. The huge gap merits some explanation. First, the projection


was made �ve years ago, state-of-the-art processor speed has much improved since


then. Second, the arti�cial data set has only eight attributes, four of which are


numeric, and two (Boolean) classes, the data set Catlett used has seven numeric


attributes and nine classes. Since ID3 performs a sort on the values of numeric


attributes, symbolic attributes are faster to evaluate than numeric ones. Furthermore,


a nine-class problem is more complex than a two-class problem. Third, the arti�cial


data set has a well de�ned concept to learn|the Boolean expression that generates


it. The NASA shuttle data set Catlett used is real-world and the target concept is


potentially much more complex than the Boolean expression we used. Unfortunately,


we were not able to obtain the full data set from Catlett for our investigation to


validate the published result.


As in the previous set of experiments, we �tted linear, quadratic, and cubic equa-


tions to the training time of each algorithm and the plots are displayed in Figure 9.4.


We observed that none of the algorithms exhibited linear speed. The quadratic and


cubic curves �t ID3 and CART closely, hence, ID3 and CART appear to be quadratic.


BAYES does not appear to be linear or quadratic; the closest is the cubic approxi-


mation. The cubic curve �ts CN2 the closest, although the quadratic curve is also


close. The quadratic �tted polynomial for CN2 is y = :00000896x


2


+ :00420x+ 1:18


and it projects that CN2 takes about 9 million elapsed seconds (104 days or 3.5


months) to process 1 million records. The cubic �tted polynomial for CN2 is y =


:000000000597x


3


� :000000363x


2


+0:0398x� 19:5 and it projects that CN2 consumes


597 million elapsed seconds (18.9 years) to learn from 1 million examples. Recall that


CN2 did not have enough memory space to process 50,000 records. Even if su�cient


memory resources are provided for CN2 to process 1 million records, a period of 3.5
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Figure 9.4: Training time vs. number of examples in arti�cial data with polynomial


curve �tting.
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months (quadratic approximation) or 18.9 years (cubic approximation) is a long time


to wait.


The results from these experiments reinforce our hypotheses on the behavior of


memory-based learning algorithms in the presence of large data sets in real life. First,


theoretical analysis provides a powerful tool to analyze time complexity and produces


close approximations. However, practical time performance might di�er from theo-


retical analysis, especially when worst case-analysis is used as we did. With large


amounts of data, one attributing factor is the characteristics of operating system's


memory management, which might elect to utilize secondary storage and result in


time-consuming memory transfers. Second, memory resources are limited and very


large data sets can exceed them; consequently, these learning algorithms are rendered


relatively useless when they are faced with too much information. Third, they exhibit


superlinear behavior with large amounts of data, which is particularly undesirable in


applications like data mining.


As we proposed in this thesis, data reduction and meta-learning techniques are


used to alleviate the problem of limited memory resource and prolonged execution


when large amounts of data are present. We next evaluate the e�ciency of our


proposed techniques in a parallel and distributed processing environment.


9.2 Parallel Evaluation of Hierarchical


Meta-learning


The hierarchical meta-learning strategy described in Chapter 6 is designed to


be utilized in a parallel and distributed processing environment. Here we analyze


and evaluate how the hierarchical meta-learning behaves with leaf classi�ers and


intermediate tree node classi�ers concurrently trained on multiple processors.
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9.2.1 Notations and De�nitions


Before we evaluate our approach in a parallel and distributed environment, our


notations and de�nitions are described as follows:


� T


S


= serial execution time.


� T


P


= parallel execution time.


� p = number of processors.


� n = input size (number of training examples).


� W = problem size (work) (Kumar et al., 1994), which measures the total number


of computational units needed for serial execution. That is, T


S


=W � t


u


, where


t


u


is the time spent for a unit of computation. Hence, T


S


/ W . For instance,


a serial algorithm that is quadratic in input size has a problem size of n


2


or


W = n


2


.


� Speedup (S) is the number of times parallel execution is faster over serial exe-


cution with a �xed problem size. That is,


Speedup =


T


S


T


P


:


For this metric, T


S


is usually the time consumption for the fastest serial algo-


rithm, which could be the parallel algorithm running serially.


� Scaled speedup (Gustafson, 1988; Kumar & Gupta, 1994) provides a metric for


scalability. It measures the speedup of a parallel system when the problem size


increases linearly with the number of processors.


Scaled speedup =


T


S


(W � p)


T


P


(W � p)


; (9.1)


where T


S


and T


P


are expressed as functions of problem size. Parallel system with


linear or near-linear scaled speedup (with respect to p, the number of processors)


is considered scalable. Other scalability metrics can be found in (Kumar &


Gupta, 1994).
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� E�ciency is how fast an algorithm runs, which is characterized by the algo-


rithm's time complexity. (We note that the term e�ciency can be used another


way in parallel computing|it measures how well a parallel algorithm utilizes


the available processors and is de�ned as the ratio of speedup to number of


processors or


S


p


.)


9.2.2 Speedup analysis


For simplicity reasons, we are going to focus our analysis on arbiter trees; similar


results can be obtained for combiner trees. Recall that the training set size for an


arbiter is restricted to be no larger than the training set size for a leaf classi�er


(Section 6.1). Hence, in a parallel environment, the amount of computation at each


level is approximately the same. Assume the number of data subsets of the initial


distribution is s and s = p (the number of parallel processors). (We note that when


s > p, s=p subsets are processed serially on each of the p processors and a di�erent


complexity will result.) Let d = n=p be the size of each data subset, where n is the


total number of training examples. Furthermore, assume the learning algorithm takes


O(n


2


) time (for example, WPEBLS or CN2) in the sequential case. In the parallel


case, if we have p processors, there are log(p) iterations in building the arbiter tree


and each takes O(d


2


) time. The total time is therefore O(d


2


log(p)), which is


O(


n


2


log(p)


p


2


) (9.2)


For the same parallel algorithm that is run sequentially, there are 2p� 1 (p+ p=2 +


� � �+2+1), or O(p), executions of the algorithm and each takes O(d


2


); the total time


is therefore O(d


2


p), which is


O(


n


2


p


) (9.3)


As a result, a potential O(


n


2


p


�


p


2


n


2


log(p)


) or


O(


p


log(p)


)
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fold speedup can be achieved. Moreover, if we directly compare the parallel algorithm


to the pure serial algorithm, which is O(n


2


), the potential speedup is O(n


2


�


p


2


n


2


log(p)


)


or


O(


p


2


log(p)


)


fold, which is superlinear. The standard way of calculating speedup uses the fastest


serial algorithm. In our case, the serially run parallel algorithm is asymptotically


faster than the pure serial algorithm. Hence, the �rst speedup analysis provides


the proper measure. We include the second analysis as an indication of the speed


di�erence between the parallel approach and the pure sequential approach.


To simplify the previous discussion, we did not take into consideration the classi-


�cation time to generate the predictions, communication time to send the predictions


to one site, and construction time to generate the meta-level training sets. Here,


we consider a more detailed analysis, which includes the additional time consump-


tion, but yields, under certain conditions, the same time complexity as before using


a simpler analysis.


For the parallel case, when classi�cation time is also considered, at each level O(d)


instances have to be classi�ed in parallel on all processors. To generate the arbiters


at the �rst tree level, O(d) instances are classi�ed by the base classi�ers. To gen-


erate the arbiters at the second tree level, O(2d) instances are classi�ed because a


di�erent validation set is used and is classi�ed by both the base classi�ers and ar-


biters at the �rst tree level. Since there are log(p) levels, a total of O(d


(1+log(p)) log(p)


2


)


instances are classi�ed. That is the total classi�cation time is O(d


log(p)+log


2


(p)


2


). Send-


ing O(d) predictions to one site takes O(d) time so the total communication time


is O(d


log(p)+log


2


(p)


2


). O(d) time is needed to construct the meta-level training sets at


each level so O(d log(p)) time is need for log(p) levels. The overall time to build an


arbiter tree is the sum of the training time (Equation 9.2) (with a constant K


1


for


each example), classi�cation time (with a constant K


2


), communication time (with a
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constant K


3


), and construction time (with a constant K


4


), which is


O(K


1


d


2


log(p) +K


2


d


log(p) + log


2


(p)


2


+K


3


d


log(p) + log


2


(p)


2


+K


4


d log(p)):


Since d is much larger than log(p) and K


1


(constant for training from an example) is


larger than K


2


, K


3


, and K


4


, the �rst term K


1


d


2


log(p) is the dominating term. That


is, the overall time consumption can be reduced to O(d


2


log(p)), which is O(


n


2


log(p)


p


2


).


When the parallel case in run serially, only classi�cation time and construction


time needs to be included. For generating the arbiters at the �rst level, p batches of


classi�cation are needed. For the second level. p+


p


2


batches are needed. For the root


level, p+


p


2


+ � � �+ 1 batches are needed. That is, a total of O(p log(p)) classi�cation


batches are needed. Since each batch takes O(d) time, the total classi�cation time is


O(dp log(p)). O(p) meta-level training sets are constructed and each takes O(d) time,


hence, the total construction time is O(dp). From above (Equation 9.3), excluding


the classi�cation and construction time, the training time is O(d


2


p). Hence, with the


additional time included, the total training time (using the constants as before) is


O(K


1


d


2


p+K


2


dp log(p) +K


4


dp)


Since d is much larger than p and log(p), and K


1


(constant for training from one


example) is larger than K


2


and K


4


, the �rst term K


1


d


2


log(p) is the dominating term.


That is, the overall time consumption can be reduced to O(d


2


p), which is O(


n


2


p


).


These analyses assume the classi�cation time to generate the arbiter training sets


is relatively small compared to the training time. However, this might not the case


for some algorithms. Since the number of processors needed for training an arbiter


tree is reduced in half at each level and only one processor is used at the root level,


the idle processors can be used to classify (Section 6.1) if the base classi�ers and


arbiters are communicated to other processors. Therefore, training and classifying


can be overlapped in execution if we induce more communication overhead. That


is, this method would be bene�cial if the base classi�ers and arbiters are not large.


Furthermore, we assume that the processors have equal performance and thus load
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balancing and other issues in a heterogeneous environment raise interesting issues for


future work.


9.2.3 Scalability analysis


Now we measure the scalability of our approach using scaled speedup (Equa-


tion 9.1). From Equation 9.3, the problem size W is n


2


=p. To calculate the scaled


speedup, we �rst enlarge the problem size to W � p or n


2


=p� p, which is n


2


. That


is, when the parallel case is run serially, it takes


O(n


2


)


time to complete the enlarged problem. Let the enlarged input size be m. The


enlarged problem size is therefore m


2


=p. By equating the two expressions for the


enlarged problem size, n


2


= m


2


=p, we arrive at m = n


p


p. From the analysis above


(Equation 9.2), by substituting n with m or n


p


p, the parallel time complexity be-


comes O(


(n


p


p)


2


log(p)


p


2


), which is


O(


n


2


log(p)


p


):


The scaled speedup is therefore O(n


2


�


p


n


2


log(p)


), which is


O(


p


log(p)


):


Although the scaled speedup is sublinear with respect to the number of processors,


it is quite close to linear. That is, our approach is quite scalable.


For completeness, we also derive the scaled speedup with respect to the pure serial


algorithm. The problem size W is n


2


(quadratic learning algorithm). The enlarged


problem size is W � p, which is n


2


p. That is, the pure serial algorithms takes


O(n


2


p)


time to complete the enlarged problem. Let the enlarged input size be m. The en-


larged problem size is therefore m


2


. By equating the two expressions for the enlarged
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problem size, n


2


p = m


2


, we arrive at m = n


p


p. From the analysis above (Equa-


tion 9.2), by substituting n with m or n


p


p, the parallel time complexity becomes


O(


(n


p


p)


2


log(p)


p


2


), which is


O(


n


2


log(p)


p


):


Therefore, the scaled speedup is O(n


2


p�


p


n


2


log(p)


), which is


O(


p


2


log(p)


):


Similar to the superlinearity of the regular speedup analysis, the scaled speedup is


also superlinear when the parallel algorithm is compared to the pure serial algorithm.


Again, we note that the fastest serial case should be used for speedup analysis; the


second analysis is presented for completeness.


An alternate scalability metric is memory-bound scaled speedup (Sun & Ni, 1993),


which measures the increase in possible problem size with increasing number of pro-


cessors, each with limited available memory. For our approach, this measure is linear


since adding one more processor translates to an increase in problem size of one more


subset of the training data that �ts on one processor. That is, our approach is scalable


according to the memory-bound scaled speedup metric. The next section describes


our experiments and results on the meta-learning strategies.


9.2.4 Empirical simulation


We ran a series of experiments to test our strategies based on the splice junc-


tion prediction task. Four di�erent learning algorithms (ID3, CART, WPEBLS, and


BAYES) were used. As in experiments with arbiter trees, we varied the number of


subsets from 2 to 64 and the equal-size subsets were disjoint with proportional par-


titioning of classes. Figure 9.5 and 9.6 plot our estimated speedup calculated from


measured timing statistics.


However, we measured the CPU time taken to generate each arbiter and approx-


imate the overall CPU time of meta-learning, had we executed the code in a parallel
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Figure 9.5: Speedup of simulated parallel meta-learning over serial meta-learning.


environment. The approximation is calculated by summing over the longest time


needed to generate an arbiter at each level of the arbiter tree. As noted above, the


cost of classi�cation needed for selecting examples for the arbiter training sets is not


included. Also, the e�ects of communication and multiple I/O channels on speed are


not taken into account, as well as preprocessing such as data partitioning. In addi-


tion, since our training set of 2,500+ examples is still relatively small, we duplicated


each example ten times in each subset before learning begins. This also has the e�ect


of increasing the size of each arbiter training set by ten. Note that a training set


with 25,000+ examples is still a relatively small set, but due to the limitation of the


current serial implementation, much larger sets require more computer resources than


currently available to us.


In Figure 9.5 we plot the speedup of the parallel meta-learning case (approx-


imated) with respect to the time for meta-learning using only one processor. In


Figure 9.6 we plot the speedup of the approximation of the parallel meta-learning


case with respect to the time used by the pure sequential algorithm (without meta-


learning). The plotted results are from arbiter trees trained with the di�erent selection


rule and the arbiter training set size limited to the size of the initial training subset
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Figure 9.6: Speedup of simulated parallel meta-learning over pure serial learning.


size. All timing statistics were obtained from an Sun IPX workstation.


As shown in Figure 9.5, speedup was observed in all cases as expected. All speedup


curves approximate O(p= log(p)), derived in Section 9.2.2. Compared to the pure


sequential version of the algorithms (Figure 9.6), our strategies posted small speedup,


except in the WPEBLS case, which showed, as expected, superlinear speedup. The


small speedup observed in the other three algorithms is mainly due to the relatively


small data set we were using (25,000+ training examples) and their low order time


complexities (Section 9.1.1). In addition, the overhead of invoking the training and


classi�cation processes becomes signi�cant when the data set is small, which is the


case in our experiments. Next, we discuss our parallel implementation and empirical


experiments on very large data sets.


9.2.5 Parallel implementation


The hierarchical meta-learning strategies were implemented on a parallel and dis-


tributed platform based on the message-passingmodel. To satisfy our goal of portabil-


ity, we chose PVM (Parallel Virtual Machine) (Geist et al., 1993) to provide message
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Figure 9.7: Processor allocation for each node in a binary arbiter/combiner tree with


8 leaf nodes.


passing support|PVM supports a common interface for message passing among ma-


chines of diverse architectures. The computing platform we used consists of eight


HP 9000/735 workstations on a dedicated FDDI (Fiber Distribution Data Interface)


network.


Figure 9.7 depicts how the 8 processors (P0-P7) are allocated to a binary ar-


biter/combiner tree with 8 leaf nodes. At the leaf level, the 8 processors generate 8


base classi�ers, which are then used to produce predictions on the validation set. At


the �rst tree level, 4 of the 8 processors become parent processors and each of them


receives predictions from its 2 respective child processors, one of which is the parent


processor itself. The other 4 processors are left idle. Each parent processor then gen-


erates the meta-level training set and the meta-level classi�er. Then, at the second


tree level, 2 of the 4 processors become parent processors. The process is repeated


until the meta-classi�er at the root is formed.


Because of the hierarchical nature of an arbiter/combiner tree, it is unavoidable


to leave half of the active processors more or less idle when each level of the tree is


formed. That is, not all the processors are in use at all times. Also, each node in an
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arbiter/combiner tree is a synchronization point, which reduces parallelism. However,


individual subtrees are independent of each other and are built asynchronously.


With 8 processors, we only experimented with binary trees. Higher-order trees


would require more processors (for example, a two-level 4-ary tree would need 16


processors). Although we are limited to 8 physical processors, we can always simulate


multiple virtual processors on each processor (which is not included in this study).


9.2.6 Experiments on the parallel implementation


To reduce the need of transferring large data �les across the network from remote


�le systems, we stored the necessary data for each processor on its local �le system.


However, some of the local �le systems are small on our 8-processor system. Hence,


the size of the data �les is limited by the smallest local �le system among the 8


processors. Currently, we can run parallel experiments on all 8 processors with up 5


million examples.


We varied the number of examples from 1,000 to 5 million. The time results


reported here measure the elapsed time between the start and the end of the learn-


ing process, which includes the communication overhead among processors. Data


preparation and distribution prior to learning are not included in our time measure-


ments. Each plotted point is the average of �ve runs on di�erent data sets produced


by our arti�cial data generator using di�erent random seeds. We ran experiments


using di�erent combinations of learning algorithms (ID3, CART, BAYES, and CN2)


and hierarchical meta-learning schemes (arbiter tree, class-combiner tree, and class-


attribute-combiner tree).


Figure 9.8 plots the elapsed learning time against the number of training examples.


Both axes are in log scale. Each plot in the �gure shows the results from a learning


algorithm used in the three di�erent hierarchical meta-learning schemes. The plots


for CART and CN2 stop at 100,000 examples because CART started to core dump
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Figure 9.8: Training time for parallel meta-learning on 8 processors (grouped by


learning algorithms).


and CN2 ran out of memory with 500,000 or more examples.


As expected, the class-attribute-combiner tree scheme takes more processing time


the class-combiner tree scheme since the meta-level training set in the �rst scheme


includes the original attributes of the training examples. The arbiter-tree scheme


seems to be between the two combiner tree schemes. Although the arbiter-tree scheme


usually create fewer examples in the meta-level training set, each example has all the


attributes from the original training data.


We group the timing results by hierarchical meta-learning schemes in Figure 9.9.


Both axes are in log scale. Each plot shows the results from a hierarchical meta-


learning scheme using the four di�erent learning algorithms. We observe that, as


expected, CN2 takes longer than the other three learning algorithms in processing


the training data. Furthermore, CN2's time consumption increases more rapidly than
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Figure 9.9: Training time for parallel meta-learning on 8 processors (grouped by


schemes).







154


the others'. These results are consistent with the empirical timing results from serial


execution.


Figure 9.10 shows the speedup of our parallel meta-learning implementation on 8


processors over pure serial learning. We note that superlinear speedup (more than 8


in our case) is possible because we are using the pure serial learning case for compari-


son. Experiments were not performed on running the parallel meta-learning schemes


serially (because as we see later, some pure serial algorithms are quite e�cient with


relatively large data sets). Each graph presents results from a hierarchical meta-


learning scheme using the four di�erent learning algorithms. Because CART core


dumped with di�erent number of examples in the serial and parallel cases, only the


speedup for training from 1,000 to 10,000 examples can be calculated. Since CN2


ran out of memory with more than 10,000 examples, speedup for CN2 can only be


computed for processing 1,000 to 10,000 examples.


Substantial speedup is observed for CN2 with as few as 5,000 examples. CART


shows some, but not sizeable, speedup at the few data points we can gather. However,


for ID3 and BAYES, we observe that the parallel meta-learning schemes are not


worthwhile until the training set contains more than one million examples. The


parallel case is not faster than the serial case with up to about 1 million examples


(speedup � 1). With 5 million examples, ID3 shows some speedup while BAYES


achieves substantial speedup. Because the class-combiner tree scheme takes less time


than the other two schemes, larger speedup is obtained.


CN2's superlinear time requirement leads to large speedup in a parallel environ-


ment. ID3 and BAYES are quite e�cient in processing up to about 1 million examples


in a serial environment. That is, parallel meta-learning is greatly bene�cial to super-


linear learning algorithms like CN2 in terms of speed. In terms of scalability, parallel


meta-learning is bene�cial to ID3 and BAYES when the memory requirement for


processing large amounts of data is getting close to or exceeds the available resources


on one processor (sizable speedup was obtained with 5 million examples).
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Figure 9.10: Speedup of parallel meta-learning on 8 processors over serial learning.
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Our current parallel implementation is used to demonstrate the utility of hierar-


chical meta-learning in a parallel and distributed environment. Re�nements of the


implementation is left for future work. For example, the tradeo� between classi�-


cation time (during training) and communication time for exchanging classi�ers and


meta-classi�ers was not studied. We mentioned earlier that communicating the clas-


si�ers among the processors can make use of the idle processors for classi�cation while


the active ones are used for training. This method is advantageous if the communi-


cation time is small compared to the classi�cation time. Because we are limited to


8 processors, some of our results will improve when more processors are available|


higher degree of parallelism, higher order trees, larger data sets... Furthermore, if we


relax our portability goal, using customized platform-dependent message-passing rou-


tines rather than portable ones reduces communication overhead among processors


and improves overall time performance.


9.3 Summary


The theoretical time complexity of �ve learning algorithms was analyzed. WPE-


BLS and CN2 clearly exhibit superlinear complexity with respect to the number of


training examples. Although ID3, CART, and BAYES show linear complexity with


respect to training set size, practical time performance indicates superlinear behav-


ior. That is, all �ve algorithms exhibit superlinear time performance when very large


training sets are encountered. In fact, at a certain point, the learning algorithms


ran out of memory and terminated abnormally. Quadratic approximations estimate


that CN2 would take 3.5 months, and WPEBLS 6.4 months, to process one million


training examples if they were given su�cient memory resources. Certainly, these


estimates will change with more powerful machines in the future.


Theoretical speedup and scalability of our hierarchical meta-learning schemes were


analyzed. Empirical results from our parallel implementation show that CN2 (and


probably WPEBLS) bene�ts greatly from our methods. Other superlinear-time learn-
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ing algorithms like genetic algorithms and neural networks can also bene�t much


from our methods. Parallel hierarchical meta-learning is more advantages for ID3


and BAYES when their memory requirement for processing large amounts of data is


getting close to or exceeds the available resources on one processor.
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Chapter 10


Multistrategy Meta-Learning


The objective here is to improve prediction accuracy by exploring the diversity of


multiple learning algorithms through meta-learning. This is achieved by a basic


con�guration which has several di�erent base learners and one meta-learner that


learns from the output of the base learners. The meta-learner may employ the same


algorithm as one of the base learners or a completely distinct algorithm. The training


set for the meta-learner (meta-level training data) varies according to the strategies


described in Section 3.4 and is quite di�erent from the original training set. We


experimented with three types of meta-learning strategies (combiner, arbiter, and


hybrid). Each base-learner generates a base classi�er and the meta-learner generates


a meta-classi�er. Note that the meta-learner does not aim at picking the \best" base


classi�er; instead it tries to combine the classi�ers. That is, the prediction accuracy of


the overall system is not limited to the most accurate base classi�er. It is our intention


to generate an overall system that outperforms the underlying base classi�ers.


We �rst study, in Section 10.1, multistrategy meta-learning on unpartitioned data,


where base classi�ers are trained on the whole data set. We then explore, in Sec-


tion 10.2, multistrategy meta-learning on partitioned data, where base classi�ers are


trained on disjoint data subsets. Lastly, in Section 10.3, we compare our combiner


strategy with the related stack generalization proposed by Wolpert (1992). The com-
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Figure 10.1: Multistrategy Meta-learning on Unpartitioned Data


parison is based on whole (unpartitioned) data sets.


10.1 Multistrategy Meta-learning on Unpartitioned


Data


Here we investigate multistrategy meta-learning on whole (unpartitioned) data


sets (Chan & Stolfo, 1993a). Each of the base learners is provided with the entire


training set of raw data. That is, a di�erent learning algorithm is applied to the entire


data set to generate the base classi�ers and then learn a meta-classi�er to integrate the


base ones. Figure 10.1 depicts this approach. This is a common approach adopted by


much of the work in using multiple algorithms to improve overall prediction accuracy.


However, we try to learn correlations rather than using di�erent variations of voting.


The predictions used in the training set of the meta-learner were generated by a


two-fold cross validation scheme. The training set is �rst split in two halves. Each


of the three base classi�ers were trained on the �rst half and the second half is used
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to generate predictions. Similarly, each base classi�er is trained on the second half


and the �rst half is used to generate predictions. The predictions from the two halves


are merged and then used in constructing the training set for the meta-learner. The


objective is to mimic the behavior of the learned classi�ers when unseen instances


are classi�ed. That is, the meta-learner is trained on predictions of unseen instances


in the training set. The base learners are also trained on the entire training set to


generate base classi�ers, which are then used with the learned meta-classi�er in the


classi�cation process.


10.1.1 Experiments


We performed experiments on the di�erent schemes for the combiner, arbiter,


and hybrid strategies. Four inductive learning algorithms: ID3, CART, WPEBLS


and BAYES and two data sets: secondary structures (SS) and splice junctions (SJ)


were used in the experiments. Di�erent combinations of three base and one meta-


learner are explored on the two data sets and the results are presented in Tables 10.1


through 10.4. Each table has two subtables and each subtable presents results from


a di�erent combination of base learners. Results for the two data sets with single-


strategy classi�ers are displayed in Table 10.5. In addition, we experimented with a


windowing scheme used in Zhang's (1992) work, which is speci�c to the secondary


structure data. This scheme is similar to the class-combiner scheme described above.


However, in addition to the three predictions present in one training example for


the meta-learner, the guesses on either side of the three predictions in the sequence


(windows) are also present in the example. We denote this scheme as class-window-


combiner (or class-window-combiner in the tables).


Furthermore, several non-meta-learning approaches were applied for comparison.


vote is a simple voting scheme applied to the predictions from the base classi�ers. freq


predicts the most frequent correct class with respect to a combination of predictions







161


Table 10.1: Summary of prediction accuracy (%) for secondary structures (SS)


(Part 1).


Base learners: ID3, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 56.3+ 55.8+ 55.7+ 55.1


class-attribute-combiner 60.3+ 55.4 48.7 48.5


binary-class-combiner 55.6+ 56.6+ 56.6+ 52.7


class-window-combiner 56.9+ 54.5 49.9 50.6


di�erent-arbiter 60.7+ 56.4+ 56.1+ 53.3


di�erent-incorrect-arbiter 59.8+ 56.4+ 53.9 52.4


di�erent-class-attribute-hybrid 60.5+ 56.5+ 55.7+ 54.4


di�erent-incorrect-class-attribute-hybrid 59.1+ 56.4+ 54.1 53.1


vote 56.3+


freq 56.5+


vote-b 57.1+


Base learners: BAYES, ID3 & CART


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 61.4 62.1 62.1 57.3


class-attribute-combiner 62.1 61.0 51.0 50.4


binary-class-combiner 61.1 61.9 61.7 54.4


class-window-combiner 60.7 60.1 52.5 53.3


di�erent-arbiter 62.2+* 57.2 57.6 57.6


di�erent-incorrect-arbiter 60.8 58.3 57.7 56.6


di�erent-class-attribute-hybrid 62.1 61.5 58.9 58.5


di�erent-incorrect-class-attribute-hybrid 60.4 58.6 58.0 56.7


vote 60.6


freq 62.1


vote-b 60.9


Keys:


* better than the best single strategy


+ better than the best base classi�er







162


Table 10.2: Summary of prediction accuracy (%) for secondary structures (SS)


(Part 2).


Base learners: BAYES, ID3 & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 60.4 62.1 62.1 55.9


class-attribute-combiner 61.9 60.6 51.0 52.6


binary-class-combiner 60.5 61.8 61.8 55.2


class-window-combiner 59.9 59.5 51.4 52.9


di�erent-arbiter 62.0 57.4 57.3 55.7


di�erent-incorrect-arbiter 60.8 59.0 56.6 54.4


di�erent-class-attribute-hybrid 61.6 60.7 57.9 56.8


di�erent-incorrect-class-attribute-hybrid 60.8 59.3 56.1 54.6


vote 59.3


freq 62.2+*


vote-b 59.3


Base learners: BAYES, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 60.7 62.1 61.8 56.8


class-attribute-combiner 61.4 60.5 50.4 50.9


binary-class-combiner 60.5 61.7 61.3 52.6


class-window-combiner 59.7 57.9 52.6 54.2


di�erent-arbiter 62.0 58.1 57.4 54.6


di�erent-incorrect-arbiter 61.4 58.6 56.8 52.0


di�erent-class-attribute-hybrid 61.1 60.3 58.0 56.1


di�erent-incorrect-class-attribute-hybrid 59.4 59.1 59.1 59.2


vote 59.6


freq 60.7


vote-b 60.9


in the training set


1


. That is, for a given combination of predictions (m


c


combinations


for m classes and c classi�ers), freq predicts the most frequent correct class in the


training data. vote-b is a simple voting scheme applied to the predictions from the


binary base classi�ers.


We note that we did not repeat the experiments over many di�erent training and


1


freq was suggested by Wolpert (1993).
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Table 10.3: Summary of prediction accuracy (%) for splice junctions (SJ) (Part 1).


Base learners: ID3, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 95.1+ 94.8 94.8 72.7


class-attribute-combiner 96.6+* 95.0+ 95.9+ 95.5+


binary-class-combiner 95.1+ 94.4 94.4 74.1


di�erent-arbiter 96.4+ 94.7 95.5+ 95.3+


di�erent-incorrect-arbiter 96.6+* 95.8+ 95.8+ 95.5+


di�erent-class-attribute-hybrid 96.1+ 94.5 94.8 95.3+


di�erent-incorrect-class-attribute-hybrid 95.9+ 94.2 95.0+ 95.0+


vote 95.0+


freq 95.0+


vote-b 95.1+


Base learners: BAYES, ID3 & CART


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 95.6 96.6+* 95.3 74.3


class-attribute-combiner 97.2+* 96.4 95.0 96.9+*


binary-class-combiner 95.8 96.2 96.2 75.2


di�erent-arbiter 96.9+* 95.3 95.6 95.9


di�erent-incorrect-arbiter 96.9+* 95.5 95.9 96.2


di�erent-class-attribute-hybrid 95.8 94.5 95.1 95.9


di�erent-incorrect-class-attribute-hybrid 95.3 94.2 94.8 95.5


vote 95.6+


freq 95.9+


vote-b 95.6


Keys:


* better than the best single strategy


+ better than the best base classi�er


test sets so our results presented here may or may not be due to statistical variation.


10.1.2 Results


There are two ways to analyze the results. First, we look at whether the employ-


ment of a meta-learner improves accuracy with respect to the underlying three base







164


Table 10.4: Summary of prediction accuracy (%) for splice junctions (SJ) (Part 2).


Base learners: BAYES, ID3 & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 97.2+* 96.9+* 96.9+* 73.7


class-attribute-combiner 97.6+* 96.9+* 95.9 96.1


binary-class-combiner 96.6+* 96.1 96.1 75.6


di�erent-arbiter 96.2 95.6 95.8 96.1


di�erent-incorrect-arbiter 96.1 95.3 96.6+* 95.6


di�erent-class-attribute-hybrid 95.6 94.4 94.5 95.0


di�erent-incorrect-class-attribute-hybrid 95.1 94.4 94.2 95.0


vote 97.0+*


freq 97.0+*


vote-b 96.1


Base learners: BAYES, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 97.0+* 96.6+* 95.3 73.7


class-attribute-combiner 97.2+* 96.4 95.3 96.2


binary-class-combiner 96.1 96.2 96.2 76.2


di�erent-arbiter 96.7+* 95.0 96.2 96.2


di�erent-incorrect-arbiter 96.6+* 95.0 95.8 96.2


di�erent-class-attribute-hybrid 94.8 94.2 94.7 94.5


di�erent-incorrect-class-attribute-hybrid 94.7 94.2 94.5 94.8


vote 97.0+*


freq 96.9+*


vote-b 96.2


Table 10.5: Prediction accuracy (%) of single-strategy classi�ers


Data Set/Algorithm BAYES ID3 CART WPEBLS


Secondary Structure (SS) 62.1 55.4 50.8 48.1


Splice Junction (SJ) 96.4 93.9 94.8 94.4
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classi�ers. (The presence of an improvement is denoted by a `+' in the tables.) For


both sets of data, improvements were always achieved when BAYES was used as the


meta-learner and the other three learning algorithms we used as the base learners,


regardless of the meta-learning strategies.


Now let us consider various combinations of meta-learner and strategies with any


of base learning algorithms. For the SJ data, a higher or equal accuracy was con-


sistently attained when BAYES was the meta-learner in the class-attribute-combiner


strategy. Similarly, higher accuracy was attained when ID3 served as the meta-learner


in the class-combiner and class-attribute-combiner strategies, regardless of the base


learners used. Improvements were also observed in the vote and freq strategies. For


the SS data, none of the various combinations of meta-learners and strategies attained


a consistent improvement in overall accuracy.


Next, we consider whether the use of meta-learning achieves higher accuracy than


the most accurate single-strategy learner (BAYES). (The presence of an improvement


is denoted by a `*' in the tables.) For the SJ data, an improvement was consistently


achieved when BAYES served as the meta-learner in the class-attribute-combiner


strategy, regardless of the base learners used. In fact, when the base learners were


BAYES, ID3, and CART, the overall accuracy was the highest obtained. For the SS


data, almost all the results did not outperform BAYES as a single-strategy learner.


In general, the combiner strategies performed more e�ectively than the arbiter and


hybrid strategies. To our surprise, the hybrid schemes did not improve the arbiter


strategies. In addition, Zhang's (1992) class-window-combiner strategy for the SS


data did not improve accuracy with the base and meta-learners used here. His study


employed a neural net algorithm and di�erent Bayesian and nearest-neighbor learners


than those reported here.


The two data sets chosen represent two di�erent kinds of data sets: one is di�cult


to learn (SS) (50+% accuracy) and the other is easy to learn (SJ) (90+% accuracy).


Our experiments indicate that some of our meta-learning strategies improve accuracy
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in the SJ data and are more e�ective than the non-meta-learning strategies. However,


in the SS data, both meta-learning and non-meta-learning strategies are comparable.


This can be attributed to the quality of predictions from the base classi�ers for the


two data sets. Consider the statistics we gathered from the predictions for the test set


from classi�ers trained by BAYES, ID3, andWPEBLS (other combinations of learners


have similar statistics). In the SJ data set, on 89% of the instances all predictions


from the three learned classi�ers were correct, on 7% two predictions were correct,


on 2% only one, and on 1% none (all incorrect). In the SS data set, on 29% of the


instances all three predictions were correct, on 33% only two, on 18% only one, and on


20% none. The high percentage of having one or none correct out of three predictions


in the SS data set might greatly hinder the ability of meta-learning to work. One


possible solution is to increase the number of base classi�ers to lower the percentage


of having one or none correct predictions.


10.1.3 Discussion


Unlike Wolpert (1992) and Zhang et al.'s (1992) reports, we present results from


all the combinations of presented strategies, base learners, and meta-learners. We


have shown that improvements can be achieved consistently with a combination of a


meta-learner and collection of base learners across various strategies in both data sets.


Similarly, better results were achieved for various combinations of di�erent strategies


and meta-learners across all base learners in the SJ data set. Improvements on the


already high accuracy obtained from the base learners in the SJ data set reects the


viability of the meta-learning approach.


As mentioned in the previous section, the combiner schemes generally performed


more e�ectively than the arbiter or hybrid schemes. This suggests that combining the


results is more bene�cial than arbitrating among them. In addition, the training set


for the combiner strategy includes examples derived from the entire original training


set, whereas the one for the arbiter or hybrid strategy includes only examples chosen
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by a selection rule from the original set. That is, the training set for the arbiter or


hybrid strategy is usually smaller than the one for the combiner strategy and hence


contains less information. (This crucial fact may not be exhibited in larger learning


tasks with massive amounts of data.)


Among the combiner schemes, the class-attribute-combiner scheme generally per-


formed more e�ectively than the others. This might be due to the additional informa-


tion (attribute vectors) present in the training examples, suggesting that information


from the predictions alone is not su�cient to achieve higher prediction accuracy.


To our surprise, the binary-class-combiner scheme did not perform more e�ectively


than the class-combiner scheme. We postulate that more specialized binary classi�ers


would provide more precise information for the meta-learner. However, that was not


the case in our experiments.


We also postulate that a probabilistic learner like BAYES would be a more e�ective


meta-learner due to the relatively low regularity in the training data for meta-learners


and its probabilistic means of combining evidence. Our empirical results indeed show


that BAYES is a more e�ective meta-learner.


10.2 Multistrategy Meta-learning on Partitioned


Data


Here we use meta-learning to combine di�erent learners to improve prediction


accuracy and speed (Chan & Stolfo, 1993c). The dual objectives are to improve ac-


curacy using multiple algorithms and to speed up the learning process by parallel and


distributed processing in a divide-and-conquer fashion. Multiple learning algorithms


are used on di�erent subsets of the data and meta-learning is applied to the base-


classi�ers generated from the di�erent subsets. That is, instead of utilizing the same


learning algorithm to train the base classi�ers (as in previous chapters), di�erent


algorithms are employed. Figure 10.2 illustrates this approach.
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Meta-Learning


C1 C2 C3 Cn


T1 T2 T3 Tn


Training


Data


L1 L2 L3 Ln


...


Figure 10.2: Multistrategy meta-learning on partitioned data.


10.2.1 Issues


Load balancing is essential in minimizing the overall training time due to the vari-


ance in completion times of di�erent algorithms. However, we have to determine how


to allocate the data subsets as well as the processors. One approach is to evenly dis-


tribute the data among the learners and allocate processors according to their relative


speeds. Another approach is that each learner has the same number of processors


and data are distributed accordingly. That is, we have to decide whether we allocate


a uniform number of processors or a uniform amount of data to each learner. Since


the amount of data a�ects the quality of the learned concepts, it is more desirable to


evenly distribute the data so that the learners are not biased at this stage. That is,


slower learners should not be penalized with less information and thus they should


be allocated more processors.
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This raises the question of whether data should be distributed at all; that is, should


each learner have all the data (as discussed in the previous section)? Obviously, if


each learning algorithm has the entire set of data, it would be slower than when it


has only a subset of the data. It is also clear that the more data each learner has,


the more accurate the generated concepts will be. Thus, there is a tradeo� between


speed and quality. But in problems with very large databases, we may have no choice


but to distribute subsets of the data.


Another question is what the data distribution is for the data subsets. The subsets


can be disjoint or overlapped according to some scheme. We prefer disjoint subsets


because it allows the maximum degree of parallelism. The classes represented in the


subsets can be distributed randomly, uniformly, or according to some scheme. Since


maintaining the same class distribution in each subset as in the entire set does not


create the potential problem of missing classes in certain subsets, it is our preferred


distribution scheme.


10.2.2 Experiments


Our approach was empirically evaluated with four inductive learning algorithms


(ID3, CART, WPEBLS and BAYES) and two data sets (splice junctions and sec-


ondary structures).


The base-learners are �rst trained on the data subsets and the whole training set


is then classi�ed by the learned base-classi�ers. Since the base-learners are trained on


only part of the whole training set, classifying the rest of the set mimics the behavior


of the learned classi�ers when unseen instances are classi�ed. That is, the meta-


learner is partially trained on predictions of unseen instances in the training set. The


base-classi�ers' predictions on the training set are used in constructing the training


set for the meta-learner.


We performed experiments on the di�erent schemes for the combiner, arbiter, and
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Table 10.6: Summary of prediction accuracy (%) for the secondary structure data


(Part 1).


Base learners: ID3, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 53.1 51.8 51.8 53.8


class-attribute-combiner 58.0+ 50.8 48.5 49.1


binary-class-combiner 52.8 52.4 52.2 52.2


di�erent-arbiter 55.2+ 54.4+ 54.1+ 54.3+


di�erent-incorrect-arbiter 55.2+ 53.7 54.5+ 54.1+


di�erent-class-attribute-hybrid 55.5+ 54.9+ 54.4+ 54.3+


di�erent-incorrect-class-attribute-hybrid 55.0 54.1+ 54.1+ 54.0+


class-window-combiner 56.5+ 54.7+ 51.8 53.4


vote 54.7+


freq 51.9


Base learners: BAYES, ID3 & CART


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 57.9 53.8 54.5 54.9


class-attribute-combiner 58.8 54.5 50.9 52.2


binary-class-combiner 57.9 57.4 57.2 54.8


di�erent-arbiter 59.5 58.8 58.5 58.1


di�erent-incorrect-arbiter 59.0 58.6 58.5 58.4


di�erent-class-attribute-hybrid 59.1 58.8 58.6 58.6


di�erent-incorrect-class-attribute-hybrid 58.9 58.8 58.6 58.9


class-window-combiner 58.0 55.8 53.0 53.6


vote 58.5


freq 57.1


Keys:


+ better than the 3 base classi�ers (subsets)


* better than all 4 classi�ers (subsets)


hybrid strategies. Di�erent combinations of three base and one meta-learner were


explored on the two data sets and the results are presented in Tables 10.6 through


10.9. Each table has two subtables and each subtable presents results from a di�erent


combination of base learners. The �rst column of a subtable denotes the di�erent


schemes and the next four columns denote the four di�erent meta-learners. Results
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Table 10.7: Summary of prediction accuracy (%) for the secondary structure data


(Part 2).


Base learners: BAYES, ID3 & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 54.7 53.8 53.4 56.5


class-attribute-combiner 59.7 53.0 49.0 50.3


binary-class-combiner 57.4 54.8 54.9 54.4


di�erent-arbiter 58.0 57.6 57.2 57.5


di�erent-incorrect-arbiter 57.9 57.4 57.5 57.4


di�erent-class-attribute-hybrid 57.8 57.8 57.6 57.7


di�erent-incorrect-class-attribute-hybrid 58.0 57.8 57.6 57.5


class-window-combiner 59.4 56.8 53.6 53.4


vote 57.8


freq 54.0


Base learners: BAYES, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 55.7 54.0 53.1 54.9


class-attribute-combiner 59.3 53.0 49.7 49.8


binary-class-combiner 55.3 52.4 53.9 54.3


di�erent-arbiter 57.2 56.8 56.8 56.6


di�erent-incorrect-arbiter 57.0 56.5 56.6 56.3


di�erent-class-attribute-hybrid 57.3 56.9 56.8 56.7


di�erent-incorrect-class-attribute-hybrid 57.0 56.4 56.4 56.5


class-window-combiner 59.2 55.3 53.4 55.2


vote 57.2


freq 54.0


for the two data sets with single-strategy classi�ers are displayed in Table 10.10. In


addition, we experimented with a windowing scheme used in Zhang et al.'s (1992)


work, which is speci�c to the SS data. This scheme is similar to the class-combiner


scheme. However, in addition to the three predictions present in one training example


for the meta-learner, the guesses on either side of the three predictions in the sequence


(windows) are also present in the example. We denote this scheme as class-window-


combiner in the tables.
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Table 10.8: Summary of prediction accuracy (%) for the splice junction data (Part


1).


Base learners: ID3, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 95.1+ 95.0+ 95.0+ 71.5


class-attribute-combiner 96.2+* 94.8+ 94.8+ 95.0+


binary-class-combiner 95.8+* 96.1+* 95.6+ 75.5


di�erent-arbiter 95.1+ 95.0+ 95.1+ 95.1+


di�erent-incorrect-arbiter 95.1+ 95.1+ 95.1+ 95.1+


di�erent-class-attribute-hybrid 95.1+ 95.0+ 95.1+ 95.1+


di�erent-incorrect-class-attribute-hybrid 95.1+ 95.1+ 95.1+ 95.1+


vote 95.1+*


freq 95.6+*


Base learners: BAYES, ID3 & CART


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 94.5 95.9+* 95.5 73.7


class-attribute-combiner 96.7+*! 96.1+* 95.5 95.1


binary-class-combiner 95.5 95.6 95.0 76.0


di�erent-arbiter 95.0 95.0 95.0 95.0


di�erent-incorrect-arbiter 95.0 94.5 94.5 95.0


di�erent-class-attribute-hybrid 95.0 95.0 95.0 94.8


di�erent-incorrect-class-attribute-hybrid 95.0 94.8 94.8 94.8


vote 95.0


freq 95.8+*


Keys:


+ better than the 3 base classi�ers (subsets)


* better than all 4 classi�ers (subsets)


! better than all 4 classi�ers (full set)


Furthermore, two non-meta-learning approaches were applied for comparison. vote


is a simple voting scheme applied to the predictions from the base classi�ers. freq


predicts the most frequent correct class with respect to a combination of predictions


in the training set


2


. That is, for a given combination of predictions (m


c


combinations


2


freq was suggested by Wolpert (1993).
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Table 10.9: Summary of prediction accuracy (%) for the splice junction data (Part


2).


Base learners: BAYES, ID3 & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 95.8+* 95.5 95.1 72.7


class-attribute-combiner 97.0+*! 95.5 95.1 95.6


binary-class-combiner 96.2+* 95.1 95.0 76.5


di�erent-arbiter 95.9+* 95.9+* 95.9+* 95.5


di�erent-incorrect-arbiter 95.9+* 95.9+* 95.9+* 95.9+*


di�erent-class-attribute-hybrid 95.9+* 95.9+* 95.9+* 95.5+*


di�erent-incorrect-class-attribute-hybrid 95.9+* 95.8+* 95.8+* 95.8+*


vote 95.9+*


freq 95.3


Base learners: BAYES, CART & WPEBLS


Meta-learner


Scheme BAYES ID3 CART WPEBLS


class-combiner 96.7+*! 95.9+* 96.1+* 72.4


class-attribute-combiner 97.2+*! 95.9+* 95.9+* 95.8+*


binary-class-combiner 95.9+* 94.8 95.6 93.6


di�erent-arbiter 96.9+*! 96.9+*! 96.9+*! 96.7+*!


di�erent-incorrect-arbiter 96.9+*! 96.9+*! 96.6+*! 96.7+*!


di�erent-class-attribute-hybrid 96.9+*! 96.9+*! 96.9+*! 96.7+*!


di�erent-incorrect-class-attribute-hybrid 96.9+*! 96.7+*! 96.7+*! 96.7+*!


vote 96.9+*!


freq 96.7+*!


Table 10.10: Single-strategy Prediction Accuracy (%)


Data set/Algorithm BAYES ID3 CART WPEBLS


Secondary Structure (SS) (full set) 62.1 55.4 50.8 48.1


Average of 3 subsets 60.2 53.9 49.5 47.2


Splice Junction (SJ) (full set) 96.4 93.9 94.8 94.4


Average of 3 subsets 95.7 88.9 94.1 93.4







174


for m classes and c classi�ers), freq predicts the most frequent correct class in the


training data.


We note that we did not repeat the experiments over many di�erent training and


test sets so our results presented here may or may not be due to statistical variation.


10.2.3 Results


There are three ways to analyze the results. First, we consider whether the em-


ployment of a meta-learner improves accuracy with respect to the underlying three


base classi�ers learned on a subset. (The presence of an improvement is denoted by


a `+' in the tables.) For the SJ data, improvements were almost always achieved


when the combinations of base learners are ID3-CART-WPEBLS (an improvement


from 94.1% up to 96.2%) and BAYES-CART-WPEBLS (from 95.7% up to 97.2%),


regardless of the meta-learners and strategies. For the SS data, when the combination


of base-learners is ID3-CART-WPEBLS, more than half of the meta-learner/strategy


combinations achieved higher accuracy than any of the base learners (an improvement


from 53.9% up to 58.0%).


Second, we examine whether the use of meta-learning achieves higher accuracy


than the most accurate classi�er learned from a subset (BAYES in this case). (The


presence of an improvement is denoted by a `*' in the tables.) For the SJ data, the


class-attribute-combiner strategy with BAYES as the meta-learner always attained


higher accuracy (an improvement from 95.7% up to 97.2%), regardless of the base


learners and strategies. For the SS data, all the results did not outperform BAYES


as a single base learner.


Third, we study whether the use of meta-learning achieves higher accuracy than


the most accurate classi�er learned from the full training set (BAYES in this case).


(The presence of an improvement is denoted by a `!' in the tables.) For the SJ data,


class-attribute-combiner strategy with BAYES as the meta-learner almost always at-
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tained higher accuracy (from 96.4% up to 97.2%), regardless of the base learners and


strategies. For the SS data, all the results did not outperform BAYES.


In general, class-attribute-combiner is the more e�ective scheme and BAYES is the


more successful meta-learner. Therefore, it reinforces our conjecture that combining


results are more e�ective than arbitrating among them and predictions alone may


not be enough for meta-learning. Compared to the results obtained and described in


the previous section, smaller improvements were observed here. This is mainly due


to the smaller amount of information presented to the base learners. Surprisingly,


the hybrid schemes did not improve the arbiter strategies. Also, Zhang's (1992)


class-window-combiner strategy for the SS data did not improve accuracy with the


base and meta-learners used here. He uses a neural net, and di�erent Bayesian and


exemplar-based learners.


As mentioned in the previous section, the combiner schemes generally performed


more e�ectively than the arbiter or hybrid schemes. This suggests that combining


the base predictions is more bene�cial than arbitrating among them. In addition,


the training set for the combiner strategy includes examples derived from the entire


original training set, whereas the one for the arbiter or hybrid strategy includes only


examples chosen by a selection rule from the original set. That is, the training set


for the arbiter or hybrid strategy is usually smaller than the one for the combiner


strategy and hence contains less information. (This lack of information may not be


exhibited in larger learning tasks with massive amounts of data.)


Among the combiner schemes, the class-attribute-combiner scheme performed


more e�ectively than the others. This might be due to the additional information


(attribute vectors) present in the training examples, suggesting that information from


the predictions alone is not su�cient to achieve higher prediction accuracy. To our


surprise, the binary-class-combiner scheme did not perform more e�ectively than the


class-combiner scheme. We postulated that more specialized binary classi�ers would


provide more precise information for the meta-learner. However, this was not exhib-
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ited in our experimental results.


We also postulated that a probabilistic learner like BAYES would be a more


e�ective meta-learner due to the relatively low regularity in the training data for


meta-learners. Our empirical results indeed show that BAYES is a more e�ective


meta-learner.


10.3 Comparing Multistrategy Combiner with


Stacked Generalization


Wolpert's (1992) stacked generalization is very similar to our combiner strategy


(the class-combiner scheme in particular) with multiple learning algorithms for train-


ing base-classi�ers. The di�erence is how the meta-level (level-1 in Wolpert's terms)


training set is generated. In both methods cross-validation partitioning is used to


generate the meta-level training set.


k-fold cross-validation partitioning involves making k pairs of training and test


sets. To generate the k pairs, the original training set T is �rst partitioned into k


subsets: T


1


, T


2


, ..., T


k


. Then each of these subsets becomes a test set of a pair and


the union of the remaining subsets becomes the training set of the pair. For example,


when T


2


is the test set of a pair, the union of T


1


, T


3


, T


4


, ..., T


k


forms the training set


of the pair. A classi�er is learned from the training set of each pair and is applied


to the test set of the pair. That is, from k pairs of training and test sets, k sets


of predictions are obtained. Note that in each pair, the training and test sets are


disjoint. That is, the predictions from each pair are made on \unseen" data that are


not involved in training.


The predictions from the k pairs provides an approximation of how predictions are


made on unseen data by a classi�er learned from the whole original training set. In


both our combiner strategy and stacked generalization, these predictions constitute
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part of the meta-level training set.


Our combiner strategy uses 2-fold cross-validation partitioning, whereas stacked


generalization uses n-fold, where n is the number of training examples. That is,


combiner uses two pairs of training and test sets to generate the meta-level training


set, whereas stacked generalization uses n pairs. When k is n, the test set in each


pair has only one example and the training set has n � 1 examples. Intuitively,


n-fold cross-validation partitioning provides a closer approximation, and hence more


accurate meta-level training data, than 2�fold. However, n-fold is clearly much more


computationally expensive than 2-fold. The tradeo�s are further discussed through


the following experimental results (Fan et al., 1996).


10.3.1 Experiments


Three inductive learning algorithms (ID3, CART, and BAYES) and two molec-


ular biology sequence analysis data sets (secondary structures and splice junctions)


were used in our experiments. Results for combiner and stacked generalization were


obtained from 5-fold cross validation runs. Di�erent combinations of three base and


one meta-learner were applied to the two data sets and the results are shown in the


Table 10.11. Table 10.12 shows the prediction accuracy of individual algorithms for


the two data sets.


10.3.2 Results


There are several ways to look at the results. First, we see if the employment of


both combiner and stacked generalization improves prediction accuracy with respect


to the underlying three base classi�ers. As shown in Table 10.12, the accuracy of


single-strategy classi�ers (ID3 and CART) on secondary structures is around 57%.


The accuracy of both combiner and stacked generalization is about 61%. That is an


improvement of 4% or 173 (out of 4325) more examples correctly classi�ed. In the
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Table 10.11: Prediction accuracy of combiner and stack generalization for secondary


structure and splice junction data


Results from secondary structures


Base learners: ID3, CART & BAYES


Meta-learner in Stacked Generalization Meta-learner in Combiner


accuracy in percentage(%)


Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)


1 59.6 60.0 61.4 60.0 60.0 61.1


2 62.3 59.7 61.3 62.6 62.6 61.5


3 62.7 62.7 62.5 62.8 62.7 62.1


4 60.3 60.3 60.0 60.7 60.8 60.8


5 59.7 60.1 59.2 60.9 60.9 60.7


� 60.9 60.6 60.9 61.4 61.4 61.2


� 1.5 1.2 1.3 1.2 1.2 0.6


Results from splice junctions


Base learners: ID3, CART & BAYES


Meta-learner in Stacked Generalization Meta-learner in Combiner


accuracy in percentage (%)


Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)


1 95.6 95.8 94.8 95.0 95.1 94.8


2 96.1 96.4 95.8 96.4 96.9 95.6


3 95.5 95.5 96.2 95.8 95.8 96.4


4 96.7 96.2 96.2 96.6 96.2 96.1


5 95.0 95.6 93.9 95.1 95.6 93.9


� 95.8 95.9 95.4 95.8 95.9 95.4


� 0.7 0.4 1.0 0.7 0.7 1.0


splice junction data set (also shown in Table 10.12), the improvement of combiner and


stacked generalization (with average accuracy of around 95.5%) over single classi�ers


(ID3 and CART, average accuracy is around 92%) is 3.5%. These improvements are


signi�cant (more than one standard deviation). We also notice that in both the SS


and SJ data sets, the best single-strategy classi�er is BAYES. The accuracy of both


combiner and stacked generalization is close to that of BAYES. For the two particular


data sets under study and the particular combination of learning algorithms, we could


pick BAYES instead of using combiner or stacked generalization. However, if we do


not know apriori which learning algorithm generates the most accurate classi�er,
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Table 10.12: Prediction accuracy single-strategy classi�ers on secondary structures


and splice junction data


Single Classi�er Accuracy on SS


Learner


Fold ID3(%) CART(%) BAYES(%)


1 56.1 57.6 60.0


2 52.9 57.1 62.5


3 54.1 57.2 62.7


4 52.2 57.1 60.8


5 56.6 56.9 61.4


� 56.4 57.2 61.5


� 1.9 0.3 1.2


Single Classi�er Accuracy on SJ


Learner


Fold ID3(%) CART(%) BAYES(%)


1 90.1 93.4 95.1


2 91.2 84.8 96.9


3 90.4 94.0 95.3


4 89.7 94.5 95.3


5 88.4 93.9 94.5


� 90.0 94.1 95.4


� 1.0 0.6 0.9


combiner and stack generalization has demonstrated that they can achieve at least


the same level of accuracy as the most accurate underlying learning algorithm.


Second, we see which of combiner and stacked generalization has a higher accu-


racy improvement. The two methods are comparable, but combiner performs a little


better. For the secondary structure data set, combiner has an average of 0.5% higher


accuracy than stacked generalization 1% standard deviation, so their accuracy are


essentially the same. For the splice junction data set, their accuracy levels are nearly


the same.


Third, we examine the correlation between these two methods. We have applied


a simple approach to determine the number of examples that:


� they both correctly label,
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Table 10.13: Summary of correlation analysis between combiner and stacked gener-


alization.


Results on SS


Meta-learner: ID3 Meta-learner: CART


Fold SC CI IC SI DI Fold SC CI IC SI DI


1 2560 17 35 1699 14 1 2595 0 0 1730 0


2 2677 18 30 1594 6 2 2397 185 308 1325 110


3 2619 94 95 1493 24 3 2713 0 0 1612 0


4 2310 298 314 1280 123 4 2533 77 97 1579 39


5 2376 205 256 1395 93 5 2460 141 172 1486 66


Meta-learner: BAYES


Fold SC CI IC SI DI


1 2402 252 241 1336 94


2 2452 201 206 1394 72


3 2407 295 278 1253 92


4 2309 288 321 1270 137


5 2277 283 349 1272 144


Results on SJ


Meta-learner: ID3 Meta-learner: CART


Fold SC CI IC SI DI Fold SC CI IC SI DI


1 604 6 2 24 2 1 604 7 3 24 0


2 610 3 5 20 0 2 611 4 7 16 0


3 605 4 6 22 1 3 605 4 6 23 0


4 610 7 6 15 0 4 612 2 2 22 0


5 595 11 12 20 0 5 609 1 1 27 0


Meta-learner: BAYES


Fold SC CI IC SI DI


1 605 0 0 33 0


2 610 1 0 27 0


3 614 0 1 22 1


4 613 1 0 24 0


5 599 0 0 39 0


Notes:


� SC: Same Correct, or both of stacked generalization and combiner predict correctly.


CI: Correct/Incorrect, or stacked generalization correctly predicts but combiner incorrectly


labels


IC: Incorrect/Correct, or stacked generalization incorrectly labels, while combiner correctly


labels


SI: Same Incorrect, or stacked generalization and combiner make the same wrong labels


DI: Di�erent Incorrect, both are incorrect, but their answers are di�erent


� Results are shown in number of predictions on �ve test sets.
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� one method can label correctly, but the other cannot,


� they both give the same wrong answer, and


� they both give wrong but di�erent answers.


Correlation analysis results are shown in Table 10.13. The results indicate that the


two methods are very close to each other. In most of the cases they either both give


the correct answer or both give the same wrong answer, indicating that they both


have e�ectively learned the same knowledge.


Fourth, we display the training cost of both methods in Table 10.14. As expected,


the di�erence in their training cost is huge. For the SS data set, while combiner


spent no more than 7 minutes to learn, stacked generalization spent about 9 days.


For the SJ data set, combiner took half a minute to learn, but stacked generalization


took nearly 6 hours and a half. There are orders of magnitude di�erence in e�ciency


performance for comparable accuracy gain.


Finally, we examine the meta-level (or level-1 in Wolpert's terms) training set.


Each meta-level training example is composed of the predictions generated by the


base classi�ers using the class-combiner scheme. The meta-level training set can be


divided into components, each of which originated from a base classi�er. That is, in


the meta-level training set, the predictions generated by a base classi�er constitutes


a component, which we call meta-component training data. In our case the meta-


level training set has predictions from base classi�ers generated by ID3, CART, and


BAYES. That is, we have three sets of meta-component training data.


The accuracy of meta-component training data is measured by comparing them


to the correct labels of the original training examples. The closer the accuracy of


meta-component training data is to the accuracy of a single-strategy classi�er, the


more accurate it approximates the behavior of the base classi�er. Intuitively, stacked


generalization produces a closer approximation than combiner. (Recall that, in gen-


erating the meta-component training data in stacked generalization, the prediction
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Table 10.14: Training time (CPU seconds) for combiner and stacked generalization.


Results on SS


Combiner


Fold ID3 CART BAYES


1 336.9 340.4 336.8


2 340.7 344.4 340.7


3 346.1 349.6 346.3


4 340.3 344.5 340.3


5 351.0 354.7 351.1


� 343.0 346.7 343.0


Results for SJ


Stacked Generalization Combiner


Fold ID3 CART BAYES ID3 CART BAYES


1 23720.4 +0.50 -0.16 30.6 30.93 29.9


2 23865.7 +0.50 -0.16 29.8 30.3 30.0


3 23442.9 +0.50 -0.16 31.6 31.2 30.1


4 23784.3 +0.50 -0.16 30.5 30.2 30.0


5 23805.9 +0.50 -0.16 29.9 30.7 29.8


� 23723.8 23724.3 23723.7 30.5 30.7 30.0


Notes:


� The training cost of stacked generalization for the SS data set is huge, we did not have exclusive


use of the machines to measure it. The method we used to estimate its cost is to measure


the time used to generate 1000 meta-level training data. The estimate we give below is the


result made by multiplying the actual time for 1000 items by 17.3 (1,7300/1,000=17.3) plus


the time to learn the 3 base classi�ers and meta classi�er. Stacked generalization, therefore,


requires 771,760 seconds (nearly 9 days) for the SS data set.


� For the SJ data set, we could not measure the training cost for stacked generalization for


di�erent meta-learner(ID3, CART and BAYES) from start, that would require a lot of com-


puter resources. We accurately measured the time cost of stacked generalization using ID3 as


the meta-learner from start, estimated the case for CART as the meta-learner by adjusting


the di�erence ID3 versus CART to learn the meta-classi�er. The di�erence was that it took


0.50 seconds more for CART to learn the meta-level training data than ID3. Using the same


method, we estimated the training cost of having BAYES as the meta-learner.


� Also, only CPU time of learning is measured.
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Table 10.15: Summary of accuracy of meta component data for Secondary Structure


and Splice Junction(%)


Results on SS


Base learner in Stacked Generalization Base learner in Combiner


Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)


1 54.0 56.9 62.6 49.3 55.3 61.4


2 55.3 56.8 62.3 49.8 55.5 60.2


3 53.7 57.5 61.9 50.0 56.7 60.2


4 55.9 57.5 62.2 52.4 55.5 61.2


5 57.3 57.3 62.2 53.2 55.5 61.0


� 55.2 57.9 62.2 50.9 55.7 60.8


� 1.5 0.5 0.3 1.74 0.6 0.6


Results on SJ


Base learner in Stacked Generalization Base learner in Combiner


Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)


1 90.3 94.2 95.5 88.6 94.4 95.2


2 90.8 94.3 95.2 86.2 91.3 94.4


3 91.5 94.3 95.7 87.5 93.5 94.8


4 90.8 94.1 95.4 88.4 94.1 95.7


5 91.7 94.4 95.8 88.7 94.4 95.4


� 91.0 94.3 95.5 87.9 93.5 95.1


� 0.6 0.1 0.2 1.05 1.3 0.5


of an example is made by a classi�er trained from the remaining n� 1 examples.)


By comparing Table 10.15 with the single-strategy classi�ers' accuracy in Ta-


ble 10.12, we can see that the accuracy of the meta-component training data of


stacked generalization is closer to the accuracy of a single-strategy classi�er than that


of combiner, which means it closely mimics the behavior of single-strategy classi�ers.


The accuracy of the stacked generalization's meta-component training data and the


accuracy of single-strategy classi�er di�ers by no more than 1%, but the accuracy


of the combiner's meta-component training data and the accuracy of single classi�er


di�ers by as much as 5%. However, this seems not to boost the accuracy obtained


from stacked generalization more than the accuracy obtained from combiner. That


is, closer approximation did not seem to produce more accurate meta-classi�ers. This


is an interesting �nding.
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10.3.3 Discussion


It may be intuitive to guess that the accuracy boost of stacked generalization will


be more than that of combiner. However, the empirical results we obtained do not


support this intuition. There may be three possible explanations for this, all requiring


further study:


1. One argument is that the correlation of meta-component training data actually


decides the overall accuracy boost. The accuracy of meta-component training


data that reect the behavior of the base classi�ers may not be the decisive


factor. We performed correlation analysis at the meta-classi�er level.


2. Another explanation is that the complexity (or the di�culty to learn) of the


meta-level training data may also be important. The meta-level training data of


stacked generalization may actually reect the behavior of the base classi�ers,


but the relationship among the base classi�ers is very subtle and very di�cult


for the meta-learner to learn e�ectively, so the overall accuracy did not improve


as much as we would hope. Specialized learning algorithms may be developed


for the sole purpose of learning how to integrate classi�ers.


3. Conicts in the meta data may contribute to the problem. As an example, look


at Figure 10.3. In the �rst example, there is a data element that ID3 labels 1,


CART labels 2, BAYES labels 0, but the actual answer is 1. In the second case,


ID3, CART and BAYES give the same predictions as in the �rst example, but


this time the true answer is 2. This means that the mapping from attribute


vector to label is not one to one. This would be very di�cult for any algorithm


to learn the correct answer; even a human may not be able to do it correctly.


This kind of example represents conicts in the training data. Decision tree


algorithms, like ID3 and CART, can be very sensitive to conicts. BAYES


is better equipped to handle conicts because of its probabilistic nature. We


need to see how many conicts there are in the meta-level training data of both


combiner and stacked generalization. One approach that can reduce (but may
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Correct Class ID3 CART BAYES


1 1 2 0


2 1 2 0


Figure 10.3: Conicts in meta-level training data


not eliminate) the number of conicts is to introduce more base learners. This


method is not applicable if the number of base classi�ers cannot be increased.


However, the binary-class-combiner scheme in Section 3.4.1 can be used to gen-


erate multiple base classi�ers for each base learner. Another approach is to


include the attribute vector of each example in the meta-level training data


as described in the class-attribute-combiner scheme (Section 3.4.1). If all the


attribute vectors are unique, the meta-level training set will be free of conicts.


Earlier we introduced the idea of k-fold meta-learning. Our results indicate that


the accuracy boost of k=2 (combiner) and k=n (stacked generalization) are similar.


So is k arbitrary or is there a k that will lead to signi�cant maximal accuracy gain?


How much is this gain? Do we pay for what we get? If the accuracy boost with


di�erent k is almost equivalent, k=2 or combiner is obviously the preferred choice{


accurate and cheap. Breiman (1996b) studied the e�ects of changing k to the accuracy


of stacking regression (real-value) estimators. He found that k = 10 achieves com-


parable accuracy as k = n. His results may or may not apply to classi�ers (discrete


estimators).


10.4 Summary


We also studied meta-learning with the use of multiple learning algorithms to


improve the overall predictive accuracy. Our empirical results indicate that mul-


tistrategy meta-learning produced slightly higher accuracy than the most accurate


underlying learning algorithm, but the improvement is not statistically signi�cant.
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However, meta-learning is usually at least as accurate as the best base learning algo-


rithm. Often times, one does not know apriori which learning algorithm can generate


the most accurate classi�er without extensive experimentation. Multistrategy meta-


learning provides a mechanism to avoid the extra work and generates a meta-classi�er


that is at least as e�ective as the best classi�er.


From the comparison of multistrategy class-combiner and stacked generalization,


we discover that they achieved the same level of accuracy even though n-fold cross-


validation (CV) partitioning used in stacked generalization provides a closer base-


classi�ers' approximation than 2-fold CV partitioning used in combiner. However, the


cost of n-fold CV partitioning is much higher than 2-fold CV partitioning. Moreover,


correlation analysis indicates that both methods learned similar concepts. Hence,


combiner compares favorably to stack generalization.
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Chapter 11


Conclusion


With the rapid advance in computer networking technology, more and more data will


be accessible with the touch of a few key stokes, mouse clicks, or even a few uttered


words, hand gestures, eye movements, or brain waves. Analyzing and gaining knowl-


edge from this massive collection of information is an important and increasingly


di�cult task. Algorithms are limited by their time/space complexity and computers


are limited by their hardware resources. Although processor speed and memory ca-


pacity increase at an amazing pace, data generated and gathered by more powerful


computers grow at an even faster pace. Consequently, for instance, on the world wide


web, information is so abundant that search engines were developed to help us locate


information we seek. Recently, \meta (super)" search engines, like MetaCrawler (Sel-


berg & Etzioni, 1996), are emerging that locate information by searching a number


of search engines.


In this thesis we attempt to address the problem of e�ciently and accurately


analyzing massive amounts of data using inductive learning algorithms. Our proposed


meta-learning approach and its diverse speci�c techniques have been systematically


evaluated and compared. In Section 11.1 we summarize our �ndings from this thesis


investigation. Possible future research directions are discussed in Section 11.2.
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11.1 Results and Contributions


We proposed meta-learning as an uni�ed approach for integrating multiple learn-


ing processes or algorithms. This approach encompasses the use of learning algorithms


to learn how to integrate results from multiple learning systems e�ciently and ac-


curately. Meta-learning is intended to be scalable (by data reduction partitioning),


extensible (algorithm-independent), and portable (architecture-independent). That


is, our goal is to devise a general mechanism that can be used for the wide variety of


learning algorithms and computer architectures. This led us to focus our attention


on integrating predictions from classi�ers and coarse-grain parallelism. We demon-


strated that meta-learning can be used to improve speed and accuracy for a wide


range of inductive learning algorithms.


We identi�ed three meta-learning strategies: combiner, arbiter, and hybrid. The


combiner strategy tries to learn the relationship and correlations among the base


classi�ers. The arbiter strategy, however, attempts to learn from instances that are


confusing to the base classi�ers. The hybrid strategy seeks to synergistically integrate


the combiner and arbiter strategies. Speci�c schemes within these strategies were


developed and detailed, most notably the class-combiner, class-attribute-combiner,


and di�erent-arbiter schemes. A substantial number of experiments were performed


to systematically evaluate these schemes under diverse circumstances with di�erent


collections of constituent learning algorithms and tasks.


Our empirical results indicate that a simple classi�er learned from a sample ran-


domly selected from the original data set could not achieve the same level of accuracy


as the classi�er trained from the entire original data set (the global classi�er). That


is, to achieve the global classi�er's level of accuracy, we need more data than a small


random sample and integration of classi�ers learned for disjoint subsets could be


bene�cial. We systematically compared our meta-learning schemes with common


voting-based and Bayesian techniques in the literature and the results show that our


arbiter scheme outperformed the others. Although the integration techniques yielded
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signi�cantly higher accuracy than a classi�er learned from a random subset, the global


classi�er's level of accuracy was not always achieved. To raise the e�ectiveness of our


approach, we partially replicated data across the subsets. Unexpectedly, improve-


ment was generally not observed. However, this result demonstrates that the subsets


can remain disjoint to allow the highest degree of parallelism.


Thus, a more sophisticated hierarchical approach was devised. Two strategies


were developed: arbiter tree and combiner tree. Di�erent classi�ers are learned in


a bottom-up tree fashion. Empirical results indicate that hierarchical meta-learning


could usually achieve the same level of accuracy as the global classi�er. No degra-


dation in accuracy was always achieved when the training sets at each level were


allowed to double in size. For some of the trees generated by the class-attribute-


combiner scheme, to our surprise, a signi�cantly higher accuracy was achieved. This


further demonstrates the viability of our hierarchical meta-learning approach.


We also investigated the di�erent aspects of arbiter trees. Results indicate that


lower-order trees were more e�ective and accurate than higher-order ones. This seems


mainly attributed to the increase in the number of opportunities in correcting the base


classi�ers since there are more levels in the lower order trees to �lter and compose


good training data. Proportional class partitioning in the base-level training sets


yielded more accurate trees than non-proportional partitioning. When the meta-


level training set size at each level of the tree was unbounded, accuracy could always


be maintained and only about 30% of the entire data set was needed at any time.


Proportional class partitioning reduced the percentage to around 10%. That is, a site


can process a larger learning task (about 10 times in the domain we studied) without


increasing memory resources. At the leaf level, pairing base classi�ers that disagree


the most could also reduce the percentage. Resolving disagreements at the leaf level,


rather than piling them higher in the tree, seems to be the contributing factor.


Data can be distributed across remote sites belonging to diverse organizations.


These organizations might be reluctant to share \raw data" due to proprietary or
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con�dentiality reasons. However, they might be willing to share \black-box" models.


In our case, the black-boxes are encoded classi�ers, whose content is not revealed.


Meta-learning techniques were applied to improve a local classi�er by importing re-


mote black-box classi�ers. Our results show that meta-learning can signi�cantly


improve the accuracy of a local classi�er. We also studied the e�ects of data overlap


among sites. In many cases the degree of overlap did not a�ect the amount of accu-


racy improvement for the local classi�er. In other cases additional accuracy gain was


observed.


We de�ned four metrics (diversity, coverage, correlated error, and specialty) for


characterizing the base classi�ers and explored the e�ects of these characteristics


on the behavior of various integrating schemes. From our results, larger accuracy


improvement can be achieved by more diverse base classi�ers with higher coverage and


fewer correlated errors. For integrating schemes that recognize relationships among


the base classi�ers, more specialized base classi�ers can result in larger improvement


in accuracy. Analyses on the arbiter strategy show that when the base classi�ers are


less accurate, the arbiter needs to be built more carefully.


The theoretical time complexity of �ve learning algorithms were analyzed. WPE-


BLS and CN2 clearly exhibit superlinear complexity with respect to the number of


training examples. Although ID3, CART, and BAYES show linear complexity with


respect to training set size, practical time performance indicates non-linear behav-


ior. That is, all �ve algorithms exhibit non-linear time performance when very large


training sets are encountered. In fact, at a certain point, the learning algorithms


ran out of memory and terminated abnormally. Quadratic approximations estimate


that CN2 would take 3.5 months, and WPEBLS 6.4 months, to process one million


training examples if they were given su�cient memory resources.


Results from our parallel implementation of the hierarchical meta-learning schemes


show that CN2 (and probably WPEBLS) bene�ts greatly from our methods. Other


non-linear-time learning algorithms like genetic algorithms and neural networks can
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also bene�t much from our methods. Parallel hierarchical meta-learning is more


advantages for ID3 and BAYES when their memory requirement for processing large


amounts of data is getting close to or exceeds the available resources on one processor.


We also studied meta-learning with the use of multiple learning algorithms to


improve the overall predictive accuracy. Our empirical results indicate that mul-


tistrategy meta-learning produced slightly higher accuracy than the most accurate


underlying learning algorithm, but the improvement is not statistically signi�cant.


However, meta-learning is usually at least as accurate as the best base learning algo-


rithm. Often times, one does not know a-priori which learning algorithm can generate


the most accurate classi�er without extensive experimentation. Multistrategy meta-


learning provides a mechanism to avoid the extra work and generates a meta-classi�er


that is at least as e�ective as the best classi�er.


From the comparison of multistrategy class-combiner and stacked generalization,


we discover that they achieved the same level of accuracy even though n-fold cross-


validation (CV) partitioning used in stacked generalization provides a closer base-


classi�ers' approximation than 2-fold CV partitioning used in combiner. However, the


cost of n-fold CV partitioning is much higher than 2-fold CV partitioning. Moreover,


correlation analysis indicates that both methods learned similar concepts. Hence,


combiner compares favorably to stack generalization.


11.2 Research Directions


Here we discuss some possible research directions based on this thesis work.


The hierarchical meta-learned tree structures are rather complicated and proba-


bly di�cult for human inspection. Simplifying the structures without signi�cantly


degrading the overall accuracy would be bene�cial. One idea is to measure the sim-


ilarity among base classi�ers and prune those that are closely related. The pruning


process can be performed in a hill-climbing manner, where related classi�ers are re-







192


moved one by one until the overall accuracy is signi�cantly reduced.


In this thesis the learning algorithms used for meta-learning are \o�-the-shelf"


algorithms and are the same as the base learning algorithms. More specialized meta-


level attributes and algorithms can be devised. Learning algorithms that search M-


of-N (Murphy & Pazzani, 1991) and other counting-related concepts might be useful


in locating e�ective combining rules. Constructive induction techniques (Matheus &


Rendell, 1989; Rendell, 1990) could also be bene�cial in creating potentially relevant


attributes. Moreover, learning algorithms that can incorporate weighted or proba-


bilistic predictions from the base classi�ers would produce more e�ective combining


rules.


More diverse learning algorithms (for instance, genetic algorithms and neural net-


works) and learning tasks can be enlisted for larger-scale empirical evaluation, which


will probably further increase the generality of our results obtained in this thesis.


Since we could not, regrettably, secure a massive \real-world" data set, an arti�cial


data generator was used to generate arbitrarily large data sets for our scaling exper-


iments. Demonstrating similar results on a massive non-arti�cial data set would be


an interesting addition.


To gain a deeper understanding of the reasons why meta-learning works, more


sophisticated analysis tools are needed. With our current analysis tools, it is not


clear when a particular meta-learning strategy performs better than another. Fur-


thermore, a theoretical foundation like the hypothesis boosting work by Schapire


(1990) would be a substantial contribution. We note that theoretical learning models


(PAC (Valiant, 1984) for example) represent a class of algorithms that might not be


close to the actual learning algorithms used in practice. However, work on bridging


theory and practice is emerging|Dietterich et al (1996) applied the weak learn-


ing framework, introduced by Schapire (1990), to understand C4.5 (Quinlan, 1993).


Moreover, recent statistical work on bias-variation decomposition, for example (Kong


& Dietterich, 1995), provides some insights on the source of errors for integrating
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multiple learned models. Similar approaches can help explain the behavior of our


meta-learning strategies.


For meta-learning on partitioned data, most of the results were obtained from


using only a single learning algorithm. Employing multiple di�erent algorithms in-


creases the diversity of base classi�ers and might improve the overall accuracy.


In parallel meta-learning, a study on the tradeo� between classi�cation time (dur-


ing training) and communication time for exchanging classi�ers and meta-classi�ers


can be fruitful. We mentioned earlier that communicating the classi�ers among the


processors can make use of the idle processors for classi�cation while the active ones


are used for training. This method is advantageous if the communication time is


small compared to the classi�cation time. Because we are limited to 8 processors,


some of our results will probably improve when more processors are available|higher


degree of parallelism, higher order trees, larger data sets... Studies in a heterogeneous


computing environment would introduce interesting load balancing issues that are not


addressed in our current study in a homogeneous computing environment.


Learning algorithms and meta-learning techniques can be encapsulated in agents


that can be sent across information networks. Using the new network-based architecture-


independent language Java (Arnold & Gosling, 1996), learning and meta-learning


agents can roam around the internet with ease. Databases on the network can be


reached by these agents and the learned classi�ers can then be encapsulated in agents


to perform further analyses.


On a rather unrelated note, it is my belief that electronic computers might hit


a ceiling in terms of gaining intelligence. Modern computers are still very much


controlled by their creators and execute prescribed steps. Biochemical computers


might be the source of future \real" intelligent computing. Adleman (1994) success-


fully demonstrated a rudimentary molecular computer. A Directed Hamiltonian Path


problem was encoded in DNA sequences. Through biochemical interactions, solutions


to the problem were searched via trillions of molecules in a massively parallel manner.
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The solutions were then extracted through DNA analyses. Soon afterwards, Lipton


(1995) showed how to use DNA to solve more general combinatorial problems. This


might be the dawn of a new computing era.


11.3 Final Remarks


Partly because of this work, we identi�ed a community of researchers and devel-


opers, and organized a well-participated workshop on integrating multiple learned


models (briey described in Section 2.5). Research in this area might become more


re�ned in the future because of a focused forum for exchanging ideas and peer reviews.


Recently, ARPA awarded Prof. Stolfo and his colleagues a research grant to


study the techniques described here in a fraud detection application. Learning and


meta-learning agents written in Java will travel to di�erent database sites to learn


characteristics of fraudulent transactions. This indicates some degree of con�dence


and maturity in this area of research. It is our hope that our techniques and others'


will be much improved in the not so distant future.


Learning never ceases, nor should it.
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