
MSPL: A Protocol Language For
Generating Client-Server Software

by
Melvin Austin Leroy Douglas

Bachelor of Science
in Computer Science

Florida Institute of Technology
1998

A thesis
submitted to the Graduate School of

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
May, 2000

 2000 Melvin Austin Leroy Douglas.

All Rights Reserved.

The author grants permission to make single copies _______________________

We the undersigned committee hereby recommend that the attached document be

accepted as fulfilling in part the requirements for the degree of

Master of Science in Computer Science.

“MSPL: A Protocol Language For Generating Client-Server Software”

a thesis by Melvin Austin Leroy Douglas

Philip K. Chan, Ph. D.
Assistant Professor, Computer Science
Thesis Advisor

 Ryan Stansifer, Ph. D.
Associate Professor, Computer Science
Committee Member

Palmer C. Stiles, M.S., P.E.
Assistant Professor, Mechanical Engineering
Committee Member

William D. Shoaff, Ph. D.
Associate Professor and Program Chair
Computer Science

Acknowledgements

First and foremost, I would like to thank God, My Lord and Savior, for giving me

strength, hope and perseverance in my studies. Without Him none of this would be

possible or worthwhile.

I would like to thank my major advisor Dr. Chan for his innovative ideas

and constructive criticism that helped make this research a success. Thank you

also for your prodding towards excellence with the freedom to choose and conduct

my thesis towards my interests. To my Committee Members, thank you for taking

the time to read and revise my written and oral presentation of this thesis.

I would also like to thank my Mother, Father and Sister for their prayers and

support throughout my educational endeavors. I am very grateful to have a family

who has encouraged me each and every step of my life. To a very special friend,

Adolé Tounou, thank you for your motivation and help to remain focused on the

life-size picture. I am indebted to many friends and colleagues whose love and

support have been a constant source of inspiration for me.

Dedication

To My Heavenly Father who has showed me so much Love and Kindness.

Abstract

MSPL: A Protocol Language For Generating Client-Server Software

by

Melvin Austin Leroy Douglas

Thesis Advisor: Philip K. Chan, Ph. D.

Client-server programs are becoming more common as the Internet grows. To ease

the burden of repeatedly writing low-level communication and protocol code, we

seek to design a protocol language, “My Simple Protocol Language” (MSPL), that

produces the corresponding communication functions. The programmer then

supplies the rest of the application-specific code. It is worth noting the

programmer never modifies the generated code. Besides saving development time,

this approach also reduces programming errors. The potential to develop more

efficient code also exists once the technique of generating code is mastered. The

main contribution, however, is that unlike RPC, Corba or RMI, we provide the user

with not only functions that take care of lower level communication data structures,

but also the ordering and format of messages which are specified in MSPL

programs. The MSPL programs are then passed to the Compiler, which produces

the low-level communication and protocol modules. These protocol modules are

then linked to other user-written modules to produce the final software application.

Table of Contents

Abstract iii

List of Figures vii

Acknowledgements ix

Dedication x

1 Introduction 1
1.1 Problem Statement 2

1.2 Organization of Thesis 2

2 Related Work 4
2.1 A Brief History 5

2.2 Protocol Description Techniques 7

2.3 Optimizing Communication by Aggregation 10

2.4 Fabius Compiler 12

2.5 CTADEL System 13

2.6 Advantages and Disadvantages of Dynamic Code Generation 15

2.7 BEA Tuxedo® 7.1 17

2.8 Sun’s XDR/RPC 22

2.9 Library-Based and Specification-Based Approaches 25

3 MSPL 29
3.1 Architecture 31

3.2 ESFTP 32

3.3 Implementing ESFTP in MSPL 35

 3.3.1 Definable Communication Parameters 40

 3.3.2 Structure of Request-Reply Statement 41

3.4 MSPL Parsing and Syntax Checking 42

 3.4.1 MSPL Parser 42

 3.4.2 Checking Syntax of MSPL Code 47

3.5 Generated Protocol Modules 49

 3.5.1 Message Packet Architecture 49

 3.5.2 Client Protocol Module 50

 3.5.3 Generated Server Interface 51

 3.5.4 Server Protocol Module 51

3.6 User-Written Modules 52

 3.6.1 User-Written Client Modules 53

 3.6.2 User-Written Server Modules 53

3.7 A Sample of Generated and User-Written Code For ESFTP 54

3.8 MSPL Library 56

4 Implementation of RFC Protocols 57
4.1 Implementation of SMTP RFC 821 58

4.2 Implementation of HTTP RFC 2616 64

 4.2.1 HTTP Server Software 65

 4.2.2 HTTP Client Software 72

4.3 Implementation of FTP RFC 959 75

5 Conclusion 84
5.1 Significance and Expected Impact of Research 84

5.2 Prospects For Future Work 85

Appendix: EBNF Definition for MSPL 87

References 88

List of Figures

6 Introduction 1

7 Related Work 4
7.1 TCP/IP Reference Model 6

7.2 Micro-Benchmark Results for an Echo Test 9

8 MSPL 29
8.1 Client-Server Code Generation Model 29

8.2 MSPL Architecture 31

8.3 MSPL Code for ESFTP 36

8.4 Log of Compiler Application Running 44

8.5 Sample Tokens File Generated as Intermediate Step 45

8.6 MSPL Syntax Table 48

8.7 ESFTP Message Packet Structure 49

8.8 Sample-Generated and User-Written Code For ESFTP 55

9 Implementation of RFC Protocols 57
9.1 MSPL Code for SMTP 59

9.2 SMPT Conversation Script 60

9.3 MSPL Code for HTTP 65

9.4 HTTP Server Conversation Script 66

9.5 HTTP Status Codes 71

9.6 HTTP Client Conversation Script 72

9.7 MSPL Code for FTP 77

9.8 FTP Conversation Script 79

9.9 FTP Status Codes 82

9.10 FTP Model 83

10 Conclusion 84

Appendix: EBNF Definition for MSPL 87

References 88

Chapter 1

Introduction

There are a number of advantages that arise if the protocol language developed

during this research is used for production of quality code. Not least of these is the

potential for reducing the risk and cost of software development, by reducing the

potential for the introduction of errors, and increasing the speed with which

software can be produced. The magnitude of these advantages is increased where

the risk and cost of software production is higher, such as in the case of high-

integrity systems development. In order to derive these benefits, it is vitally

important to ensure that the generated code is functionally faithful to its

specification. The British Aerospace Dependable Computing Systems Center is

looking at how formal techniques can be employed to ensure that an automatic

code generator produces code that is faithful to its specification. The use of formal

techniques is important to this process since it is only through these that the high

level of assurance required can be attained. The goal is to attain this assurance

while placing as few requirements on the programmer as possible. Current

methods work relatively well but they use high-level languages, which are not

geared towards developing communication protocols. This leads to code developed

by programmers that is not robust or very efficient. It is usually very hard to read

and therefore, almost impossible to maintain.

1.1 Problem Statement

There are two problems that I focus on and provide a solution to in this paper. The

first is providing a protocol language that is capable of solving the problem of

writing client-server software efficiently and reliably. The protocol language

allows the specification of application-level client-server protocols. The second

task is to demonstrate the feasibility of using the protocol language developed on

‘real world’ protocols like HTTP RFC 2616. The system is built in Java, which

sacrifices efficiency for portability to some extent.

1.2 Organization of Thesis

The introductory chapter describes the statement of the problem as well as a

proposed solution. Chapter 2 gives an extended overview of related work.

Techniques used in this area of research in the past are discussed and compared.

Chapter 3 looks more closely at the solutions to the problems being focused on in

this thesis. It explains different concepts used during the development of the thesis.

An example of how MSPL may be used for the implementation of a user's protocol

is discussed and analyzed. Chapter 4 analyzes the use of MSPL to develop clients

and servers that can interact with existing servers and clients that meet standard

RFC protocol specifications. Chapter 5 discusses the conclusions made after in-

depth research, implementation and testing of the generated code.

Chapter 2

Related Work

Program generation, more formally known as software synthesis, deals with the

automation of program writing. Tools that generate programs or code are often

seen as a part of a Problem Solving Environment (PSE). These tools implement

some kind of command or specification language. Distributed systems must

communicate. Communication requires protocols to be built preferably with a

manageable complexity. To communicate well requires protocols to be efficient in

design and implementation. Complexity within protocols can be managed with

simple interfaces that allow the protocols to be composed in a modular manner. To

provide higher level functionality than is provided by any single protocol, they are

frequently composed together into protocol stacks. Each layer in the stack is linked

to the layer immediately above and the layer immediately below it.

2.1 A Brief History

In this section, several existing systems that use code generation are compared. A

comparison and contrast of their protocol compositions are also given.

Traditionally, protocol compositions have mainly been static in that compositions

are determined at compilation time such as the TCP/IP stack, which is one of the

more popular static compositions.

 While the TCP/IP stack works well for simple cases, it has weaknesses

when it encounters demanding clients or rich networking environments. This is

mainly because characteristics of the network are not known until runtime. There

are two main shortcomings to this static protocol approach. The first is the

exponential code growth inherent in it. For example, to perform data conversion

between two hosts, a static system must pre-compose all possible conversion

methods. The second subtler problem of static composition is that it is a closed

system.

At the other extreme, runtime or dynamic composition can be used to

combine only those protocol stacks that are needed. The flexibility of dynamic

protocols, however, prevents us from being able to integrate different layers of the

system. The benefits of this method are that protocols can be written in any

language and the protocols can be compiled separately. Protocols can even be

dynamically linked as their implementations are upgraded. Oriented vertically, the

low end of the stack is the link layer protocol and the high end is the application

layer protocol as shown in Figure 2 - 1.

Figure 2 - 1. TCP/IP Reference Model

The central efficiency problem with modular protocol design is that

separation of protocol levels prevents integration of each protocol’s data

manipulations [Clark, 1990]. Consider a two-layer stack consisting of

TCP (Transmission Control Protocol) and RPC (Remote Procedure Call) protocol

that guarantees correct byte order. When a message is received and delivered to

TCP, the TCP layer will touch the entire message. Multiple message traversals are

expensive given the current difference between memory and CPU (Central

Processing Unit) speeds. One of the goals of a protocol is to provide support to

allow each part of a message to be touched only once.

 Dynamic code generation is the generation of executable code at runtime.

This has become a popular topic but it is still used only by a minority of

implementers [Hsieh, 1996]. Like static compilation, dynamic compilation can be

used to eliminate interpretation. Run-time code generation has led to notable

performance improvements in the areas of operating systems, simulators, graphics,

Application

Transport

Internet

Host-to-Network

matrix multiplication and dynamically typed languages. Current compilers do not

optimize networking expressions well. This is mainly because there isn’t a clear

way in any language of writing these common networking operations such as

checksumming. Protocol characteristics like complicated flow control, make

protocol modules hard to read, verify and maintain. Specialized languages are a

promising solution to this problem and compilers have been an active research area

for decades [Kohler, 1999].

2.2 Protocol Description Techniques

Most existing protocol languages focus on verification. Prolac is a new statically

typed object-oriented language that has been tailored for network protocol

implementation and generates completely order independent C

code [Kohler, 1999]. It resembles object-oriented languages like C++ and Java

but it is designed to be more useful than these languages for network protocols.

Prolac is an expression language like Lisp and ML. Instead of verification, Prolac

was designed for readability, extensibility, and ‘real world’ implementation. The

implementation is as modular as protocol processing is logically divided into

minimally interacting pieces. As ideas were gathered from other specific languages

designed with protocols in mind such as parallelism to model both sides of a

connection, it often worked against readability, implementability, extensibility or

all three. Prolac’s final design is less domain specific than these languages.

 Two protocol languages, or description techniques originally designed for

developing OSI protocol suite are LOTOS and Estelle [Kohler, 1999]. Estelle

structures a protocol as a set of finite state machines running in parallel and

communicating with broadcast signals. This makes it very difficult to read. It is,

however, a great method for test generation or state analysis. Even with carefully

layered protocols, Estelle specifications would be very difficult to modify. Later,

this protocol was improved dramatically just by removing its asynchronous

parallelism which made it a completely sequential language. RTAG is a model that

uses context free attribute grammars. It is considered to be easier to read than

LOTOS and Estelle.

 The Prolac compiler compiles Prolac into C. The high level C introduces

relatively few temporary variables. Compilation time of complex implementations

such as TCP take less than a second on a 266MHz Pentium II

laptop [Kohler, 1999]. Inlining, path inlining and outlining all improve the

efficiency of a protocol and are all used in Prolac. Inlining is replacing a function

call with the function’s body. Path inlining is recursive inlining while outlining is

moving code for uncommon cases out of common case code. The Prolac TCP

implementation consists of one-third the number of lines the Linux 2.0 TCP

implementation has but theirs has more functionality. Figure 2 - 2 shows a

comparison of processing time and latency for an echo test. The test machine sends

4 bytes of data to an unmodified Linux 2.2.7 machine’s echo port and waits for an

acknowledgement. Results were averaged over five trials, each consisting of 1,000

round-trips, for a total of 10,000 packets (i.e. 5,000 input and 5,000 output).

Processing time represents the average number of cycles it took to process a packet.

The test machines were 200 MHz Pentium Pro desktops and they communicated

over an otherwise idle 100Mbps Ethernet with one hub.

Figure 2 - 2. Micro-Benchmark Results for an Echo Test [Kohler, 1999].

 End-to-end latency (µs) Processing time (cycles)
Linux TCP 184 3360
Prolac TCP 181 3067
Prolac without inlining 228 6833

 Currently, one of the main weaknesses of Prolac is it is not as reliable as

Linux TCP but this can change in the near future as the goal is to use it in ‘real

world’ situations. Besides having a good protocol implementation, the actual code

generator needs to be made more efficient and portable.

2.3 Optimizing Communication by Aggregation

The research goals of one group from Stanford University were to optimize

communication by eliminating redundant communication and aggregating small

messages into larger messages [Amarasinghe, 1993]. They overlapped

communication latency with computation where possible. To minimize

communication cost, the Stanford SUIF compiler tries to maximize the intervals

between communication. All the data needed within the interval are sent in one

message. Their technique is based on an exact data-flow analysis on individual

array element accesses. Unlike data dependence analysis, this analysis determines

if two dynamic instances refer to the same value, and not just the same location.

Using this information, their compiler can handle more flexible data

decompositions and find more opportunities for communication optimization than

systems based on data dependence analysis. The Last Write Tree (LWT)

information allows them to eliminate redundant data transfers. The LWT analysis

automatically partitions the read instances into sets that share similar

communication characteristics. This partitioning makes generating code routine

and it also enhances optimizations [Amarasinghe, 1993]. Their model and

techniques are useful in both value-centric and location-centric approaches. The

scope of their technique is limited to programs consisting of a set of loop nests or

conditional statements.

For example, suppose we need to merge the following loops [Amarasinghe, 1993]:

 For I = 0 to 200 do
 Receive(…)
 For I = 100 to 300 do
 Send(…)

Instead of generating one for loop with two conditional if statements as shown

below:

 For I= 0 to 300 do
 If 0 <= I and I <= 200 then
 Receive(…)
 If 100<=I and I<=300 then
 Send(…)

They can generate three consecutive for loops without any conditional if statement

as shown below:

 For I=0 to 99 do
 Receive(…)
 For I=100 to 200 do
 Receive(…)
 Send(…)
 For I=201 to 300 do

 Send(…)

 To generate the complete code for a processor, it is necessary to merge a

processor’s computation code, and its receive and send code for each

communication set. In the original code, it is beneficial to merge the For loops

because there is overlap in the work done for the value of I between 100 and 200

inclusively. If only one For loop is generated, then there must be two conditional

if statements in the For loop to check the value of I each iteration. In the

alternatively generated code, there are three sequentially placed For loops. By

splitting the original code in this way, there is no need to add any conditional

if statements or have overlap of I iterations between 100 and 200 inclusive.

The algorithm they developed that allows them to merge multiple nested

loops together is called loop splitting. If the relative magnitude between the

bounds of the individual loops is not known at compile time, loop splitting can

expand the program size by a significant amount. Therefore, the SUIF compiler

only uses loop splitting on inner loops or when the relative magnitudes between the

loop bounds are known [Amarasinghe, 1993].

2.4 Fabius Compiler

At Carnegie Mellon University, the Fabius compiler was developed. Fabius takes

ordinary programs written in a subset of ML and automatically compiles them into

native code that generates native code at run-time. The dynamically generated

code is often much more efficient than the statically generated code because it is

optimized using runtime values. Although not every program benefits from run-

time code generation, there has been little trouble finding realistic programs that

run significantly faster, sometimes by more than a factor of four [Lee, 1996]. The

main focus of the Fabius system was on low-level optimization and code

generation issues.

2.5 CTADEL System

The CTADEL system generates code for a meteorological model, which was

compared with efficient hand-written production code. The authors point out that

the highest efficiency of code can only be achieved by exploiting specific

characteristics of computer architectures [Engelen, 1996]. Efficiency and

portability are generally conflicting goals. In general this results in several

platform-specific versions of code. This is not advantageous from a maintenance

point of view. Adding improvements to a model that is platform-specific is very

difficult because improvements for one platform may be a step backward on other

platforms.

 Libraries are great tools to help increase portability but the arrival of new

hardware platforms requires the redesign or at least extensive recoding of libraries

in general. By taking advantage of specific hardware characteristics of the target

computer architecture, portability and code-consistency problems are made absent.

For each machine, an efficient hardware specific version of the code can be

generated. CTADEL was developed with the goal of generating efficient

code [Engelen, 1996]. In contrast to other systems, CTADEL takes the

characteristics of the target computer architecture into account, providing the

necessary information for the system to generate high-performance code for various

computer architectures from a high-level language description model. The Latex

package of the CTADEL system automatically generates reports of the code

generation process, which is an advantage and strength it has over other systems.

Optimization techniques used by CTADEL include algebraic simplification and

global common sub-expression elimination. A trade off between the reduced

computational complexity and the additional memory usage plays an important role

in the generation of efficient code by the CTADEL system. From a software

engineering point of view, a code generator can assist the programmers and relieve

them from the task of coding efficient implementations for several hardware

architectures.

 Dynamic code generation allows aggressive optimization through the use of

run-time information. At Massachusetts Institute of Technology, they developed a

Dynamic Code Generation system (DCG) that does one pass code generation, is

easily re-targeted and extremely efficient. One of the main weaknesses of code

generation is that it costs approximately 350 instructions per generated instruction.

This is the highest number of instructions per generated instruction out of all the

systems researched. Dynamic code generation does not change the existing code,

but rather augments it, enabling programs to create specialized instruction

sequences based on runtime information. DCG efficiently generates executable

code at runtime [Hsieh, 1996]. They focus on a demonstration of efficient,

dynamic machine code generation from a machine independent specification. In

1994, this was the only stand-alone and easily retargeted dynamic code generator to

emit binary instructions directly. To make client programs portable, they specify

code using a machine-independent intermediate representation (IR) that is passed to

DCG. To help maintain simplicity, they used the already tested interface of the lcc

compiler [Fraser, 1991]. DCG’s code generator is able to link directly to lcc’s

front-end. Testing its correctness consists of simply compiling existing test-suites

to Assembly language, and testing the resultant output [Hsieh, 1996]. The interface

is fully documented in [Fraser, 1991]. One form of optimization used is Strength

Reduction where multiplication is replaced with shifts and adds.

2.6 Advantages and Disadvantages of Dynamic Code Generation

In some systems, code generation at run-time was very high, to the point where

improvements gained by delaying compilation to run-time were eliminated by the

cost of run-time compilation. For example, as stated earlier, DCG’s reported

overhead for generating an instruction at run-time is about 350 instructions per

instruction generated [Engler, 1994]. It is possible to reduce the cost of run-time

code generation by pre-compiling as much of the code as possible. Previous

researchers have focused on the use of templates, which are sequences of machine

instructions containing holes in place of some values. Code is generated by

copying templates and instantiating the holes with values computed at run-

time [Lee, 1996]. Until recently, templates were error prone and not very portable.

Now there are automatic derivations of templates. The only problem now is that

templates severely limit the range of optimizations that may be applied at run-time.

The Fabius compiler minimizes the cost of run-time code generation while

allowing a wide range of optimizations in both statically and dynamically generated

code [Lee, 1996]. The efficient code is generated in a single pass by a relatively

simple code generator. No intermediate representation is required at run-time.

This approach to some extent does compromise their ability to generate high

quality code. For example, it is very difficult to avoid creating jumps to jumps

when generating code for conditionals during execution. Other optimizations, such

as instruction scheduling are difficult to complete in one pass. An average of 4.7

instructions were required to generate an instruction at run-time which is better

than the 350 required by the DCG system. The use of ML allows the compiler to

perform run-time optimizations with little effort on the part of the programmer.

Despite the growing use of dynamic code generation, no mainstream

language provides flexible, portable and efficient support for it. Most dynamic

code generation systems make the programmer choose between efficiency, ease of

programming and debugging, and portability. By generating specialized code for

the most active functions, it is possible to gain substantial performance

benefits [Hsieh, 1996]. Interpreters can use dynamic code generation technology to

improve performance by compiling and then directly executing frequently

interpreted pieces of code. ‘C grew out of the past work with DCG. Many

improvements were added in ‘C but the portability and flexibility of DCG were

retained. The cost of dynamic code generation per generated instruction decreased

dramatically from 350 to 10. A high-level interface is provided by ‘C whereas

DCG’s interface is based on the intermediate representation of lcc [Fraser, 1991].

 Overall, the focus has been to create efficient and portable code generators.

Since these are two conflicting interests, a balance must be found between the two

or the development of a platform independent language that supports networking

protocol characteristics while maintaining a certain level of efficiency. Most

researchers have looked toward dynamic code generation for the solution to this

problem. This, however, does not necessarily mean there is not a solution using

static code generation and protocols.

2.7 BEA Tuxedo® 7.1

BEA Tuxedo supports four distinct communication methods that are versatile and

easy to use yet powerful enough to build a wide variety of mission-critical business

applications [BEA, 1995]. BEA Systems Inc., founded in 1995, is the

E-Commerce Transaction CompanyTM, powering many of the world’s most

innovative e-commerce oriented companies such as Amazon.com, Federal Express,

E*Trade, United Airlines, DirectTV and Nokia. The latest version, Tuxedo 7.1,

delivers a powerful new security framework for E-Commerce transactions. The

security framework allows developers to easily integrate BEA Tuxedo-powered

applications with popular third party security software products such as Public Key

Infrastructure (PKI) encryption. Digital signatures, digital envelopes and certificate

authorities may also be integrated into this framework, thus developing a very high

level of security in their e-commerce applications. It is worth noting that security is

not one of the focal points for the MSPL client-server generation research.

 Tuxedo and MSPL have the same basic goal, which is to generate client-

server software from a high-level of abstraction. MSPL is a specification-based

language that describes the protocols and generates the necessary communication

modules and interface. The four communication methods supported by Tuxedo are

Events-One Way, Request/Response, Conversational Interactions and Queued

Communications. The user is allowed to choose one of these communication

methods and then call the appropriate library-based functions. This discloses one

of the main differences between MSPL and Tuxedo. Tuxedo supports multiple

types of send and receive commands while MSPL supports complete specification

protocols. MSPL allows the application programmer to focus more on the

specification of the protocol while in Tuxedo, the application programmer

concentrates more on actual coding and function calls. Tuxedo also seems more

attached to one language than MSPL. With the development of another compiler,

MSPL can easily be used with a new programming language. In Tuxedo, it would

be necessary to re-implement the same protocol in the new target language.

Tuxedo has much more functionality than MSPL currently does but most of the

features could be added to MSPL with more time. The general structure of the

message sent between the clients and server, are very similar, almost identical.

 The Events-One Way communication method is similar to one command

in MSPL called Handshake, which is explained further in Chapter 3. The general

idea in Tuxedo is to allow either the client or server to send a message without

receiving a response. The recipient may take some sort of action but does not have

to inform the sender about these actions. One such event may be the server

informing the client that the server will be unavailable for the next 15 minutes due

to maintenance.

 The Request/Response communication method is a simple type of dialogue

for which the rules are fixed. The client asks something and the server responds.

The client never sends more than one message as part of its request and the server

never sends multiple replies to one request. This is the general client-server

communication paradigm, which is also used in MSPL.

 The client-server communication paradigm can be extended to meet the

requirements of the third form of communication in Tuxedo, which is

Conversational Interactions. This is where the request-response sequence is

executed more than once to complete a given service request. It may be necessary

in a file transfer when the file being sent is larger than the buffer supplied. The

server may send 1024 bytes of the file as a reply and then wait for another request

from the client saying it is ready for the next 1024 bytes.

 The last communication method, Queued Communications, is not

implemented by MSPL. It is a useful form of communication for when the server is

not available for some reason. Some functionality may be lost while the server is

down but depending on the role of the server, the client may be able to continue

servicing requests and queue them to be sent to the server when it is available

again.

 Another useful feature of Tuxedo is its error handling capability. This is

one of the most difficult parts of programming especially in distributed systems.

For example, if a request is made and no response is received, there are several

probable reasons and solutions to this scenario. One of the reasons may be the

server simply did not receive the request or is still processing the request. The

request may have even been sent and then lost over the network, thus, the server

module is under the impression everything is fine. Sometimes the solution to this

problem is not as easy as resending the request. Take for example, if the request

was to transfer $1,000,000 from one bank account to another. In this case the

programmer wants to be sure to take the correct course of action. Tuxedo uses

transactional communication to combat this problem. Transaction communication

ensures each remote operation is done exactly once and all or none of a set of

related calls are fulfilled.

 BEA Tuxedo supports both library-based and language-based

programming. The library-based programming requires programmers to use a set

of C or COBOL procedures defined by BEA Tuxedo. Tuxedo’s language-based

programming paradigm is a remote procedure call facility called TxRPC, BEA

Tuxedo’s implementation of X/Open’s TxRPC interface [Grenier, 1996].

 Overall, BEA Tuxedo and MSPL are similar in several ways but they have a

fundamental difference that separates them. BEA Tuxedo supplies the application

programmer with functions they can call while MSPL allows the application

programmer to implement a complete protocol that is portable. By portable it is

meant that with additional compilers, there is no need to re-write or re-implement

any coding since the entire protocol is encapsulated by MSPL.

2.8 Sun’s XDR/RPC

Remote procedures calls are defined using an Interface Definition Language (IDL),

which contains the definition of the procedure’s interface. Communication

handling and a binding service are also required. Thus, RPC is a form of

distributed communication where the syntax is almost the same as a local

procedure call but the called procedure is executed in a different process and

usually a different computer from the caller [Coulouris, 1994]. RPC is a simple

form of the request/response method discussed in section 2.7, it is modeled after the

local procedure call structure. The intent of remote procedure calling is to maintain

the semantics of conventional procedure calls in an implementation environment

that differs radically. As with local procedure calls, the callers in RPC usually

block and wait for the called procedure to complete before regaining control of the

CPU. An asynchronous RPC has also been developed and used in distributed

window systems such as X-11 [Scheifler, 1986]. The definition of a remote

procedure call specifies input and output parameters. Input parameters are the

same as parameters passed by value in conventional procedure calls. One

advantage of RPC, is that by specifying in the IDL, parameters can also be passed

by reference.

 RPC systems developed fall into one of two classes [Coulouris, 1994];

• In the first class, the RPC mechanism is integrated with a particular

programming language that includes a notation for defining interfaces.

• In the second class, a special purpose interface definition language is used

for describing the interfaces between clients and servers.

Any remote procedure call may not be able to contact the server, and thus, fail.

This makes the report error types such as time-outs, very important. Many RPC

systems are designed for use with the exception handling available in Ada, Java

and many other programming languages. If the language does not have any

exception handling capabilities, then the RPC systems usually resort to using the

methods in UNIX and other conventional operating systems. The systems usually

deliver a well-known value to indicate failure. This method, however, has the

disadvantage of having the caller test every return value. In MSPL the return value

or message is tested within the language.

 As mentioned earlier, there are three main tasks for software that supports

remote procedure calling. Interface processing involves integrating the RPC

mechanism with the client and server programs in conventional programming

languages. Communication handling is the transmission of request and reply

messages using some form of request-reply communication. Binding is the process

of locating an appropriate server for a particular service.

 To build a client program, the RPC system provides a stub procedure to

stand in for each remote procedure that is called by the client program. For the

building of the server program, RPC provides a despatcher and a set of server stub

procedures. The despatcher uses the procedure identifier found in the request

method to select one of the server stub procedures and pass on the arguments.

Every procedure in the interface has a unique identifier that is the same on both the

client and server sides.

 The Sun RPC system provides an interface language called

XDR (External Data Representation) and an interface compiler called rpcgen.

Since only one parameter is allowed, procedures requiring more than one must

include them as components of a single structure. From the interface definition, the

rpcgen compiler generates client stub procedures, the server main procedure, the

despatcher, and several server stub procedures. Similar to MSPL, the application

programmer has control over specifying the service port. An extra feature RPC

has, is the ability to use UDP (User Datagram Protocol), a connectionless service

that transmits messages of up to 64 kilobytes, or TCP connections which is a

connection oriented service that transmits streams of bytes across a pre-established

connection. MSPL currently supports the latter. The level of security offered is not

as strong as in BEA Tuxedo but RPC does offer authentication, which may be used

with every message sent from the client to the server. The server is then

responsible for enforcing access control by deciding whether to execute each

procedure call according to the authentication information. The two methods of

authentication supported are UNIX and DES (Data Encryption Standard).

 Although the RPC is a generally applicable programming mechanism, it

seems closely knitted to one language and allows procedures to be generated not

the actual protocol like MSPL does. Similar to BEA Tuxedo, if the application

programmer wanted or needed to change the programming language, it would be

necessary to re-implement the same protocol in the new target-language.

2. 9 Library-Based and Specification-Based Approaches

Developing client-server software at a higher level of abstraction can be

characterized into two main approaches. The first approach is library-based like

BEA Tuxedo. The second is a specification-language approach like MSPL. To the

user, the final product is the same in most cases except for the level of efficiency,

which is interpreted by the user as the speed of the application or lack thereof. In

this section an abstract comparison is made between the two approaches.

 Library-based methods provide a fixed list of routines. Consider the

purpose of Java or C versus the development of Assembly Libraries. It is possible

to code software without the existence of Java or C. These programming

languages provide a programmer with a higher level of abstraction when coding.

Similarly, MSPL provides a higher level abstraction for implementing protocols.

This has several advantages and disadvantages.

One advantage is the fact that high-level programming languages are easier

to read and understand. If this were not the case, then it would be more

advantageous to just provide libraries at the Assembly level of coding. This would

provide more efficient code than most compilers can produce. In fact the

degradation in inefficiency due to the use of high-level programming is one of the

main reasons why programmers still program in the lower-level Assembly for some

software packages.

Another advantage is the fact they shorten the development and

maintenance time required. This is mainly because the complex low-level

communication code is generated by the compiler. Testing of the generated code

only has to be done once. After assuring the generated code is error free, it does

not have to be tested again after each compilation. Also, by separating the

specification from the implementation, the programmer only has to specify what to

do and not how to do it, a key difference in declarative and procedural

characterization of expressing solutions in programming languages. This is a great

property because any changes in the protocol specification can be done at a higher

level, and thus, more easily. The separation also increases portability, as adding

compilers for new target languages is relatively easy. On the contrary, the

library-based approach is target-language specific, which means that if the

programmer would like to change the target-language, the protocol code would

have to be re-written in the new target-language because the protocol-specification

is closely intertwined with the protocol-implementation.

Another major advantage of the specification-based approach is that

protocols are automatically aligned. By alignment, we mean that if the number or

order of parameters for a particular request is changed on the client side, then the

server side is automatically adjusted to align with these changes. Consider a lock

and its matching key, any changes made to the lock must be mirrored with

appropriate changes made to the key (or vice versa). Without the mirrored

changes, then the key will no longer engage or release the lock. Similarly, in the

library-based approach, changes in the server protocol module require the

corresponding changes to be made in the client protocol module (or vice versa). In

the library-based approach, however, errors on the part of the programmer, may

lead to unaligned changes. This will inevitably prolong development time. On the

contrary, the specification-based approach uses a compiler to generate the client

and server protocol modules, which are automatically aligned. Consequently, the

possibility of programmer errors is reduced and reliability in the resulting client-

server software is enhanced.

A disadvantage of the specification-based approach is more abstraction

generally leads to less control and flexibility. There is also the added responsibility

of mastering another language.

 As with the introduction of any other high-level programming language, it

is not the answer for all programmers. It does, however, allow more programmers

to develop client-server software without having to have an in-depth knowledge of

the complex network programming issues that lie underneath. The main drawback

is that the more abstract the language, the less efficient the code becomes when

compiled into machine code. This depends on how smart the compiler is to some

extent but not completely.

Chapter 3

MSPL

The first problem stated in the Problem Statement, Section 1.1, is handled by

building ‘My Simple Protocol Language’ (MSPL), which is used to write programs

that implement the communication protocol stack shown below in Figure 3 - 1.

Figure 3 – 1. Client-Server Code Generation Model

The solid lines represent the actual path of communication while the dotted
lines represent the virtual communication path. Each layer on the client side
communicates with the corresponding layer on the server side. Each layer has a
distinct function. The application programmer is responsible for defining the
Application Protocol. This research looks at developing MSPL to specify an

Host-to-
Network

Client Side Server Side

User Code

Generated Code

Java Sockets

Generated Code

Java Sockets

Application
Protocol

Application
Protocol in MSPL

Physical Medium

User Code

application being developed and outputted by a Compiler with the input of a
MSPL program.

In all networks, the purpose of each layer is to offer certain services to the
higher layers, shielding those layers from the details of how the offered services
are actually implemented. In reality, no data is transferred from layer n on one
machine to layer n on another machine. Instead, each layer passes data and
control information to the layer immediately below it, until the lowest layer is
reached. Below the Java Sockets layer is the Physical Medium through which
actual communication occurs. The user-code written by the application
programmer, passes data types down to the generated code. The generated
client and server protocol modules provide the service of packaging these data
types into a Message Packet format and sending it over the network where they
are then passed up to the user-written code. The ordering and structure of the
messages are specified in MSPL.

3.1 Architecture

Figure 3 – 2 shows the architecture of the entire client-server code generation

process. First, a program representing the Application Protocol in MSPL must be

written by the application programmer. Then it is sent to the Compiler, which

outputs the Client Protocol Module and Server Protocol Module.

Figure 3 – 2. MSPL Architecture

MSPL Program

Other
Client

Modules

MSPL
Library

Linker

Server
Protocol
Module

Linker

Client
Protocol
Module

MSPL
Compiler

Other
Server

Modules

These protocol modules are then linked to the MSPL Library and other user-written

modules. This produces the final product of a client-server software application.

3.2 ESFTP
Before we take a closer look at exactly how to write a program in MSPL and how

the client and server code is generated, we describe a simple protocol called the

Extremely Simple File Transfer Protocol (ESFTP), which will be used as a running

example throughout this chapter. It is not the RFC 959 Standard FTP protocol. All

communication takes place over one connection and the client begins the

conversation instead of the server. These are the two main differences between this

user designed protocol and the standard RFC 959 FTP implementation.

 The ESFTP application can be used to transfer files from a client machine

to another machine running the server and also files from the machine running the

server to any machine that has the client. These two machines must also be on the

same network. To carry out the function of the application described above, there

are three request statements required which are a request to put a file, get a file and

quit the application, thus, closing the network connection. The protocol is also

used to send error messages between the client and server.

 There are a few steps of initialization that must take place before the client

or server can acknowledge any of the three commands mentioned above. In the

initialization phase, the server must;

1. Be started with a port number known by all clients wishing to connect to the

server.

2. Open a socket and if the port is in use then print an error message and exit.

3. Listen for client connections on the specified port.

The client also has three initialization steps, which are;

1. Invoke with server address and port number.

2. Make a socket connection to the server.

3. Prompt user for requests that need to be sent to the server.

Once these initialization steps have been taken, then any of the three commands

may be used. The structure and ordering of each command is given below:

Put <filename>

1. Client ensures filename exists.

2. Client sends command token Put, the filename and an integer representing

the size of the file in bytes.

3. While the entire file has not been copied to the server:

a. Client sends up to buffersize bytes (where buffersize is an integer).

b. Server reads the bytes sent by the client.

4. Server sends a reply message stating whether the request was completed

successfully or not.

5. The client prints the status message to inform the user and then waits for

next command/request from the user.

Get <filename>

1. Client sends command token Get followed by the name of the file being

requested.

2. Server checks and ensures the filename exists.

3. Server sends message stating whether file exists and the size of the file if it

exists.

4. While the entire file has not been sent to the client:

a. Server sends up to buffersize bytes.

b. Client reads the bytes sent by the server.

5. Client informs user whether or not expected bytes are equal to actual bytes

received.

6. Client and server wait for next command/request from user.

Quit

1. Client sends command token Quit and then closes the connection

2. Server receives command and also closes its end of the connection.

This is the Extremely Simple File Transfer Protocol. It is independent of MSPL as

it has been implemented by many other programmers without the aid of MSPL.

The protocol works fine for file transfers, and as its name implies, it is extremely

simpler to implement than FTP RFC 959.

3.3 Implementing ESFTP in MSPL

In this section, we take a closer look at exactly how to write a program in MSPL

and how the client and server code is generated. In Figure 3 – 3 the

specification-protocol is written for ESFTP. This is the same program that

generated the portions of code shown in Figure 3 – 8.

Figure 3 – 3. MSPL Code For ESFTP

1. # MSPL file used to generate code for the ESFTP Application
2. Parameters
3. defaultClientPort 55000, # between 0 and 65535
4. defaultServerPort 55000, # between 0 and 65535
5. bufferSize 1000, #same size buffer for Client and Server
6. maxClientsSupported 9;
7. Begin
8. Request Get # method for client to receive a file from server
9. String Filename;
10. Reply Ok

11. int statusref,
12. int length,
13. byte[] actualFile;
14. Reply noFile
15. String noFileError;
16. Request Put # method for client to send a file to the server
17. String Filename,
18. int length,
19. byte[] actualFile;
20. Reply Successfull;
21. Reply fileExists
22. String overWrite;
23. End

 Every client module generated from the MSPL program contains a method

called connectTo, which takes a string as its parameter. The method is used to

establish a connection to the server. The string parameter is the hostname or IP

address of where to try and connect. The server you want to connect to must

already be running at that address and listening on the port specified in the MSPL

program.

All the parameters have default values, which can be overridden. This frees

the programmer from being forced to declare all of them. In this case, four

parameters have been defined. Both defaultClientPort and defaultServerPort have

been assigned the value of 55000 on lines 3 and 4. The buffersize designates the

maximum size of the packets being sent between the two machines and has been

assigned a value of 1000 bytes on line 5. The last parameter assigned a value is on

line 6. This is the maximum number of clients that can connect to the server at any

given time. All of these parameters are defined more specifically later in

Section 3.3.1 on Definable Communication Parameters. Throughout the program,

comments may be inserted by preceding the text with a number sign (ie. # this is a

comment). The rest of the characters on that line are regarded as a comment and

are not processed by the compiler. The default client and server ports may be any

integer value from 0 to 65535.

 Line 7 signals the beginning of the Request–Reply structure. No

parameters can be assigned a value after this keyword. The get request on line 8

sends a string value from the client to the server. The expected reply from the

server is either Ok or noFile as shown on lines 10 and 14. The first token sent back

in all protocols including RFC, is the name of the Reply. In this case the first token

will either be Ok or nofile. If the reply name is Ok, then the next data type expected

is an integer followed by another integer and then finally bytes. The first integer is

used by the user-written modules to see if this is just a continuation of receiving a

file or is it the start of receiving a new file. The second integer is the size of the file

being sent and is used to inform the client of just how many bytes will be sent.

Finally, the actual file is transferred in chunks no larger than the buffersize until the

entire file has been transferred. If the reply is nofile, then as line 15 shows, a string

follows which may contain more information as to exactly why the request was

unsuccessful.

 Another possible request is put, which is shown on line 16. This request

sends the request name put, followed by a string for the name of the file to be sent

to the server, an integer representing the size of the file to be sent and then finally

bytes equivalent to or smaller than the specified buffersize. All these fields in the

message packet are defined on lines 17, 18 and 19. The two possible replies to this

request are Successful or fileExists. Successful is the name of the reply on line 20

and it has no other parameters that are returned with it. This simply means if the

request was executed successfully then that is all the information that needs to be

reported to the client. The second reply on line 21 is fileExists and is followed by a

String type, which may be used to describe what the server side plans to do since

the file already exists.

 One other request that is present in all the generated protocol modules is the

quit request. This request sends quit as a string to notify the server the connection

is being closed. There aren’t any reply parameters for the quit request.

The quit command is not written in Figure 3 - 3 because, as mentioned

earlier, it is standard in most protocols, therefore it is automatically generated. It

can be overridden but in the case of this protocol it is not necessary.

 In MSPL, there are several assumptions that are made in addition to the

EBNF definition given in the Appendix. Firstly, a second request cannot be made

until a reply for the first request is received unless no reply is expected for the first

request. This is critical to maintaining the deterministic order of control, which

says a client makes one request and is responded to with one reply.

 Secondly, the request parameter timeout is used to re-send or more

specifically re-execute one of the automatically generated communication

functions. The timeout value is measured in milliseconds. After n timeouts, a

message is printed to the screen saying the server could not be reached and then

control is returned to the application programmer who makes further decisions on

the next action.

3.3.1 Definable Communication Parameters

In Figure 3 - 3, the first section of code, between the keywords Parameters and

Begin, is where variables are initialized, giving the programmer control over which

port to communicate. It is left up to the programmer to ensure this port is available.

If the chosen port is not available, then the generated code will simply print a

message saying the port is already in use, upon which, it will halt all attempts to

use the port. There is a variable that allows the programmer to define the buffer

size in bytes for each message sent to and from the client. The blocks of data sent

are guaranteed to be no larger than this number provided. The

maximumClientsSupported variable allows you to specify how many clients are

allowed to connect to the generated server at any given moment. All the variables

have default values incase the programmer doesn’t want to set them.

 After setting all the parameters desired, then the main body of code between

the keywords Begin and End may be written. There is an option to send a

Handshake which allows the server to send a message before the client does. After

researching several existing protocols, it was discovered that not all client server

protocols start with a request from the client side. In some instances, the server

first sends a message stating it is ready to provide a service and it is running a

certain version of the application. The server does not expect a reply to this

message. Therefore, it is really not correct to call it a request. It simply informs

the client side of some information, which is why it was chosen to be named

Handshake in MSPL. It is referred to as Events-One Way in Tuxedo.

3.3.2 Structure of Request–Reply Statement

Whether a Handshake takes place or not, the next command is a Request. Every

Request and Reply has a name, which is placed right after the keyword Request or

Reply. Request represents a message from the client intended for the server. It

consists of sending a combination of integers, strings and bytes. Each type is sent

separately in the order in which they are written in the MSPL program. The server

code is also generated to accept the data structures in this order providing the

necessary alignment. After all data has been sent, then Reply data structures are

sent from the server to the client in the same way the Request message was sent

from the client.

 The language accepts as many Request–Reply statements as required by the

protocol being implemented. For every Request there is zero or more Replies. An

example of a request that may not need a reply is the quit command in the FTP

protocol. It is also possible to name a Request with no parameters. This was done

to easily handle more complex protocols in RFC. When no parameters are

supplied, then bytes are sent. They are stored in a standard variable created in

every message packet with the size of the field set to buffersize. After all the

Request–Reply statements have been written, the keyword End is written which

signifies the end of the MSPL program.

3.4 MSPL Parsing and Syntax Checking

The compiler is relatively fast since the size of the average MSPL program is under

25 lines of code. It takes approximately 4 seconds to generate the Java code from

the MSPL code. Similar to the Fabius Compiler described in Chapter 2, the Java

code is pre-generated with holes where values need to be inserted [Lee, 1996].

The current compiler is very basic, printing error messages that will help you find

where an error may be and what might be the cause of it. If the MSPL program is

not successfully compiled, then the code generation process never commences.

3.4.1 MSPL Parser

Once the program has been written in MSPL, it can be passed onto the Compiler

program. The only other input required by the Compiler is the name of the user’s

server program, which will be called by the generated server code module.

Figure 3 - 4 shows a sample run of the Compiler. After entering the required

information at the prompt when requested to do so, the code written in MSPL is

parsed into tokens. The tokens must begin with a letter and are allowed to contain

numbers and underscores. Each token is terminated by a white space, semicolon,

or comma. Commas and Semi-colons are also considered to be tokens themselves.

Each token is classified as one of the following:

Parameters
defaultClientPort
defaultServerPort
bufferSize
maxClientsSupported
Begin
End
Reply
Request
Request_Parameters
timeout
String
int
byte[]
Handshake
Other_Op
Constant_Int
Id

Tokens classified as Other_Op may be either a comma or a semicolon.

Figure 3 – 4. Log of Compiler Application Running

1. Script started on Wed Mar 22 19:05:53 2000
2. CS:1>> java CodeGenerator
3. Enter Server filename to import: userSMTPD
4. Enter filename to compile: smtp.mpp

5. Checking Syntax please wait....

6. MySimpleLanguage source code: smtp.mpp
7. Java generated Server source code: smtpd.java
8. Java generated Client source code: smtp.java
9. Generating Code please wait....

10. Deleting Temporary files...
11. Deleting Temporary file TEMP/fileOfTokens.mpp...

Successfull!!!
12. Deleting Temporary file TEMP/temp2000... Successfull!!!

13. Generated files may be found in GenCode Directory

14. CS:2>> exit
15. script done on Wed Mar 22 19:06:11 2000

Figure 3 – 5 shows a sample of a file of classified tokens, which is

generated as an intermediate step to the final goal of generating the client and

server code for the ESFTP application. The only possible errors found by the

parser are illegal tokens. This means the token contains at least one invalid

character.

The names of the server protocol module and client protocol module are

derived from the name of the MSPL program. The client protocol module is the

same name with the “.java” extension instead of “.mpp”, while the server protocol

module ends with “d.java”. After each run of the compiler, all the temporary files

created are deleted. These files include the fileOfTokens.mpp which is shown in

Figure 3 – 5. The file of tokens is created from the MSPL code passed to the

Compiler. This file is then passed on to the Syntax Table which checks the

ordering of the tokens using the Syntax Table shown in Figure 3 - 6.

Figure 3 – 5. Sample Tokens File Generated as Intermediate Step

Parameters parameters
defaultClientPort defaultclientport
Constant_Int 25
Other_Op ,
defaultServerPort defaultserverport
Constant_Int 25
Other_Op ,
bufferSize buffersize
Constant_Int 49152
Other_Op ,
maxClientsSupported maxclientssupported
Constant_Int 9
Other_Op ;
Begin begin
Handshake handshake
Other_Op ;
Request request
Id mail
byte[] byte[]
Id id
Other_Op ;
Reply reply
Id ok
byte[] byte[]
Id actualfile
Other_Op ;
Reply reply
Id notokmail
byte[] byte[]
Id notok
Other_Op ;
Request request
Id rcpt
byte[] byte[]
Id toaddress
Other_Op ;
Reply reply
Id okrcpt
byte[] byte[]
Id ok
Other_Op ;
Reply reply
Id notokrcpt
byte[] byte[]
Id notok
Other_Op ;
Request request
Id data
byte[] byte[]
Id sendmessage
Other_Op ;
Reply reply

Id success
byte[] byte[]
Id successbytes
Other_Op ;
Reply reply
Id failure
byte[] byte[]
Id failurebytes
Other_Op ;
Request request
Id message
byte[] byte[]
Id actualmessage
Other_Op ;
Reply reply
Id messageaccepted
byte[] byte[]
Id successbytes
Other_Op ;
Reply reply
Id messagedenied
byte[] byte[]
Id failurebytes
Other_Op ;
End end

The method that classifies tokens ignores comments by discarding them since they

are not needed for compilation of the code.

3.4.2 Checking Syntax of MSPL Code

After parsing the file into tokens and classifying each token, then the actual syntax

is checked. This is the process where most errors are found. By this time we are

assured the file being compiled exists and contains all legal tokens. Now we may

look at the ordering of these tokens to determine if we can generate code from

them. The entire syntax of MSPL has been placed in a table called the MSPL

Syntax Table shown in Figure 3 – 6.

Figure 3 - 6. MSPL Syntax Table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 Parameters 50 1 2 3 4 51 50 50 50 50 50 50 50 50 50 50 50 50 50
1 defaultClientPort 59 52 52 52 52 52 52 52 52 52 10 52 52 52 52 52 52 52 52
2 defaultServerPort 59 52 52 52 52 52 52 52 52 52 10 52 52 52 52 52 52 52 52
3 bufferSize 59 52 52 52 52 52 52 52 52 52 10 52 52 52 52 52 52 52 52
4 maxClientsSupported 59 52 52 52 52 52 52 52 52 52 10 52 52 52 52 52 52 52 52
5 Begin 59 53 53 53 53 53 6 53 53 53 53 53 53 53 53 53 53 53 18
6 Request 59 54 54 54 54 54 54 7 54 54 54 54 54 54 54 54 54 54 54
7 ID 59 55 55 55 55 55 55 55 55 55 55 55 12 13 14 15 16 55 55
8 Request_Parameters 59 56 56 56 56 56 56 56 56 9 56 51 56 56 56 56 56 56 56
9 timeout 59 52 52 52 52 52 52 52 52 52 10 52 52 52 52 52 52 52 52
10 Constant_Int 59 57 57 57 57 57 57 57 57 57 57 57 57 57 57 15 16 57 57
11 Reply 59 58 58 58 58 58 58 7 58 58 58 58 58 58 58 58 58 58 58
12 string 59 58 58 58 58 58 58 7 58 58 58 58 58 58 58 58 58 58 58
13 Int 59 58 58 58 58 58 58 7 58 58 58 58 58 58 58 58 58 58 58
14 Byte[] 59 58 58 58 58 58 58 7 58 58 58 58 58 58 58 58 58 58 58
15 , 59 1 2 3 4 60 60 61 60 9 62 60 12 13 14 63 64 60 74
16 ; 59 65 65 65 65 5 6 61 8 65 62 11 65 65 65 66 67 17 74
17 End 59 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
18 Handshake 59 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 16 57 57

The rows represent every possible token that is accepted in MSPL and the error

states that may be entered depending on the next token input. For example, if the

current state is Parameters and the next token input is anything other than a

parameter variable (ie. defaultClientPort, bufferSize etc.) you will go to an error

state. The error states are 50 and greater. States 19 to 49 are reserved for

extending the language. The error states are not shown in the table but each

number greater than 50 refers to an error message, which is printed when that state

is entered. The number of error states is large to enable more specific error

messages to be printed to the screen. If there was only one error message, it would

have to be very general such as “Error Found”. By increasing the number of error

messages, each message can be more specific to the problem encountered.

3.5 Generated Protocol Modules

Once the program written in MSPL passes through the Syntax Process successfully,

the Code Generation Process may begin. The process of code generation creates

four main files as output. These files can be categorized as the client file, the server

file, the server interface file and the message packet file.

3.5.1 Message Packet Architecture

Every variable declared in a Request statement or a Reply statement appears in the

message packet structure. This message class is the return type of the generated

functions. A graphical representation of the ESFTP message packet is shown in

Figure 3 – 7.

Figure 3 – 7. ESFTP Message Packet Structure

 The message packet sent is dynamic since not all the data types represented

in Figure 3 - 7 are ever sent in one message packet. These are all the data types

specified in the MSPL program written for ESFTP that will be required either for a

request or a reply statement. Each data type is also assigned a variable name as

shown below the dotted line in Figure 3 – 7. Depending on the Request made, the

String Type int Type int Type byte Type String Type
 String Type

Filename statusRef fileLength actualFile OverWrite

message structure will change dynamically to send only the necessary parameters

for the specified request. The server code does the same for each reply sent back to

the client. The client knows which reply to expect by checking a standard variable

called the Reply name. This is a part of the MSPL protocol.

3.5.2 Client Protocol Module

The generated client module contains functions, which will be called by the user’s

client module to take care of low-level communication and the ordering that was

embedded in MSPL. For example, in the ESFTP code shown earlier, a function

called put would be generated with parameters String for the name of the file, int

for the size of the file being sent and byte[] for the actual bytes of the file which are

being sent to the server. All these parameters must be present when this function is

called by the user’s client code. The main advantage here over the common RPC,

RMI and Corba code is that once this function is called, the work of receiving the

reply to this request is also executed and a reply of success or an error is sent back

to the user’s client program in the form of a message, which contains several fields

that the user knows to check to get the relevant information needed. In other

words, the client and server code is automatically aligned as described earlier in

section 2.9.

3.5.3 Generated Server Interface

The generated interface file is the interface between the generated server module

and the user’s server modules. The interface allows the user to not have to edit any

of the generated code. The interface is extended using the implements command in

Java.

 An advantage of using an interface file is that if for some reason, the code

generated must be regenerated, then since the user did not modify the generated

code, no extra coding or modifications by the user are lost.

3.5.4 Server Protocol Module

The next file generated is the server module, which calls the user’s server program

once it receives a message from the client side. This file receives messages from

the client Request statements and sends data over the network connection for Reply

statements.

Upon receiving data for a Request statement, it calls a function in the

generated interface, which must be defined by the user’s code. For example, if the

put request is executed, then the generated server would call the put function in the

interface class which must be implemented by the user. This is true because a

server that implements a given interface promises to support all the methods

defined by the interface. The client need not be concerned with how the server

implements the interface. The Server Interface box in Figure 3 - 8 shows the

interface class for the ESFTP example described throughout Chapter 3.

3.6 User-Written Modules

The user-written code is simplified greatly by writing a few lines in MSPL, which

generates the communication code and also takes care of ordering. The main goal

of the user’s code is to manipulate the information it sends and receives from the

client or server in order to carry out the task the application is supposed to do. This

is called the Application Protocol and is the responsibility of the application

programmer to specify.

3.6.1 User-Written Client Modules

The user-written client modules import the generated client module, which then

permits the user to call any functions in the generated client code. The reply type

of all the generated functions is Message type. The user is responsible for checking

the fields they asked to be created in the Message. For example, in ESFTP, if a

Request Statement was get and it had the variable filename as a String, then in

Message there would be a field of type String with the variable name filename.

Now if the function returns type Message, which is stored in the variable putReply,

then to access the filename field you would write putReply.filename.

3.6.2 User-Written Server Modules

The server-written code consists of functions that should be called depending on

the Request Message received from the client. If the ESFTP put Request is sent to

the server, then the generated server calls the put function of the user’s server

module with the message packet that was sent to it from the client side. This

function is guaranteed to exist because of the generated interface that is

implemented by the user’s server module.

3.7 A Sample of Generated and User-Written Code for ESFTP

Figure 3 – 8 shows the code that is behind the boxes in Figure 3 – 2, representing

Other Client Modules, the Client Protocol Module, the Server Protocol Module and

Other Server Modules. The code shown for each module is a portion of the

complete code that was written by the user or generated by the compiler.

 The put method is shown in Figure 3 – 8. First, the client may receive some

data from the application user, requesting a file be copied from the local machine

they are on, to another machine running the server application. The line ftp.put(…)

calls the generated Client Protocol Module with the specified parameters. Upon

receipt of this call, the Client Protocol Module contacts the Server Protocol Module

and sends the data across the network using the Message Packet described
earlier in Section 3.5.1. Once the message packet arrives, the generated Server
Protocol

Module calls the put method through the generated Server Interface. It is then
up to the user to extract the information from the message packet and place the
appropriate data in a reply message packet. The return command gives control

back to the generated Server Module, which then sends the reply message packet to

the generated Client Protocol Module. The user-written Client Module originally

called this module, so it returns a message packet type.

Figure 3 – 8. Sample-Generated and User-Written Code for ESFTP

public static messageType put(String filename,
 int filelength, byt[] actualfile) {

 send.writeInt(toSocket.filename.length());
 send.writeChars(toSocket.filename);
 send.writeInt(toSocket.length);
 System.out.println("Sending bytes " +
 "in actualfile");
 send.write(toSocket.actualfile);

 receive..read(fromSocket.replyName);

 return fromSocket;
}

Client
stringLength = receive.readInt();

for (int i = 0; i < stringLength; i++) {
 fromSocket.filename += receive.readChar();
}

fromSocket.length = receive.readInt();

System.out.println("Receiving bytes");
receive.read(fromSocket.actualfile);

toSocket = GeneratedInterfaceInstance.put(fromSocket);

Server Protocol Module

User-
Generated

info = ftp.put(fileName, length, theBuffer);

info = ftp.get(fileName);

Client Module

interface GeneratedInterface {
 public messageType get(messageType info);

 public messageType put(messageType info);
}

Server Interface

public messageType put (messageType info) {
 File theFile = new File(".", info.filename);
 System.out.println(“USER >> Filename receiving:” +
 “info.filename);
 try {
 FileOutputStream writeFile = new
 FileOutputStream(info.filename, true);
 System.out.println("USER >> writing " +
 info.length + " bytes!!!");
 writeFile.write(info.actualfile, 0, info.length);
 writeFile.close();
 }

 info.replyName = "successfull";
 return info;
}

Server Module

3.8 MSPL Library

There are several advantages to developing a library that is linked to the generated

code. They are great to help increase portability but the arrival of new hardware

platforms requires the redesign or at least extensive re-coding of the libraries in

general. Currently, the MSPL Library is not that extensive. Most of the code

linked to the generated modules and the user-written modules are found in standard

java packages. A potential use for the library in future could be to add any RFC

specific modules that are standard. For example, there may be one or two modules

used by FTP RFC 959 that could be added to the MSPL Library. This may allow

more control over the code being generated, and thus lead to more efficient and

reliable generated code.

Chapter 4

Implementation of RFC Protocols

In this chapter, we take a closer look at how MSPL can be used to implement Real

World protocols. As experiments for proof of concept and usability, parts of the

Simple Mail Transfer Protocol (SMTP), Hypertext Transfer Protocol (HTTP), and

the File Transfer Protocol (FTP) were implemented using MSPL. These protocols

are widely used and are specified in Request For Comments (RFC). After

compiling the MSPL programs, sample user code was also written.

Communication between the generated client code and another existing server

which implements the same RFC was attempted as was communication between

the generated server code with other existing clients that implement the same RFC.

 The goal of testing a generated client with an existing server and a

generated server with an existing client is to demonstrate that ‘real world’

protocols can be specified in MSPL and the Compiler produces the appropriate

code for communication.

4.1 Implementation of SMTP RFC 821

The Simple Mail Transfer Protocol is used for the sending and receiving of

electronic mail. It is independent of the particular transmission subsystem and

requires only a reliable ordered data stream channel. The general model of

communication is that as the result of a user mail request, the sender-SMTP

establishes a two-way transmission channel to a receiver-SMTP. The receiver-

SMTP may be either the ultimate destination or an intermediate. SMTP commands

are generated by the sender-SMTP and sent to the receiver-SMTP. SMTP replies

are sent from the receiver-SMTP to the sender-SMTP in response to the

commands [Postel, 1982].

In the SMTP example, the code written in MSPL is shown in Figure 4 – 1.

The generated client along with user’s client code, was used to send a message

through “winnie.fit.edu ESMTP Sendmail 8.9.3/8.9.1” server. This was done

successfully and Figure 4 – 2 is a script of the communication that occurred

between the generated client and the Florida Tech ESMTP server.

 The defaultClientPort and the defaultServerPort on lines 2 and 3 were both

set to 25, which is the standard port to communicate on for SMTP. The buffersize

was set to1024 bytes on line 4. Since only the client side was implemented the

maxClientsSupported on line 5 did not play a major role in the script shown in

Figure 4 – 2. The Handshake command on line 7 is required for the RFC 821

implementation of SMTP. To successfully send a message, four requests had to be

implemented. These requests were called MAIL, RCPT, DATA and MESSAGE and

can be found on lines 8, 14, 20 and 26 respectively. All of these requests as for

most RFC protocols, require a stream of bytes to be sent between the client and

server, therefore, the field added by each of these requests is a variable that stores

bytes.

Figure 4 – 1. MSPL Code for SMTP

1. Parameters
2. defaultClientPort 25, # between 0 and 65535
3. defaultServerPort 25, # between 0 and 65535
4. bufferSize 1024, # same size buffer for Client and Server
5. maxClientsSupported 9;

6. Begin
7. Handshake; # used to inform client of version of server
8. Request mail # command to identify sender of message
9. byte[] id;
10. Reply mailOk # accept sender address
11. byte[] actualFile;
12. Reply mailError # reject sender address
13. byte[] error;

14. Request RCPT # address of potential mail recipient
15. byte[] toaddress;
16. Reply rcptOk # accept recipient address
17. byte[] ok;
18. Reply rcptError # reject recipient addres s
19. byte[] error;

20. Request DATA # Prepare to send text message
21. byte[] sendmessage;
22. Reply dataOk # text message sent successfully
23. byte[] dataOkBytes;
24. Reply dataError #unable to send message
25. byte[] failurebytes;

26. Request message # command to send actual message
27. byte[] actualmessage;
28. Reply messageaccepted # message sent successfully
29. byte[] successbytes;
30. Reply messagedenied # message rejected for some reason
31. byte[] failurebytes;
32. End

As mentioned earlier, the quit
command does not have to be
specified in the MSPL program
because it is standard over most
protocols. Therefore, the quit
command is generated automatically.
In most if not all the RFC protocols,
there are two parts to a reply message.
The first part is usually a number that
specifies the type of reply being sent
and the second part is a string, which
helps the user understand which reply
is being sent. This is the format you
will observe in all the conversation
scripts through out this chapter.

Figure 4 – 2. SMTP Conversation
Script
Script started on Wed Mar 22 02:34:39 2000
CS:1>> java userSMTP
Starting userSMTP application...

Enter Address to Connect To >> fit.edu
From Server: 220 winnie.fit.edu ESMTP Sendmail 8.9.3/8.9.1; Wed, 22

Mar 2000 02:34:39 -0500 (EST)

UserSMTP>> MAIL FROM:Melvin@research.com
Mail command:

 'MAIL FROM:Melvin@research.com'
Executing mail function
Finished sending Request Parameters
Returning control to user...

From Server: 250 Melvin@research.com... Sende r ok

3/8.9.1; Wed, 22 Mar 2000 02:35:24 -0500 (EST)
User >> Finished executing MAIL function!!!

UserSMTP>> RCPT TO:mdouglas@fit.edu
Recipient command:

 'RCPT TO:mdouglas@fit.edu'
Executing rcpt function
Finished sending Request Parameters
Returning control to user...

From Server: 250 mdouglas@fit.edu... Recipient ok

3/8.9.1; Wed, 22 Mar 2000 02:35:37 -0500 (EST)
User >> Finished executing RCPT function!!!

UserSMTP>> DATA
DATA command: DATA
Executing data function
Finished sending Request Parameters
Returning control to user...

From Server: 354 Enter mail, end with "." on a line by itself, 22

Mar 2000 02:35:38 -0500 (EST)

Message Text:

Hello,
This is a message being sent from Melvin's Generated
SMTP Client. It is interacting with the Florida
Tech ESMTP server.

.

Executing message function
Sending bytes in: actualmessage
Finished sending Request Parameters
Returning control to user...

From Server: 250 CAA07090 Message accepted for delivery

, 22 Mar 2000 02:37:13 -0500 (EST)

TEXT COMPLETE

User >> Finished executing DATA function!!!

UserSMTP>> quit
UserSMTP>> Quiting FTP Application
Finished sending Request Parameters
Returning control to user...

From Server: 221 winnie.fit.edu closing connection

, 22 Mar 2000 02:37:25 -0500 (EST)

UserFTP>> Thank for using this code Generated FTP Application
User >> Finished executing quit function!!!
CS:2>>

CS:2>> exit
script done on Wed Mar 22 02:37:36 2000

Line 2 shows how the client software is started. Currently it is text based

Java program. With the information supplied on line 4, the connectTo method in

the generated client module, establishes a connection with the fit.edu ESMTP

Sendmail server. Line 5 shows the Handshake sent by the server stating the

version of software running on the server and response code 220 signifying it is

ready to service requests from the client. The first request from the client is to

inform the server of the sender address shown on line 6. The format for this

request is shown on the next line;

MAIL <SP> FROM:<reverse-path> <CRLF>
The server can accept or deny the sender address. In this conversation, line 11

shows the server acknowledges the address Melvin@research.com as being ok with

response code 250. The next request is to inform the server of where the message

should be sent. This is known as the recipient address and the format for this

request message is shown on the following line;

RCPT <SP> TO:<forward-path> <CRLF>
This request is made on line 13 of the SMTP conversation script to make

mdouglas@fit.edu a recipient. The server then responds to this message on line 18,

again with a response code of 250. To add a second recipient, the request on line

13 would be repeated but with the different address desired. The Data request is

now a possible option as a request by the client. Without the previous information

of recipient and sender address, this request would not be accepted. The Data

request shown on line 20, tells the server to prepare to receive the actual text

message. The format for this request is shown below;

DATA <CRLF>
If the server is capable of receiving the text message right away, it sends a response

code of 354 as shown on line 25. Response code 354 means enter a message and

end it with a “.” on a line by itself. Once the user enters a text message as shown

on line 27, then it is sent and the server acknowledges whether the message was

accepted or not as shown on line 32. At this point the user may choose to send

another message or to end their session. To end the session the quit request is used

as shown on line 35. The server replies on line 39 with response code 221, which

means “service closing transmission channel” [Postel, 1982].

4.2 Implementation of HTTP RFC 2616

HTTP has been in use by the World-Wide Web global information initiative since

1990 [Fielding, 1999]. The Hypertext Transfer Protocol (HTTP) is an application-

level protocol for distributed, collaborative, hypermedia information systems. It is a

generic, stateless, protocol that can be used for many tasks beyond its use for

hypertext, such as name servers and distributed object management systems. This

would be done through extension of its request methods, error codes and headers

[Masinter, 1998].

The HTTP protocol is a request/response protocol. A client sends a request

to the server in the form of a request method, URI (Uniform Resource Identifiers)

or URL (Uniform Resource Locator), and protocol version, followed by several

lines with client information. The server responds with a status line, including the

message's protocol version and a success or error code, followed by several lines

with server information [Fielding, 1999]. HTTP communication usually takes

place over TCP/IP connections. The default port is 80, but other ports can be used

[Reynolds, 1994].

For the purpose of a functional client and or server, the only methods

required were the GET and QUIT methods. Figure 4 – 3 shows the MSPL code

used to generate the java protocol modules.

Figure 4 – 3. MSPL Code for HTTP

1. Parameters
2. defaultClientPort 55000, # between 0 and 65535
3. defaultServerPort 55000, # between 0 and 65535
4. bufferSize 1024, # same size buffer for Client and Server
5. maxClientsSupported 10;

6. Begin
7. Request Get;
8. Reply Ok # successfully received, understood, and accepted
9. byte[] actualFile;
10. Reply fileNotFound # The request contained bad
11. byte[] errorFourHundred; # syntax or cannot be

fulfilled

12. Reply serverNotAvailable # The server failed to fulfill
13. byte[] errorFiveHundred; # an apparently valid

request
14. End

The generated client was also linked to user-written modules to produce the client

software. This is the only example where maxClientsSupported was tested

extensively and seems to work moderately well. Most web browsers developed

now automatically request several connections to the same server in order to speed

up the time required to download a web page that has several pictures. According

to line 5 of the MSPL code, up to 10 connections can be made to the server at once.

4.2.1 HTTP Server Software

For the implementation of the generated code of the HTTP RFC 2616 protocol, the

generated server was tested with the Microsoft Internet Explorer

Version 5.00.2314.1003 client. The server was set up to run on port 55000 instead

of port 80 where HTTP servers usually run. To direct the HTTP client to my server

instead, the address and port had to be written in the address window as shown

below;

 http://winnie.fit.edu:55000/~mdouglas

The generated server was able to send both graphics and text back to the client,

which was then able to display them. In this example, the buffersize entered in

MSPL played a major role. Depending on the buffersize, the time to load a

standard 8½ by 11 inch page with one or two pictures varied by over 5 seconds.

There are several other commands that were not implemented but the GET

request was sufficient to successfully transfer files and images between the client

and server being used. A script of the conversation is shown in Figure 4 – 4. The

lines in bold are the relevant pieces of information that are currently being used to

service the requests. It is possible, however, to increase the functionality of the

server by using more of the information provided to the server from the client.

Figure 4 – 4. HTTP Server Conversation Script

1. Script started on Wed Mar 29 01:56:24 2000
2. /usr/users/student/mdouglas/public_html> java httpd

3. Accepting connections on port 55000
4. Document Root: .
5. Connection Established!!!
6. Request: get
7. USER HTTPD >> *** BEGIN HTTP Packet:
8. GET /~mdouglas HTTP/1.1

9. Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword,
application/pdf, */*

10. Accept-Language: en-us

11. Accept-Encoding: gzip, deflate

12. User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT;
DigExt)

13. Host: fit.edu:55000

14. Connection: Keep-Alive
15. USER HTTPD >> *** END HTTP Packet.

16. USER HTTPD >> pathname: '/~mdouglas'
17. USER >> Filename sending:index.html
18. Bytes Sent: 2279
19. Filelength: 2279
20. USER HTTPD >> Finished Sending File!!!
21. End Request
22. Now sending reply for request just received...
23. Sending bytes

24. End Request-Reply...

25. Request: get
26. USER HTTPD >> *** BEGIN HTTP Packet:
27. GET /Images/Flagbda.gif HTTP/1.1

28. Accept: */*

29. Referer: http://fit.edu:55000/~mdouglas

30. Accept-Language: en-us

31. Accept-Encoding: gzip, deflate

32. User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT;

DigExt)

33. Host: fit.edu:55000

34. Connection: Keep-Alive
35. USER HTTPD >> *** END HTTP Packet.

36. USER HTTPD >> pathname: '/Images/Flagbda.gif'
37. USER >> Filename sending:Images/Flagbda.gif
38. Bytes Sent: 33325
39. Filelength: 33325
40. USER HTTPD >> Finished Sending File!!!
41. End Request
42. Now sending reply for request just received...
43. Sending bytes
44. End Request-Reply...

45. Request: get
46. USER HTTPD >> *** BEGIN HTTP Packet:
47. GET /Images/Whatsnew.gif HTTP/1.1

48. Accept: */*

49. Referer: http://fit.edu:55000/~mdouglas

50. Accept-Language: en-us

51. Accept-Encoding: gzip, deflate

52. User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT;

DigExt)

53. Host: fit.edu:55000

54. Connection: Keep-Alive
55. USER HTTPD >> *** END HTTP Packet.

56. USER HTTPD >> pathname: '/Images/Whatsnew.gif'
57. USER >> Filename sending:Images/Whatsnew.gif
58. Bytes Sent: 17709
59. Filelength: 17709
60. USER HTTPD >> Finished Sending File!!!
61. End Request
62. Now sending reply for request just received...
63. Sending bytes
64. End Request-Reply...
65. ̂ C

/usr/users/student/mdouglas/public_html> exit
66. script done on Wed Mar 29 01:58:45 2000

Line 2 in Figure 4 – 4 shows how the program is executed. The daemon is

started by running the generated Server Protocol module. On line 5, a connection

is accepted from a client, which is the Internet Explorer client. The first request

received is in bold on line 8. Every request consists of several lines. A line

without text on it, known as carriage-return line-feed (CRLF), denotes the end of a

request. RFC 2616 for HTTP also suggests that in the interest of robustness,

servers should ignore any empty lines received where a Request-Line is

expected [Fielding, 1999].

The Request-Line begins with a method token, followed by the
Request-URI, the protocol version, and ends with a CRLF. The tokens are
separated by <SP> (space) characters. Except in the final CRLF, no CRs or LFs
are allowed. The following line shows the protocol for a Request-Line;
 Request-Line = Method<SP> Request-URI <SP> HTTP-Version<CRLF>

On line 8 in the HTTP conversation script, GET is the Method, /~mdouglas is the

Request-URI and HTTP/1.1 is the HTTP-version. The entire HTTP packet sent for

the first request spans from line 8 to line 14. The Method token indicates the

method to be performed on the resource identified by the Request-URI. It is also

worth noting that the method is case-sensitive.

Line 13 is the next portion of data that was used to service the GET request.

A client must include a Host header field in all HTTP/1.1 request messages. If this

line is not in the request message then all standard HTTP/1.1 must respond with a

400 (Bad Request) status code [Fielding, 1999].

 A second web page is requested on line 26. This file is referred to by a link

on the current page, therefore, line 28 is sent to inform the server of this fact. The

Referrer request-header allows a server to generate lists of back-links to resources

that can be used for logging or optimized caching. The protocol for a Referrer is

shown on the following line;

Referrer = "Referrer" ":" (absoluteURI | relativeURI)

 In HTTP/1.0, most implementations used a new connection for every

request/response exchange. In HTTP/1.1, a connection may be used for one or

more request/response exchanges. Lines 14, 33 and 53 inform the server of

whether the connection should be closed or not. A Connection, however, may be

closed for a variety of other reasons.

 There are several advantages to having one persistent HTTP connection

instead of several separate TCP connections. Firstly, latency on subsequent

requests is reduced since there is no time spent in TCP's connection opening

handshake. Secondly, network congestion is reduced by reducing the number of

packets required for TCP opens [Fielding, 1999].

 After receiving and interpreting a request message, the server responds with

an HTTP response message for which the protocol is shown below;

 Response = Status-Line <CRLF> [message-body]

The Status-Line is the first line in the Response message and it consists of the

protocol version followed by a numeric status code and an optional text message

describing the status code. The protocol can be seen on the following line;

 Status-Line = HTTP-Version <SP> Status-Code <SP> Reason-Phrase <CRLF>
Figure 4 – 5 shows and gives a brief description of the five main Status-Code

categories. The first digit of the Status-Code defines the class of response. The last

two do not have any categorization role but may be used by the programmer for

more specific meaning.

Figure 4 – 5. HTTP Status Codes [Fielding, 1999]

• 1xx: Informational - Request was received, and now continuing process.

• 2xx: Success - The action was successfully received, understood, and

accepted.

• 3xx: Redirection - Further action must be taken in order to complete the

request.

• 4xx: Client Error - The request contains bad syntax or cannot be fulfilled.

• 5xx: Server Error - The server failed to fulfill an apparently valid request.

After the status-line, there is a CRLF and then the message body, which in the case

of the GET request, is the actual bytes of the file that was requested.

4.2.2 HTTP Client Software

For HTTP RFC 2616, the client was also generated. In Figure 4 – 6, the client is

shown interacting with a Netscape-Enterprise/3.5.1G server. For the purpose of

this example, a one-line web page is requested and sent back to the client. The

client prints the one line directly to the screen. This is the line that would usually

be displayed by a graphics enabled web browser such as Netscape Explorer or

Internet Explorer.

Figure 4 – 6. HTTP Client Conversation Script

1. Script started on Sat Apr 15 23:59:31 2000
2. CS:1>> java userHTTP
3. Starting HTTP Application...

4. Connect Address: fit.edu
5. Enter Address: /~mdouglas/oneLine.html
6. Packet being sent:
7. GET /~mdouglas/oneLine.html HTTP/1.1
8. Accept: image/gif, image/x-xbitmap, image/jpeg,
 image/pjpeg, application/vnd.ms-powerpoint,
 application/vnd.ms-excel, application/msword,
 application/pdf, */*

9. Accept-Language: en-us
10. Accept-Encoding: gzip, deflate
11. User-Agent: Mozilla/4.0(compatible; MSIE 5.0;
 Windows NT; DigExt)

12. Host: maelstrom.cs.fit.edu
13. Connection: Keep-Alive

14. Executing get function
15. Finished sending Request Parameters
16. Returning control to user...

17. Reply packet for Request:
18. HTTP/1.1 200 OK
19. Server: Netscape-Enterprise/3.5.1G
20. Date: Sun, 16 Apr 2000 04:03:31 GMT
21. Content-type: text/html
22. Link: <http://winnie.fit.edu/~mdouglas/oneLine.html?
 PageServices>; rel="PageServices"

23. Etag: "240fef-b-38f8c9d2"
24. Last-modified: Sat, 15 Apr 2000 19:58:10 GMT
25. Content-length: 40
26. Accept-ranges: bytes

27. Hi there, this is a one line web page

28. Enter Address: quit
29. Finished sending Request Parameters
30. Returning control to user...
31. Thank you for using M.E. (Melvin's Expl orer)
32. CS:2>> exit
33. script done on Sat Apr 15 23:59:58 2000

Figure 4 – 6 shows a successful conversation between the generated client and a

commercial MS Internet Explorer server. On line 2, the client is invoked. Lines 4

and 5 allow the user to specify a specific file they would like to browse. Lines 6 to

13 inclusive, show the entire request packet sent. It informs the server of what the

client is capable of supporting such as what picture formats are recognized. Line 7

is the first line read by the server and identifies the service being requested. In this

case, it is the GET method. The syntax for this command is shown on the

following line;

GET <SP> URI
This line along with line 12, informs the server of where to locate the file being

requested. The information of what host the client is running on is obtained at

run-time using the standard hostname command, which returns the information

shown in italics on line 12. In HTTP versions 1.1 and higher, line 13 is used to

inform the server on whether to close the connection or keep it open. The last

request should say “Connection: close” informing the server to complete the

request and close the connection. Lines 14 to 17 are printed by the generated client

module to inform the user of what is happening. Line 18 is sent from the server to

the client confirming the request was received and processed OK. The number 200,

as in previous protocols, implies the request was semantically correct and

successfully serviced. This line along with the following lines to line 26, are

known as the header. They inform the user about the file, which is about to be

sent. The date of request, the type and size of file, and the last date of modification

of the file are among the more important pieces of information supplied to the

client. In a more complex client, this information may be used to decide whether

the file needed to be transferred to the client at all or if the client could simply

retrieve the file from its cache. Line 27 is the actual data in the file oneLine.html.

The following lines are used to gracefully close the connection to the server and

exit from the client application.

4.3 Implementation of FTP RFC 959

The File Transfer Protocol RFC 959 is used to transfer data reliably and efficiently

between two machines. It shields a user from variations in file storage systems

among hosts [Reynolds, 1985]. One machine must have the server running while

the second machine makes requests through a FTP client.

The general File Transfer Protocol model is similar to ESFTP, as described

in Section 3.2 earlier. The main differences, which were also mentioned earlier are

the handshake that is sent initially and the second data connection used to transfer

actual bytes of files. The communication between the user and server is intended to

be an alternating dialogue. Certain commands require a second reply for which the

user should also wait. These replies for example, may report the closure of the data

connection.

During the implementation of the FTP RFC 959 protocol, several

interesting problems arose. Some were overcome, while others were too in-depth

and have been left as interesting prospects for future work.

 The first problem encountered was that many protocols started the

conversation with the server sending a message first, basically informing the client

it was ready to communicate using a specific version of the application. This

problem was overcome by extending MSPL to include the Handshake command,

which allows the server to send a stream of bytes for which there is no Reply,

hence, it was not defined as a Request but as a Handshake command. Since the

syntax of the language was encoded into a table format, this extension was not that

hard to do.

 The second problem encountered was that in RFC 959, FTP has two data

connections in operation at any given moment. One connection is called the

control connection and the second is called the data connection [Reynolds, 1985].

Over the control connection, request for services are made. If the reply involves

sending or receiving a file or a list of all the files in the current directory, then a

second connection called the data connection is opened. This connection remains

open only long enough to fulfill the Request made, and then it is closed.

 There are two reasons why this was a problem that could not be solved

using the current version of MSPL. The first reason is that the current version does

not support more than one connection between the client and server. The second

reason was that the assignment of the connection on the second port would have to

be dynamic, changing during one execution of the program. Possible solutions to

this problem are discussed in Chapter 5. Figure 4 – 7 shows the MSPL code written

that works successfully for the commands that do not require a second data

connection. Some of these commands are print working directory (pwd) and

change directory (cd).

Figure 4 – 7. MSPL Code for FTP

1. Parameters
2. defaultClientPort 55000, # between 0 and 65535
3. defaultServerPort 55000, # between 0 and 65535
4. bufferSize 1024, # buffersize in bytes
5. maxClientsSupported 9;

6. Begin
7. Handshake;
8. Request user;
9. Reply goodusername
10. byte[] needPassword;
11. Reply badusername
12. byte[] stop;
13. Request pass;
14. Reply goodpassword
15. byte[] ready;
16. Reply badpassword
17. byte[] stop;
18. Request get;
19. Reply gettwohundred # positive completion reply
20. byte[] getgood;
21. Reply getFourHundred #temporary negative reply-try later
22. byte[] msgFourHundred;
23. Reply getFiveHundred # permanent negative reply
24. byte[] msgFiveHundred;
25. Request pwd;
26. Reply currentpath # positive completion reply
27. byte[] msgTwoHundred;
28. Reply errorPWD
29. byte[] error;
30. Request cwd;
31. Reply cwdOk
32. byte[] msgTwoHundred;
33. Reply cwdError
34. byte[] error;
35. End

The standard port used for FTP communication is port 21. To avoid having to shut

down the current FTP server running on this port, the MSPL code set up the server

to listen on port 55000 by assigning this value to the defaultClientPort and

defaultServerPort on lines 2 and 3. Since no files were able to be transferred, the

specified buffersize of 1024 was more than sufficient to transfer any one request or

reply in its entirety. The use of the Handshake command on line 7 was also

necessary for this protocol. Several Request–Reply statements were coded in

MSPL for this example. The request user on line 8 is a request for the server to log

the client on with the specified username that follows the method name user. The

Handshake command is where the server asks the client to provide this

information. If the username is valid then the server sends back an integer

signifying that a password is also required. Once the password has been confirmed

valid then the client is free to make other requests such as cd or pwd. The

implementation of the other commands using the second data connection has been

left as future work. The script for the generated server is shown in Figure 4 - 8. It

shows the messages that are exchanged with the standard ftp client on the

winnie.fit.edu server.

Figure 4 – 8. FTP Conversation Script

1. Script started on Wed Mar 29 15:38:58 2000
2. CS:1>> java ftpd

3. Accepting connections on port 55000
4. Document Root: .

5. Connection Established!!!

6. Handshake Sent…
7. Now receiving parameters for Request: user
8. Server got username: 'USER Melvin'
9. Finished receiving request parameters called user module

now send reply info
10. Now sending reply for request just received...
11. Sending bytes
12. Finished executing command...Waiting for next command...

13. Now receiving parameters for Request: pass
14. Server got password: 'PASS SonOfTheMostHigh'
15. Finished receiving request parameters called user module

now send reply info
16. Now sending reply for request just received...
17. Sending bytes
18. Finished executing command...Waiting for next command...

19. Now receiving parameters for Request: pwd
20. Finished receiving request parameters called user module

now send reply info
21. Now sending reply for request just received...
22. Finished executing command...Waiting for next command...
23. ̂ C

24. CS:2>> exit

25. script done on Wed Mar 29 15:40:34 2000

The pwd command shows the current directory path on the server machine. The

path is sent back to the client. An example of the path sent back would be

export/home/gsa/mdouglas. This type of request does not require a second data

connection and thus, can be done using the current version of MSPL.

 The first five lines of the FTP Conversation Script have the same purpose as

those in the HTTP Conversation Script. Once a connection has been established,

however, a Handshake is sent from the server to the client in which the client is

informed of the version of software being run and whether the server is ready to

service requests. Line 7 shows the server receiving the client’s request for a user to

log on to the server with the specified username. The FTP command sent by the

client side is shown below;

USER <SP> <username> <CRLF>
It is now up to the application protocol to decide if this is a valid username it wants

to accept. In Figure 4 – 8, the application protocol decides the username is fine but

a password is also required. Therefore, the reply sent signifies username was

accepted but a password is needed. The client application protocol understands this

response and sends the user’s password as shown below;

PASS <SP> <password> <CRLF>

The request is received by the server on line 13. The server module accepts the

password as being valid and then sends this information back to the client protocol

module, which then passes it on to the client module.

 One of the few commands that do not require the use of the data connection

shown in Figure 4 – 10, is the pwd command. This command sends the Reply back

over the FTP Replies line shown in Figure 4 – 10. The FTP Replies line is the

same connection that the client sends the FTP commands or requests over. The

command is used as shown on the next line;

PWD <CRLF>

FTP commands are "Telnet strings" terminated by the "Telnet end of line

code". The command codes themselves are alphabetic characters terminated by the

character <SP> (Space) if parameters follow and Telnet-EOL

otherwise [Reynolds, 1985]. Similar to HTTP, there are five possible types of

reply codes shown in Figure 4 - 9.

Figure 4 – 9. FTP Status Codes [Reynolds, 1985]

• 1yz Positive Preliminary reply

The requested action is being initiated; expect another reply before proceeding

with a new command.

• 2yz Positive Completion reply

The requested action has been successfully completed. A new request may be

initiated.

• 3yz Positive Intermediate reply

The command has been accepted, but the requested action is being held in

abeyance, pending receipt of further information. The user should send another

command specifying this information. This reply is used in command sequence

groups.

• 4yz Transient Negative Completion reply

The command was not accepted and the requested action did not take place, but

the error condition is temporary and the action may be requested again. The

user should return to the beginning of the command sequence, if any.

• 5yz Permanent Negative Completion reply

The command was not accepted and the requested action did not take place.

The User-process is discouraged from repeating the exact request (in the same

sequence).

Figure 4 – 10. FTP Model [Reynolds, 1985]

Connections

Data

FTP Replies

FTP Commands

File
System

User

File
System

Server
PI

Server
DTP

User
Interface

User
PI

User
DTP

User-FTP Server-FTP

In Figure 4 – 9, there is a reference to User DTP (Data Transfer Process) and

Server DTP. There is also mention of a User PI (Protocol Interpreter) and Server

PI which is the same as generated Client and Server Protocol modules. The User

and Server DTP are the two modules that would have to be developed in order to

use the put and get commands among other similar commands that require the use

of the data connection. Chapter 5 discusses possible extensions in MSPL and the

Compiler in order to generate a User DTP and Server DTP.

Chapter 5

Conclusion

Overall, the research done can be considered a success. There have been several

definitive steps taken in the right direction to increase the level of quality in the

development of client-server software. The Compiler and MSPL combined, proved

to be useful not only in non-standard protocols like ESFTP, but also in standard

protocols like SMTP RFC 821, HTTP RFC 2616, and even FTP RFC 959.

5.1 Significance and Expected Impact of Research

This research could have a significant impact on the development of future network

code generation applications and protocol specification languages. Most network

applications in the past have concentrated on providing just function calls. This

research, however, looks more closely at how generated code can make use of

ordering that is embedded in protocols. There has already been a substantial

impact in the area of re-use of code by other research and this research shall at least

add more arguments for re-use of code.

 A strength of MSPL is it is easy to read and understand. The way in which

the syntax parser was implemented makes it fairly easy to extend the language to

entail new features. This was the case when the Handshake command was added

to the language. MSPL seems pretty easy to use although there have not yet been

many users of the system and thus, not much evidence to base this statement on.

The independent development of MSPL from the compiler makes this solution very

portable since a compiler from MSPL code to any programming language can

easily be developed.

5.2 Prospects for Future Work

There are several prospects for future work, some of which are currently being

worked on. The primary future work that needs to be done in order to support

RFC 959 File Transfer Protocol, is to allow more than one connection between a

client and a server. This leads to more problems that must be thought through and

tackled. For example, in FTP RFC 959, the port for the data connection can

change several times in one session as it is only open long enough to service one

Request. Once it closes and reopens again for another Request, it is quite possible

and likely that a different port will be used. This implies the port would have to be

changed more than once during the execution of the application. This leads to the

next question of whether it is worth changing the language to allow the user to

change the port from the user’s code. This method could be placed in the MSPL

Library. Other future works include improving the compiler. By making it

smarter, it can optimize the MSPL code before compilation.

 Another interesting future work would be to provide more error handling

features similar to the BEA Tuxedo package described in Chapter 2. This would

greatly increase the reliability of the language when used in the Real World.

Appendix

EBNF definition for MSPL
<My_Simple_Language> ::= <declaration> <body>

<declaration> ::= Parameters <global_parameter_list> | ?

<global_parameter_list> ::= <global_parameter> <term> |

<global_parameter> <term>,

 <global_parameter_list>

<global_parameter> ::= defaultClientPort | defaultServerPort |

bufferSize | maxClientsSupported

<term> ::= Constant_Int

<body> ::= Begin <statement_list> End |

 Begin Handshake; <statement_list> End

<statement_list> ::= <statement> |

 <statement> <statement_list>

<statement> ::= <request_statement> <reply_statement>

<request_statement> ::= Request id <var_list> |

Request id <var_list>

Request_Parameters <parameter_list>

<var_list> ::= <type> id; | <type> id, <var_list>

<type> ::= int | String | byte[]

<reply_statement> ::= ? | Reply id <var_list> |

Reply id <var_list> <reply_statement>

<parameter_list> ::= <parameter> <term> | <parameter>

 <term>, <parameter_list>

<parameter> ::= timeout

References

[Amarasinghe, 1993] S. P. Amarasinghe and M. S. Lam, “Communication

Optimization and Code Generation for Distributed Memory Machines,”

Proceedings of the ACM SIGPLAN'93 Conference on Programming Language

Design and Implementation, June, 1993.

http://researchsmp2.cc.vt.edu/DB/db/conf/pldi/pldi93.html

[BEA,1996] “Programming a Distributed Application: The BEA Tuxedo®

Approach”, White Paper 1996.

http://www.bea.com/products/tuxedo/paper_distributedapp.html

[Clark, 1990] D. D. Clark and D. L. Tennenhouse. “Architectural Considerations

for a New Generation of Protocols,” ACM Communication Architectures,

Protocols, and Applications (SIGCOMM) 1990, September 1990.

[Coulouris, 1994] George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed

Systems Concepts and Design,” pp. 130 - 152 Second Edition 1994.

[Engelen, 1996] Robert A. Van Engelen, Lex Wolters, and Gerard Cats,

“Automatic Code Generation for High Performance Computing in Environmental

Modeling,” Proceedings of the 1996 EUROSIM International Conference on

HPCN Challenges in Telecomp and Telecom: Parallel Simulation of Complex

Systems and Large-Scale Applications, June 10-12, 1996

http://www.wi.leidenuniv.nl/home/robert/

[Engler, 1994] Dawson R. Engler and Todd A. Proebsting, “DCG: An Efficient,

Retargetable Dynamic Code Generator,” ASPLOS-VI Proceedings - Sixth

International Conference on Architectural Support for Programming Languages

and Operating Systems, San Jose, California, October 4-7, 1994.

http://www.stanford.edu/~engler/

[Fielding, 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.

Leach, T. Berners-Lee, “Hypertext Transfer Protocol Request For Comments

(RFC) 2616,” June 1999.

[Fraser, 1991] Chritopher W. Fraser and David R. Hanson. “A Code Generation

Interface for ANSI C. Software-Practice and Experience,” 21(9):963-988,

Proceedings of the International Workshop on Code Generation, September 1991.

[Grenier,1996] Christina Grenier, “The TXRPC Specification, X/Open CAE

Specification,” November 1995.

[Hsieh, 1996] Dawson R. Engler and M. Frans Kaashoek, “̀ C: A Language for

High-Level, Efficient, and Machine-independent Dynamic Code Generation,”

The 23rd annual ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, St. Petersburg Beach, Florida on January 21-24, 1996.

http://www.stanford.edu/~engler/

[Kohler, 1999] E. Kohler, M. F. Kaashoek, and D. R. Montgomery (MIT) “A

Readable TCP in the Protocol Language,” SIGCOMM 1999, August 1999.

[Lee, 1996] Peter Lee, Mark Leone, “Optimizing ML with Run-Time code

generation,” Proceedings of the ACM SIGPLAN'96 Conference on Programming

Language Design and Implementation (PLDI), Philadelphia, Pennsylvania, May

21-24, 1996. SIGPLAN Notices 31(5), May 1996.

http://www.acm.org/sigmod/dblp/db/conf/pldi/pldi96.html

[Masinter, 1998] L. Masinter, “Hyper Text Coffee Pot Control Protocol

 (HTCPCP/1.0),” RFC 2324, April 1998.

[Postel, 1982] Jonathan B. Postel, “Simple Mail Transfer Protocol RFC 821”,

August 1982.

[Reynolds, 1985] J. Reynolds, J. Postel, “File Transfer Protocol RFC 959,”

October 1985.

[Reynolds, 1994] Reynolds, J. and J. Postel, “Assigned Numbers”, STD 2,

RFC 1700, October 1994.

[TanenBaum] Andrew S. TanenBaum, “Computer Networks” Third Edition, pp. 28-29, 1996.

[Scheifler, 1986] R.W. Scheifler, J. Gettys, “The X Window System” ACM Trans.

On Computer Graphics, pp. 76-109, 1986.

