MSPL: A Protocol Language For
Generating Client-Server Software

by
Melvin Austin Leroy Douglas

Bachelor of Science
in Computer Science
Florida Institute of Technology
1998

A thesis
submitted to the Graduate School of
Florida Institute of Technology
in partial fulfillment of the requirements
for the degree of

Master of Science
in
Computer Science

Melbourne, Florida
May, 2000

O 2000 Melvin Austin Leroy Douglas.
All Rights Reserved.

The author grants permission to make single copies

We the undersigned committee hereby recommend that the attached document be
accepted as fulfilling in part the requirements for the degree of
Master of Science in Computer Science.

“MSPL: A Protocol Language For Generating Client-Server Software”
athesis by Melvin Austin Leroy Douglas

Philip K. Chan, Ph. D.
Assistant Professor, Computer Science
Thesis Advisor

Ryan Stansifer, Ph. D.
Associate Professor, Computer Science
Committee Member

Palmer C. Stiles M.S,, P.E.
Assistant Professor, Mechanical Engineering
Committee Member

William D. Shoaff, Ph. D.
Associate Professor and Program Chair
Computer Science

Acknowledgements

First and foremost, | would like to thank God, My Lord and Savior, for giving me
strength, hope and perseverance in my studies. Without Him none of this would be
possible or worthwhile.

| would like to thank my major advisor Dr. Chan for hisinnovative ideas
and constructive criticism that helped make this research a success. Thank you
also for your prodding towards excellence with the freedom to choose and conduct
my thesis towards my interests. To my Committee Members, thank you for taking
the time to read and revise my written and oral presentation of this thesis.

| would also like to thank my Mother, Father and Sister for their prayers and
support throughout my educational endeavors. | am very grateful to have afamily
who has encouraged me each and every step of my life. To avery specia friend,
Adolé Tounou, thank you for your motivation and help to remain focused on the
lifesize picture. | am indebted to many friends and colleagues whose love and
support have been a constant source of inspiration for me.

Dedication

To My Heavenly Father who has showed me so much Love and Kindness.

Abstract

MSPL: A Protocol Language For Generating Client-Server Software

by
Melvin Austin Leroy Douglas

Thesis Advisor: Philip K. Chan, Ph. D.

Client-server programs are becoming more common as the Internet grows. To ease
the burden of repeatedly writing low-level communication and protocol code, we
seek to design a protocol language, “ My Smple Protocol Language” (MSPL), that
produces the corresponding communication functions. The programmer then
supplies the rest of the applicationspecific code. It isworth noting the
programmer never modifies the generated code. Besides saving development time,
this approach aso reduces programming errors. The potential to develop more
efficient code al soexists once the technique of generating code is mastered. The
main contribution, however, is that unlike RPC, Corba or RMI, we provide the user
with not only functions that take care of lower level communication data structures,
but also the ordering and format of messages which are specified inMSPL
programs. The MSPL programs are then passed to the Compiler, which produces
the low-level communication and protocol modules. These protocol modules are
then linked to other user-written modules to produce the final software application.

Table of Contents

Abstract i
List of Figures Vil
Acknowledgements IX
Dedication X
1 Introduction 1
1.1 Problem Satementcccooriiiieniinins v e 2
1.2 Organization Of TRESIScccciiiereriiiiierieies vt seeeen o 2
2 Related Work 4
2.1 A BHEf HIStOMY .o e eeieeseeneens 5
2.2 Protocol Description TEChNIQUESccceeiireeieriiiies ceenieenieeeeees 7
2.3 Optimizing Communication by Aggregationccccceveeeveennene. 10
2.4 Fabius COMPIENcceiiiiiiiieieeieres e creeeeens 12
25 CTADEL SYSIEM ..o ceiesie e ssesseeeens sessens 13
2.6 Advantages and Disadvantages of Dynamic Code Generation 15
2.7 BEA TUXEHO® 7.1 ..o cvtestesiesseeseeeeneeseeseenns eenens 17
2.8 SUN'SXDRIRPCccooiiiieiiiiieieieies eetesiesseeee e sie s seeseenes 22
2.9 Library-Based and SpecificationBased Approaches 25
3 MSPL 29
3.1 ATChITECIUIE ..o e eeeeeee e 31
I S I = SR 32

3.3 Implementing ESFTPINMSPL ..o e 35

3.3.1 Definable Communication Parameters...........cccooeeveeruenne 40

3.3.2 Structure of Request-Reply Statementccoceeveeenee. 41

3.4 MSPL Parsing and Syntax Checkingcccccovceevinieenienins creeenn 42
341 MSPL ParSer ..ccccovieciiieieeciieenie crveeesiieessiaeesnieee e ens o 42

3.4.2 Checking Syntax of MSPL Codecccooeriinennieninns e 47

3.5 Generated Protocol MOAUIESccoeiiiiiiiiiin s 49
3.5.1 Message Packet Architecturecccovveveeiininns vvveene 49

3.5.2 Client Protocol Modulecccociiieiininiins e 50

3.5.3 Generated Server INterfacecccovevevieniieins vevenennens 51

3.5.4 Server Protocol Moduleccceeiiiiiiinniens e 51

3.6 User-Written MOAUIESccueiiiriiiicieicies e . 52
3.6.1 User-Written Client MOdUIEScocoeveririiiiies e 53

3.6.2 User-Written Server Modulescoceeevireeieies vvriene 53

3.7 A Sample of Generated and User-Written Code For ESFTP 54
3.8 MSPL LIbrary ... s s 56

4 Implementation of RFC Protocols 57
4.1 Implementation of SMTP RFC 821cccoooiiiiiiiiiiiies e 58
4.2 Implementation of HTTP RFC 2616ccceocviiiiiriens e 64
421 HTTP Server SOftWareccocceveeverienieenis eveenieeiieseene 65

422 HTTPClient SOftWareccoceecereeneninnie erirneeniesee e 72

4.3 Implementation of FTPRFC 959.........ccccoiiiiiniiiinis e 75

5 Conclusion 84
5.1 Significance and Expected Impact of Research............c..ccocu...... 84
5.2 Prospects For FUtUr@ WOrKcccccviiiiiriiiiiis e 85
Appendix: EBNF Definition for M SPL 87

References 88

List of Figures

6 Introduction 1
7 Related Work 4
7.1 TCP/IP Reference Modelccoooeiiiiiiiniins e 6
7.2 Micro-Benchmark Resultsfor an Echo Testccccoveeveiiiiiennes - 9
8 MSPL 29
8.1 Client-Server Code Generation Modelcccceevviieieninnes eveene 29
8.2 MSPL ArChiteCtUrecooiiieiieiiciies e e 31
8.3 MSPL Codefor ESFTP ..o e 36
8.4 Log of Compiler Application RUNNING.........ccoceriinienieninnes ereene 44
8.5 Sample Tokens File Generated asIntermediate Step 45
8.6 MSPL Syntax Tablecccceveeiieiieieies e 48
8.7 ESFTP Message Packet SIrUCtUrecoeeeieveineniins e 49
8.8 Sample-Generated and User-Written Code For ESFTP 55
9 Implementation of RFC Protocols 57
9.1 MSPL Codefor SMTP ..o e 59
9.2 SMPT CONVEersation SCHPL ...c.oevereerierieerieerienes cereeseeseeeseeseeneens 60
9.3 MSPL Codefor HTTP ..oooeiiiieeeceeeeriee et 65
9.4 HTTP Server Conversation SCrptccoceveecenieernniennee evveenreeens 66
95 HTTP StaUS COUESooveeiiriiriieriieieres ceieeiee st e 71
9.6 HTTP Client Conversation SCriptccoeverveerieereriennee erveerenens 72
9.7 MSPL Codefor FTP ..ot e e 77

9.8 FTP Conversation SCHPLcccoveererieereesienieens sreeeeseesseseeseeneens 79

0.9 FTPSIAUSCOUES ...ooeeeeeeeeeeeeeeeeeeeeeeeeeee e e,
0.10 FTPMOE ... i e,

10 Conclusion
Appendix: EBNF Definition for M SPL

References

87

88

Chapter 1

| ntroduction

There are anumber of advantages that arise if the protocol language devel oped
during this research is used for production of quality code. Not least of theseisthe
potential for reducing the risk and cost of software development, by reducing the
potential for the introduction of errors, and increasing the speed with which
software can be produced. The magnitude of these advantages is increased where
therisk and cost of software production is higher, such asin the case of high
integrity systems development. In order to derive these benefits, it is vitally
important to ensure that the generated code is functionally faithful to its
specification. The British Aerospace Dependable ComputingSystems Center is
looking at how formal techniques can be employed to ensure that an automatic
code generator produces code that is faithful to its specification. The use of formal
techniques isimportant to this process since it is only through these thatthe high
level of assurance required can be attained. The goal isto attain this assurance
while placing as few requirements on the programmer as possible. Current
methods work relatively well but they use highlevel languages, which are not

geared towards devel oping communication protocols. Thisleads to code devel oped

by programmers that is not robust or very efficient. It isusually very hard to read

and therefore, almost impossible to maintain.

1.1 Problem Statement

There are two problems that | focus on and provide a solution to in this paper. The
first is providing a protocol language that is capable of solving the problem of
writing client-server software efficiently and reliably. The protocol language
allows the specification of applicationlevel client-server protocols. The second
task isto demonstrate the feasibility of using the protocol language developed on
‘real world’ protocolslike HTTP RFC 2616. The system is built inJava, which

sacrifices efficiency for portability to some extent

1.2 Organization of Thesis

The introductory chapter describes the statement of the problem aswell asa
proposed solution. Chapter 2 gives an extended overview of related work.
Techniques used in this area of research in the past are discussed and canpared.
Chapter 3 looks more closely at the solutions to the problems being focused on in
thisthesis. It explains different concepts used during the development of the thesis.
An example of how MSPL may be used for the implementation of a user's protocl
isdiscussed and analyzed. Chapter 4 analyzes the use of MSPL to develop clients

and servers that can interact with existing servers and clients that meet standard

RFC protocol specifications. Chapter 5 discusses the conclusions made after in

depth research, implementation and testing of the generated code.

Chapter 2

Related Work

Program generation, more formally known as software synthesis, deals with the
automation of program writing. Tools that generate programs or code are often
seen as a part of a Problem Solving Environment (PSE). These tools implement
some kind of command or specification language. Distributed systems must
communicate. Communication requires protocols to be built preferably with a
manageable complexity. To communicate well requires protocols to be efficient in
design and implementation. Complexity within protocols can be managed with
simple interfaces that allow the protocols to be composed in a modular manner. To
provide higher level functionality than is provided by any single protocol, they are
frequently composed together into protocol stacks. Each layer in the stack is linked
to the layer immediately above and the layer immediately below it.

2.1 A Brief History

In this section, several existing systems that use code generation are compared. A

comparison and contrast of their protocol compositions are aso given.

Traditionally, protocol compositions have mainly been static in that compositions

are determined at compilation time such as the TCP/IP stack, which is one of the
more popular static compositions.

While the TCP/IP stack works well for simple cases, it has weaknesses
when it encounters demanding clients or rich networking environments. Thisis
mainly because characteistics of the network are not known until runtime. There
are two main shortcomings to this static protocol approach. Thefirstisthe
exponential code growth inherent init. For example, to perform data conversion
between two hosts, a static system must pre-compose all possible conversion
methods. The second subtler problem of static composition isthat it isaclosed
system.

At the other extreme, runtime or dynamic composition can be used to
combine only those protocol stacks that are needed. The flexibility of dynamic
protocols, however, prevents us from being able to integrate different layers of the
system. The benefits of this method are that protocols can be written in any
language and the protocol s can be compiled separately. Protocols can even be
dynamically linked as their implementations are upgraded. Oriented vertically, the
low end of the stack isthe link layer protocol and the high end is the application

layer protocol as shownin Figure 2 - 1.

Figure2 - 1. TCP/IP Reference Model

Application
A

A 4
Transport
A

v
Internet

I

Host-to-Network

The central efficiency problem with modular protocol design is that
separation of protocol levels prevents integration of each protocol’s data
manipulations[Clark, 1990]. Consider atwo-layer stack consisting of
TCP (Transmission Control Protocol) and RPC (Remote Procedure Call) protocol
that guarantees correct byte order. When a message is received and delivered to
TCP, the TCP layer will touch the entire message. Multiple message traversals are
expensive given the current difference béween memory and CPU (Central
Processing Unit) speeds. One of the goals of a protocol isto provide support to
allow each part of a message to be touched only once.

Dynamic code generation is the generation of executable code at runtime.
This has becomea popular topic but it is still used only by a minority of
implementers[Hsieh, 1996]. Like static compilation, dynamic compilation can be
used to eliminate interpretation. Run-time code generation has led to notable

performance improvements in the aress of operating systems, simulators, graphics,

matrix multiplication and dynamically typed languages. Current compilers do not
optimize networking expressions well. Thisis mainly because thereisn’'t aclear
way in any language of writing these common networking operations such as
checksumming. Protocol characteristics like complicated flow control, make
protocol modules hard to read, verify and maintain. Specialized languages are a
promising solution to this problem and compilers have been an active resarch area

for decades [Kohler, 1999].

2.2 Protocol Description Techniques

Most existing protocol languages focus on verification. Prolac is anew statically
typed object-oriented language that has been tailored for network protocol
implementation andgenerates completely order independent C

code [Kohler, 1999]. It resembles object-oriented languages likeC++ and Java
but it is designed to be more useful than these languages for network protocols.
Prolac is an expression language likeLisp and ML. Instead of verification, Prolac
was designed for readability, extensibility, and feal world’ implementation. The
implementation is as modular as protocol processing islogically divided into
minimally interacting pieces. Asideas were gathered from otherspecific languages
designed with protocols in mind such as parallelism to model both sides of a
connection, it often worked against readability, implementability, extensibility or

al three. Prolac’sfinal design isless domain specific than these languags.

Two protocol languages, or description techniques originally designed for
developing OSl protocol suite are LOTOSand Estelle [Kohler, 1999]. Estelle
structures a protocol as a set of finite state machines running in parallel and
communicating with lroadcast signals. This makesit very difficult toread. Itis,
however, agreat method for test generation or state analysis. Even with carefully
layered protocols, Estelle specifications would be very difficult to modify. Later,
this protocol was improved dramatically just by removing its asynchronous
parallelism which made it a completely sequential language. RTAG isamodel that
uses context free attribute grammars. It is considered to be easier to read than
LOTOSand Estelle.

The Prolac compiler compilesProlac into C. The high level C introduces
relatively few temporary variables. Compilation time of complex implementations
such as TCP take less than a second on a 266M Hz Pentium |
laptop [Kohler, 1999]. Inlining, path inlining and outlining 8 improve the
efficiency of aprotocol and are all used inProlac. Inlining isreplacing afunction
call with the function’s body. Path inlining is recursive inlining while outlining is
moving code for uncommon cases out of common case code. TheProlac TCP
implementation consists of onethird the number of linesthe Linux 2.0 TCP
implementation has but theirs has more functionality. Figure 2- 2 shows a
comparison of processing time and latency for an echo test. The test machine sends
4 bytes of datato an unmodified Linux 2.2.7 machine's echo port and waits for an

acknowledgement. Results were averaged over fivetrials, each consisting of 1,000

round-trips, for atotal of 10,000 packets (i.e. 5,000 input and 5,000 outpuit).
Processing time representsthe average number of cyclesit took to process a packet.
The test machines were 200 MHz Pentium Pro desktops and they communicated

over an otherwise idle 100M bps Ethernet with one hub.

Figure 2 - 2. Micro-Benchmark Results for an Echo Test [Kohler, 1999].

End-to-end latency (us) | Processing time (cycles)
Linux TCP 184 3360
Prolac TCP 181 3067
Prolac without inlining | 228 6833

Currently, one of the main weaknesses of Prolacisit is nhot as reliable as
Linux TCP but this can change in the near future asthe goal isto useitin ‘real
world' situations. Besides having a good protocol implementation, the actual code
generator needs to be made more efficient and portable.
2.3 Optimizing Communication by Aggregation
The research goals of one group from Stanford University were to optimize
communication by eliminating redundant communication and aggregating small
messages into larger messages[Amarasinghe, 1993]. They overlapped
communication latency with computation where possible. To minimize
communication cost, the Stanford SUIF compiler tries to maximize the intervals
between communication. All the data needed within the interval are sent in one
message. Their technique is based on an exact dataflow analysis on individual
array element accesses. Unlike data dependence analysis, this analysis determines

if two dynamic instances refer to the same value, and not just the same location.

Using this information, their compiler can handle more flexible data
decompositions and find more opportunities for communication optimization than
systems based on data dependence analysis. TheLast Write Tree (LWT)
information allows them to eliminate redundant data transfers. The LWT analysis
automatically partitions the read instances into sets that share similar
communication characteristics. This partitioning makes generating code routine
and it also enhances optimizations| Amarasinghe, 1993]. Their model and
techniques are useful in both valuecentric and location-centric approaches. The
scope of their technique is limited to programs consisting of a set of loop nests or
conditional statements.

For example, suppose we need to merge the following loops [Amarasinghe, 1993]:

For | = 0 to 200 do
Recei ve(..)

For | = 100 to 300 do
Send(..)

Instead of generating one for loop with two conditional if statements as shown

below:

For 1= 0 to 300 do
If O <=1 and | <= 200 then
Recei ve(..)
If 100<=l and | <=300 then
Send(..)

They can generate three consecutive for loops without any conditional if statement

as shown below:

For 1=0 to 99 do
Recei ve(..)

For 1=100 to 200 do
Recei ve(..)
Send(..)

For 1=201 to 300 do

Send(..)

To generate the complete code for a processor, it is hecessary to merge a
processor’ s computation code, and its receive and send code for each
communication set. Inthe original code, it is beneficial to merge theFor loops
because there is overlap in the work done for the value of | between 100 and 200
inclusively. If only oneFor loop is generated, then there must be two conditional
if statements in the For loop to check the value of | each iteration. Inthe
aternatively generated code, there are three sequentially placedFor loops. By
splitting the original code in thisway, there isno need to add any canditional
if statements or have overlap of | iterations between 100 and 200 inclusive.

The algorithm they developed that allows them to merge multiple nested
loops together is called loop splitting. If the relative magnitude between the
bounds of the individual loopsis not known at compile time,loop splitting can
expand the program size by a significant amount. Therefore, the SUIF compiler
only usesloop splitting on inner loops or when the relative magnitudes between the

loop bounds are known [Amarasinghe, 1993].

2.4 Fabius Compiler

At Carnegie Mellon University, theFabius compiler was developed. Fabius takes
ordinary programs written in a subset of ML and automatically compiles them into
native code that generates native code at run-time. The dynamically generated

code is often much more efficient than the statically generated code becauseit is

optimized using runtime values. Although not every program benefits from run
time code generation, there has been little trouble finding realistic programghat
run significantly faster, sometimes by more than afactor of four [Lee,1996]. The
main focus of the Fabius system was on low-level optimization and code

generation issues.
25 CTADEL System

The CTADEL system generates code for a meteorological model, which was
compared with efficient handwritten production code. The authors point out that
the highest efficiency of code can only be achieved by exploiting specific
characteristics of computer architectures[Engelen, 1996]. Efficiency and
portability are generally conflicting goals. In general thisresultsin several
platform-specific versions of code. Thisis not advantageous from a maintenance
point of view. Adding improvements to a model that is platformspecific is very
difficult because improwements for one platform may be a step backward on other
platforms.

Libraries are great tools to help increase portability but the arrival of new
hardware platforms requires the redesign or at least extensive recoding of libraries
in general. By takingadvantage of specific hardware characteristics of the target
computer architecture, portability and code-consistency problems are made absent.
For each machine, an efficient hardware specific version of the code can be
generated. CTADEL was developed with the goal of generating efficient

code [Engelen, 1996]. In contrast to other systems, CTADEL takesthe

characteristics of the target computer architecture into account, providing the
necessary information for the system to generate highperformance code for various
computer architectures from a high-level language description model. The Latex
package of the CTADEL system automatically generates reports of the code
generation process, which is an advantage and strength it has over other systems.
Optimizaion techniques used by CTADEL include algebraic simplification and
global common sub-expression elimination. A trade off between the reduced
computational complexity and the additional memory usage plays an important role
in the generation of efficient @ode by the CTADEL system. From a software
engineering point of view, a code generator can assist the programmers and relieve
them from the task of coding efficient implementations for several hardware
architectures.

Dynamic code generation allows aggressve optimization through the use of
run-time information. At Massachusetts Institute of Technology, they developed a
Dynamic Code Generation system (DCG) that does one pass code generation, is
easily retargeted and extremely efficient. One of the main weaknesses of code
generation isthat it costs approximately 350 instructions per generated instruction.
Thisisthe highest number of instructions per generated instruction out of al the
systems researched. Dynamic code generation does not change the existing code,
but rather augments it, enabling programs to create specialized instruction
sequences based on runtime information. DCG efficiently generates executable

code at runtime [Hsieh, 1996]. They focus on a demonstration of efficient,

dynamic machine code generation from a machine independent specification. In
1994, this was the only stand-alone and easily retargeted dynamic code generator to
emit binary instructions directly. To make client programs portable, they specify
code using a machineindependent intermediate representation (IR) that is passed to
DCG. To help maintain simplicity, they used the already tested interface of thecc
compiler [Fraser, 1991]. DCG’s code generator isableto link directly tolcc's
front-end. Testing its correctness consists of simply compiling existing testsuites
to Assembly language, and testing the resultant output [Hsieh, 1996]. Theinterface
is fully documented in[Fraser, 1991]. One form of optimization used isStrength

Reduction where multiplication isreplaced with shifts and adds.

2.6 Advantages and Disadvantages of Dynamic Code Generation

In some systems, code generation at run-time was very high, to the point where
improvements gained by delaying compilation to runatime were eliminated by the
cost of run-time compilation. For example, as stated earlier,DCG’ s reported
overhead for generating an instruction at run-time is about 350 instructions per
instruction generated [Engler, 1994]. It is possibleto reduce the cost of run-time
code generation by pre-compiling as much of the code as possible. Previous
researchers have focused on the use of templates, which are sequences of machine
instructions containingholes in place of some values. Code is generated by
copying templates and instantiating theholes with values computed at run-

time[Lee, 1996]. Until recently, templates were error prone and not very portable.

Now there are automatic derivations of templates. The only problem now is that
templates severely limit the range of optimizations tha may be applied at run-time.
The Fabius compiler minimizes the cost of runtime code generation while
allowing awide range of optimizationsin both statically and dynamically generated
code [Lee, 1996]. Theefficient code is generated in asingle passby arelatively
simple code generator. No intermediate representation is required at run-time.
This approach to some extent does compromise their ability to generate high
quality code. For example, it isvery difficult to avoid creating jumps to jumps
when generating code for conditionals during execution. Other optimizations, such
as instruction scheduling are difficult to complete in one pass. An average of 4.7
instructions were required to generate an instruction at run-time which is better
than the 350 required by the DCG system. The use of ML allows the compiler to
perform run-time optimizations with little effort on the part of the programmer.
Despite the growing use of dynamic code generation, no mainstream
language provides flexible, portable and efficient support for it. Most dynamic
code generation systems make the programmer choose between efficiency, ease of
programming and debugging, and portability. By generating specialized code for
the most active functions, it is possible to gain subsantial performance
benefits[Hsieh, 1996]. Interpreters can use dynamic code generation technology to
improve performance by compiling and then directly executing frequently
interpreted pieces of code. ‘ C grew out of the past work with DCG. Many

improvements were added in ‘C but the portability and flexibility of DCG were

retained. The cost of dynamic code generation per generated instruction decreased
dramatically from 350 to 10. A highlevel interfaceis provided by‘ C whereas
DCG'sinterface is based on the intermediate representation of Icc [Fraser, 1991].
Overall, the focus has been to create efficient and portable code generators.
Since these are two conflicting interests, a balance must be found between the two
or the development of a platform independent language that supports networking
protocol characteristics while maintaining a certain level of efficiency. Most
researchers have looked toward dynamic code generation for the solution to this
problem. This, however, does not necessarily mean there is not a solution using

static code generation and protocols.

2.7 BEA Tuxedo® 7.1

BEA Tuxedo supports four distinct communication methods that are versatile and
easy to use yet powerful enough to build awide variety of missioncritical business
applications [BEA, 1995]. BEA Systems Inc., founded in 1995, isthe
E-Commerce Transaction Company'™, powering many of the world’s most
innovative ecommerce oriented companies such as Anazon.com, Federal Express,
E*Trade, United Airlines, DirectTV and Nokia. The latest version, Tuxedo 7.1,
delivers a powerful new security framework for ECommerce transactions. The
security framework allows developers to easily integrate BEA Tuxedopowered
applications with popular third party security software products such as Public Key

Infrastructure (PKI) encryption. Digital signatures, digital envelopes and certificate

authorities may also be integrated into this framework, thus developing a very hgh
level of security in their ecommerce applications. It isworth noting that security is
not one of the focal points for the MSPL client-server generation research.

Tuxedo and MSPL have the same basic goal, which is to generate client
server software from ahigh-level of abstraction. MSPL is a specificationbased
language that describes the protocols and generates the necessary communication
modules and interface. The four communication methods supported by Tuxedo are
Events-One Way, Request/Response, Conversational Interactions and Queued
Communications. The user is allowed to choose one of these communication
methods and then call the appropriate library-based functions. This discloses one
of the main differences betweenMSPL and Tuxedo. Tuxedo supports multiple
types of send and receive commands whileMSPL supports complete specification
protocols. MSPL allows the application programmer to focus more on the
specification of the protocol whilein Tuxedo, the application programmer
concentrates more on actual coding and function calls. Tuxedo also seems more
attached to one language than MSPL. With the devel opment of another compiler,
MSPL can easily be used with a new programming language. In Tuxedo, it would
be necessary to re-implement the same protocol in the new target language.

Tuxedo has much more functionality thanMSPL currently does but most of the
features could be added to MSPL with moretime. The general structure of the

message sent between the clients and server, are very similar,amost identical.

The Events-One Way communication method is similar to one command
in MSPL called Handshake, which is explained further in Chapter 3. The general
ideain Tuxedo isto alow either the client or server to send a message without
receiving aresponse. The recipient may take some sort of action but does not have
to inform the sender about these actions. One such event may be the server
informing the client that the server will be unavailable for the next 15 minutes due
to maintenance.

The Reguest/Response communication method is a simple type of dialogue
for which the rules are fixed. The clientasks something and the server responds.
The client never sends more than one message as part of its request and the server
never sends multiple repliesto one request. Thisisthe genera clientserver
communication paradigm, which is also used inMSPL.

The client-server communication paradigm can be extended to meet the
requirements of the third form of communication in Tuxedo, whichis
Conversational Interactions. Thisis where the request-response sequenceis
executed more than once to complete a given service request. It may be necessary
in afile transfer when the file being sent is larger than thebuffer supplied. The
server may send 1024 bytes of the file as areply and then wait for another request
from the client saying it is ready for the next 1024 bytes.

The last communication method, Queued Communications, is not
implemented byMSPL. It isauseful form of communication for whenthe server is

not available for some reason. Some functionality may be lost while the server is

down but depending on the role of the server, the client may be able to continue
servicing requests and queue them to be sent to the server when it isavailade
again.

Another useful feature of Tuxedo isits error handling capability. Thisis
one of the most difficult parts of programming especially in distributed systems.
For example, if arequest is made and no response is received, there are severa
probable reasons and solutions to this scenario. One of the reasons may be the
server simply did not receive the request or is still processing the request. The
request may have even been sent and then lost over the network, thus, the server
module is under the impression everything isfine. Sometimes the solution to this
problem is not as easy as resending the request. Take for example, if the request
was to transfer $1,000,000 from one bank account to another. In this case the
programmer wants to be sure to take the correct course of action. Tuxedo uses
transactional communication to combat this problem. Transaction communication
ensures each remote operation is done exactly once and all or none of a set of
related calls are fulfilled.

BEA Tuxedo supports both library-based and language-based
programming. The library-based programming requires programmers to use a set
of C or COBOL procedures defined by BEA Tuxedo. Tuxedo’s language-based

programming paradigm is a remote procedure call facility calledTxRPC, BEA

Tuxedo’'s implementation of X/Open’s TXxRPC interface [Grenier, 1996].

Overall, BEA Tuxedo and MSPL are similar in several ways but they have a
fundamental difference that separates them. BEA Tuxedo supplies the application
programmer with functions they can call whileMSPL allows the application
programmer to implement a complete protocol that is portable. By portableitis
meant that with additional compilers, there is no need to rewrite or re-implement

any coding since the entire protocol isencapsulated by MSPL.

2.8 Sun’sXDR/RPC

Remote procedures calls are defined using anlnterface Definition Language (IDL),
which contains the definition of the procedure’s interface. Communication
handling and a binding service are also required. Thus,RPC isaform of
distributed communication where the syntax is aimost the same as alocal
procedure call but the called procedure is executed in a different process and
usually a different computer from the caller[Coulouris, 1994]. RPCisasimple
form of the request/response method discussed in section 2.7, it is modeled after the
local procedure call structure. The intent of remote procedure calling isto maintain
the semantics of conventional procedure calls in an implementation environment
that differsradically. Aswith local procedure calls, the callersin RPC usually
block and wait for the called procedure to compl ete before regaining control of the
CPU. An asynchronous RPC has also been developed and used in distributed

window systems such as X-11 [Scheifler, 1986]. The definition of aremote

procedure call specifiesinput and output parameters. Input parameters are the
same as parameters passed by value in conventional procedure calls. One
advantage of RPC, isthat by specifying in the IDL, parameters can also be passed
by reference.

RPC systems developed fall into one of two classes [Coulouris, 1994];

In the first class, the RPC mechanism is integrated with a particular

programming language that includes a notation for defining interfaces.

In the second class, a special purpose interface definition language is used

for describing the interfaces between clients and servers.

Any remote procedure call may not be able to contact the server, and thus, fail.
This makes the report error types such as time-outs, very important. Many RPC
systems are designed for use with theexception handling available inAda, Java
and many other programming languages. If the language does not have any
exception handling capabilities, then the RPC systems usually resort to using the
methods in UNIX and other conventional operating systems. The systems usually
deliver awell-known value to indicate failure. This method, however, has the
disadvantage of having the caller test every return value. InMSPL the return value
or message istested within the language.

As mentioned earlier, there are three main tasks for software that supports
remote procedure calling. Interface processing involves integrating the RPC

mechanism with the client and server programs in cawentional programming

languages. Communication handling is the transmission of request and reply
messages using some form of request-reply communication. Binding is the process
of locating an appropriate server for a particular service.

To build aclient program, the RPC system provides a stub procedure to
stand in for each remote procedure that is called by the client program. For the
building of the server program, RPC provides adespatcher and a set of server stub
procedures. The despatcher uses the procedure identifier found in the request
method to select one of the server stub procedures and pass on the arguments.
Every procedure in the interface has a unique identifier that is the same on both the
client and server sides.

The Sun RPC system provides an interface language called
XDR (External Data Representation) and an interface compiler calledrpcgen.
Since only one parameter is allowed, procedures requiring more than one must
include them as components of a single structure. From the inteface definition, the
rpcgen compiler generates client stub procedures, the server main procedure, the
despatcher, and several server stub procedures. Similar to MSPL, the application
programmer has control over specifying the service port. An extrafeature RPC
has, isthe ability to use UDP (User Datagram Protocol), a connectionless service
that transmits messages of up to 64 kilobytes, or TCP connectionswhichisa
connection oriented service that transmits streams of bytes across a pre-established
connection. MSPL currently supports the latter. The level of security offered is not

as strong as in BEA Tuxedo but RPC does offer authentication, which may be used

with every message sent from the client to the server. The server isthen
responsible for enforcing access control by deciding whether to execute each
procedure call according to the authentication information. The two methods of
authentication supported are UNIX and DES (Data Encryption Standard).
Although the RPC is a generally applicable praggramming mechanism, it
seems closely knitted to one language and allows procedures to be generated not
the actual protocol like MSPL does. Similar to BEA Tuxedo, if the application
programmer wanted or needed to change the programming language, it would be

necessary to re-implement the same protocol in the newtarget-language.

2.9 Library-Based and Specification-Based Approaches

Developing clientserver software at a higher level of abstraction can be
characterized into two main approaches. The first approach is library-based like
BEA Tuxedo. The second is a specificationlanguage approach likeMSPL. To the
user, the final product is the same in most cases except for the level of efficiency,
which isinterpreted by the user as the speed of the application or lack thereof. In
this section an abstract comparison is made between the two approaches.

Library-based methods provide afixed list of routines. Consider the
purpose of Java or C versus the development of Assembly Libraries. Itispossible
to code software without the existence of Java or C. These programming

languages provide a programmer with a higher level of abstraction when coding.

Similarly, MSPL provides a higher level abstraction for implementing protocols.
This has severa advantagesand disadvantages.

One advantage is the fact that high-level programming languages are easier
to read and understand. If this were not the case, then it would be more
advantageous to just provide libraries at the Assembly level of coding. Thiswould
provide more efficient code than most compilers can produce. Infact the
degradation in inefficiency due to the use of highlevel programming is one of the
main reasons why programmers still program in the lowerlevel Assembly for some
software packages.

Another advantage is the fact they shorten the development and
maintenance time required. Thisis mainly because the complex lowlevel
communication code is generated by the compiler. Testing of the generated code
only hasto be done once. After assuring the generated codeis error free, it does
not have to be tested again after each compilation. Also, by separating the
specification from the implementation, the programmer only has to specifywhat to
do and not howto do it, akey difference in declarative and procedural
characterization of expressing solutions in programming languages. Thisis agreat
property because any changesin the protocol specification can be done at a higher
level, and thus, more easily. The separation aso increases portabilty, as adding
compilersfor new target languagesis relatively easy. On the contrary, the
library-based approach istarget-language specific, which meansthat if the

programmer would like to change the target-language, the protocol code would

have to be re-written in the new target-language because the protocol -specification
is closely intertwined with the protocol-implementation.

Another major advantage of the specificationbased approach is that
protocols are automatically aligned. By alignment, we meanthat if the number or
order of parameters for a particular request is changed on the client side, then the
server side is automatically adjusted to align with these changes. Consider alock
and its matching key, any changes made to the lock must be mirraed with
appropriate changes made to the key (or vice versa). Without the mirrored
changes, then the key will no longer engage or release the lock. Similarly, in the
library-based approach, changes in the server protocol module require the
corresponding changes to be made in the client protocol module (or vice versa). In
the library-based approach, however, errors on the part of the programmer, may
lead to unaligned changes. Thiswill inevitably prolong development time. On the
contrary, the specification-based approach uses a compiler to generate the client
and server protocol modules, which are automatically aligned. Consequently, the
possibility of programmer errorsis reduced and reliability in the resulting client
server software is enhanced.

A disadvantage of the specificationbased approach is more abstraction
generally leads to less control and flexibility. Thereis aso the added responsibility
of mastering another language.

Aswith the introduction of any other high-level programming languagg, it

is not the answer for all programmers. It does, however, alow more programmers

to develop client-server software without having to have an in-depth knowledge of
the complex network programming issues that lie underneath. The main drawback
is that the more abstract the language, the less efficient the code becomes when
compiled into machine code. This depends on howsmart the compiler isto some

extent but not completely.

Chapter 3

M SPL

The first problem stated inthe Problem Statement, Section 1.1, is handled by
building‘My Smple Protocol Language’ (MSPL), which is used to write programs

that implement the communication protocol stack shown below in Figure 3- 1.

Figure3 — 1. Client-Server Code Generation Model

Application
User Code |« Protacol » User Code

I Application I

Protocol in MSPL

Generated Code |« » Generated Code
A A
v ||_|IOSt-to|; v
Java Sockets |« etwor » Java Sockets
A A
Th Y Y tted
lin PhySIC8| Medium side

communicates with the corresponding Tayer on the server side. EachTayer has a
distinct function. The application programmer is responsible for defining the
Application Protocol. This research looks at developingMSPL to specify an

application being devel oped and outputted by a Compiler with the input of a
MSPL program.

In all networks, the purpose of each layer isto offer certain servicesto the
higher layers, shielding those layers from the details of how the offered services
are actually implemented. Inredlity, no dataistransferred from layern on one
machine to layer n on another machine. Instead, each layer passes data and
control information to the layer immediately below it, until the lowest layer is
reached. Below the Java Sockets layer is the Physical Medium through which
actual communication occurs. The user-code written by the application
programmer, passes data types down to the generated code. The generated
client and server protocol modules provide the service of packaging these data
types into a Message Packet format and sending it over the network where they
are then passed up to the user-written code. The ordering and structure of the
messages are specified inMSPL.

3.1 Architecture

Figure 3 — 2 shows the architecture of the entire client-server code generation
process. First, a program representing the Application Protocol in MSPL must be
written by the application programmer. Then it is sent to the Compiler, which

outputs the Client Protocol Module and Server Protocol Module.

Figure3 —2. MSPL Architecture

MSPL Program
M SPL
Compiler
Other Client M SPL Server Other
Client Protocol Library Protocol Server
Modules Module Module Modules
Linker Linker

These protocol modules are then linked to the MSPL Library and other user-written

modules. This produces the fina product of aclientserver software application.

3.2 ESFTP

Before we take a closer look at exactly how to write a program in MSPL and how
the client and server code is generated, we describe a simple protocol called the
Extremely Smple File Transfer Protocol (ESFTP), which will be used as a running
example throughout this chapter. It isnot the RFC 959 Standard FTP protocol. All
communication takes place over one connection and theclient begins the
conversation instead of the server. These are the two main differences between this
user designed protocol and the standard RFC 959 FTP implementation.

The ESFTP application can be used to transfer files from a client machine
to another machine running the server and also files from the machine running the
server to any machine that has the client. These two machines must also be on the
same network. To carry out the function of the application described above, there

are three request statements required which are arequest to put afile, get afile and

quit the application, thus, closing the network connection. The protocol isaso
used to send error messages between the client and server.

There are afew steps of initialization tha must take place before the client
or server can acknowledge any of the three commands mentioned above. In the
initialization phase, the server must;

1. Bestarted with a port number known by all clients wishing to connect to the
server.
2. Open asocket and if the port isin use then print an error message and exit.

3. Listen for client connections on the specified port.

The client also has three initialization steps, which are;
1. Invoke with server address and port number.
2. Make asocket connection to the server.

3. Prompt user for requests that need to be sent to the server.

Once these initialization steps have been taken, then any of the three commands
may be used. The structure and ordering of each command is given below:
Put <filename>

1. Client ensuresfilename exists.

2. Client sends command tokenPut, the filename and an integer representing

the size of thefilein bytes.

3. Whilethe entire file has not been copied to the server:
a. Client sends up to buffersize bytes (where buffersize is an integer).
b. Server reads the bytes sent by the client.
4. Server sends areply message stating whether the request was completed
successfully or not.
5. Theclient prints the status message to inform the user and then waits for

next command/request from the user.

Get <filename>
1. Client sendscommand token Get followed by the name of the file being
requested.
2. Server checks and ensures the filename exists.
3. Server sends message stating whether file exists and the size of thefileif it
exists.
4. Whilethe entire file has not been sent to the cliat:
a. Server sends up to buffersize bytes.
b. Client reads the bytes sent by the server.
5. Client informs user whether or not expected bytes are equal to actua bytes
received.
6. Client and server wait for next command/request from user.
Quit
1. Client sends command oken Quit and then closes the connection

2. Server receives command and also closesits end of the connection.

Thisisthe Extremely Simple File Transfer Protocol. It isindependent ofMSPL as
it has been implemented by many other programmers without the adl of MSPL.
The protocol works fine for file transfers, and as its name implies, it is extremely

simpler to implement than FTP RFC 959.

3.3 Implementing ESFTP in MSPL

In this section, we take a closer look at exactly how to write a program in MSPL
and how the client and server code is generated. In Figure 3 —3the
specification-protocol iswritten for ESFTP. Thisis the same program that

generated the portions of code shown in Figure 3 —8.

Figure3 -3. MSPL Code For ESFTP

1. # MoPLfileusedtogenerate code for the ESFTP Application

2. Paraneters

3. defaultdientPort 55000, # between 0 and 65535

4. def aul t Server Port 55000, # between 0 and 65535

5. buf fer Si ze 1000, #sane si ze buffer for dient and Server

6. maxCl i ent sSupported 9;

7. Begin

8. Request Get #nmethodfor client toreceiveafilefromserver
9. String Fil enane;

10. Reply Ck

11. i nt statusref,

12. int |ength,

13. byte[] actual File;
14. Reply noFile

15. String noFil eError;
16. Request Put #nmethodfor client tosendafiletotheserver
17. String Fil enane,

18. int |ength,

19. byte[] actual File;
20. Reply Successfull;

21. Reply fileExists

22. String overWite;
23. End

Every client module generated from theMSPL program contains a method
called connectTo, which takes a string as itsparameter. The method is used to
establish a connection to the server. The string parameter is the hostname or IP
address of where to try and connect. The server you want to connect to must
already be running at that address and listening on the port gecified in theMSPL
program.

All the parameters have default values, which can be overridden. Thisfrees
the programmer from being forced to declare all of them. In this case, four
parameters have been defined. Both defaultClientPort and defaultServerPort have
been assigned the value of 55000 on lines 3 and 4. Thebuffersize designates the
maximum size of the packets being sent between the two machines and has been
assigned avalue of 1000 byteson line 5. The last parameter assigned avaueison
line 6. Thisisthe maximum number of clients that can connect to the server at any
given time. All of these parameters are defined more specificaly later in

Section 3.3.1 on Definable Communication Parameters. Throughout the program,

comments may be inseted by preceding the text with anumber sign (ie. #thisisa
comment). The rest of the characters on that line are regarded as a comment and
are not processed by the compiler. The default client and server ports may be any
integer value from 0O to 65535.

Line 7 signals the beginning of the Request-Reply structure. No
parameters can be assigned a value after this keyword. The get request on line 8
sends a string value from the client to the server. The expected reply from the
server is either Ok or noFile as shown on lines 10 and 14. The first token sent back
in al protocols including RFC, is the name of the Reply. In this case the first token
will either beOk or nofile. If the reply name is Ok, then the next data type expected
is an integer follonved by another integer and then finally bytes. Thefirst integer is
used by the user-written modules to see if thisisjust a continuation of receiving a
fileor isit the start of receiving anew file. The second integer isthe size of thefile
being sent and is used to inform the client of just how many bytes will be sent.
Finally, the actual file istransferred in chunks no larger than thebuffersize until the
entire file has been transferred. If the reply isnofile, then as line 15 shows, astring
follows which may contain more information as to exactly why the request was
unsuccessful.

Another possible request isput, which is shown on line 16 This request
sends the request name put, followed by a string for the name of the file to be sent
to the server, an integer representing the size of the file to be sent and then finally

bytes equivalent to or smaller than the specifiedbuffersize. All thesefieldsin the

message packet are defined on lines 17, 18 and 19. The two possible replies to this
request are Successful or fileExists. Successful is the name of the reply on line 20
and it has no other parameters that are returned with it. This simply meansif the
request was executed successfully then that is al the information that needs to be
reported to the client. The second reply on line 21 isfileExists and is followed by a
String type, which may be used to describe what the server side plans to do since
the file already exists.

One other request that is present in al the generated protocol modulesis the
quit request. Thisrequest sends quit as a string to notify the server the connection
isbeing closed. There aren’'t any reply parameters for thequit request.

The quit command is not written in Figure 3- 3 because, as mentioned
earlier, it is standard in most protocols, therefore it is automatically generated. It
can be overridden but in the case of this protocol it is not necessary.

In MSPL, there are severa assumptions that are made in addition to the
EBNF definition given in the Appendix. Firstly, a second request cannot be made
until areply for the first request is received unless no reply is expected for the first
request. Thisiscritical to maintaining the deterministic order of control, which
says a client makes one request and is responded to with one reply.

Secondly, the request parameter timeout is used to re-send or more
specifically reexecute one of the automatically generated communication
functions. The timeout value is measured in milliseconds. Aftem timeouts, a

message is printed to the screen saying the server could not be reached and then

control is returned to the application programmer who makes further decisions on

the next action.

331 Definable Communication Parameters

In Figure 3 - 3, the first section of code, between the keywords Parameters and
Begin, iswhere variables are initialized, giving the programmer control over which
port to communicate. It isleft up to the programmer to ensure this port is available.
If the chosen port is not available, then the generated code will simply print a
message saying the port is already in use, upon which, it will halt all attemptsto
usethe port. Thereisavariablethat allows the programmer to define the buffer
size in bytes for each message sent to and from the client. The blocks of data sent
are guaranteed to be no larger than this number provided. The
maximumClientsSupported variable allows you to specify how many clients are
allowed to connect to the generated server at any given moment. All the variables
have default values incase the programmer doesn’t want to set them.

After setting all the parameters desired, then the main body of code between
the keywords Begin and End may be written. Thereis an option to send a
Handshake which allows the saver to send a message before the client does. After
researching several existing protocols, it was discovered that not all client server

protocols start with arequest from the client side. In some instances, the server

first sends a message stating itis ready to provide aservice and it isrunning a
certain version of the application. The server does not expect areply to this
message. Therefore, it isreally not correct to call it arequest. It simply informs
the client side of some information, whch iswhy it was chosen to be named

Handshake in MSPL. It isreferred to as Events-One Way in Tuxedo.

3.3.2 Structure of Request—Reply Statement

Whether a Handshake takes place or not, the next command is a Request. Every
Request and Reply has a name, which is placed right after the keyword Request or
Reply. Request represents a message from the client intended for the server. It
consists of sending a combination of integers, strings and bytes. Each typeis sent
separately in the order in which they are written in the MSPL program. The server
code is aso generated to accept the data structures in this order providing the
necessary alignment. After all data has been sent, then Reply data structures are
sent from the server to the client in the same way the Request message was sent
from the client.

The language accepts as many Request—Reply statements as required by the
protocol being implemented. For every Request thereis zero or more Replies. An
example of arequest that may not need areply is the quit command in the FTP
protocol. It isalso possible to name a Request with no parameters. Thiswas done
to easily handle more complex protocolsin RFC. When no parameters are

supplied, then bytes are sent. They are stored in a standard variablecreated in

every message packet with the size of the field set tobuffersize. After al the
Reguest—Reply statements have been written, the keyword End is written which

signifies the end of theMSPL program.

34 MSPL Parsing and Syntax Checking

The compiler isrelatively fast since the size of the averageMSPL program is under
25 lines of code. It takes approximately 4 seconds to generate the Java code from
the MSPL code. Similar to the Fabius Compiler described in Chapter 2, theJava
code is pre-generated with holes where values need to be inserted [Lee, 1996].

The current compiler is very basic, printing error messages that will help you find
where an error may be and what might be the cause of it. If the MSPL program is

not successfully compiled, then the code generation process never commences.

34.1 M SPL Parser

Once the program has been written in MSPL, it can be passed onto the Compiler
program. The only other input required by the Compiler is the name of the user’s
server program, which will be called by the generated server code module.

Figure 3 - 4 shows a sample run of the Compiler. After entering the required
information at the prompt when requested to do so, the code writtenin MSPL is
parsed into tokens. The tokens must begin with aletter and are allowed to contain

numbers and underscores. Each token is terminated by a white space, semicolon,

or comma. Commas and Semi-colons are also considered to be tokens themselves.

Each token is classified as one of the following:

Par anet er s

def aul t d i ent Port
def aul t Ser ver Port
bufferSi ze

maxCl i ent sSupported
Begi n

End

Reply

Request

Request _Paraneters
ti meout

String

i nt

byte[]

Handshake

O her_Op

Const ant _I nt

Id

Tokens classified as Other_Op may be either acomma or a semicolon.

Figure 3 —4. Log of Compiler Application Running

1. Script started on Wd Mar 22 19: 05:53 2000
2. CS:1>> java CodeCenerator

3. Enter Server filenanme to inport: user SMIPD
4. Enter filenanme to compile: sntp.npp

5. Checking Syntax please wait....

M/Si npl eLanguage source code: sntp.npp

Java generated Server source code: sntpd.java
Java generated Cdient source code: sntp.java
Cenerating Code please wait....

10. Del eting Tenporary files...

11. Deleting Tenporary file TEMP/fil eOFf Tokens. npp. ..
Successful I

12. Deleting Tenporary file TEMP/tenp2000... Successfull!!!

13. Cenerated files may be found in GenCode Directory

14. CS:2>> exit
15. script done on Wd Mar 22 19:06:11 2000

Figure 3 —5 shows asample of afile of classified tokens, which is
generated as an intermediate step to the final goal of generating the client and
server code for the ESFTP application. The only possible errors found by the
parser areillegal tokens. This means the token contains at least one invalid
character.

The names of the server protocol module and client protocol moduleare
derived from the name of theMSPL program. The client protocol moduleisthe
same name with the “.java” extension instead of “.mpp”, while the server protocol
module ends with “d.java’. After each run of the compiler, all the temporary files
created are deleted. These files include thefileOf Tokens.mpp which is shown in
Figure3—5. Thefile of tokensis created from the MSPL code passed to the
Compiler. Thisfileisthen passed on to the Syntax Table which checks the

ordering of the tokens using the Syntax Table shown in Figure 3- 6.

Figure 3 —5. Sample Tokens File Generated as Intermediate Step

Par aneters paraneters
defaultdientPort defaultclientport
Constant _Int 25

G her_Op ,

def aul t Server Port defaul t serverport
Constant _Int 25

G her_Op ,

bufferSi ze buffersize
Constant _Int 49152
O her_Op ,

maxCl i ent sSupported maxcl i ent ssupported
Constant _Int 9

G her_Op ;

Begi n begin
Handshake handshake
G her_Op ;

Request request

Id mail

byte[] byte[]

Idid

G her_Op ;

Reply reply

Id ok

byte[] byte[]

Id actualfile

G her_Op ;

Reply reply

Id notokmai |

byte[] byte[]

I d notok

G her_Op ;

Request request

Id rcpt

byte[] byte[]

I d toaddress

G her_Op ;

Reply reply

I d okrcpt

byte[] byte[]

Id ok

G her_Op ;

Reply reply

I d not okr cpt

byte[] byte[]

I d not ok

G her_Op ;

Request request

Id data

byte[] byte[]

I d sendnmessage

G her_Op ;

Reply reply

Id success
byte[] byte[]

I d successbytes
Q her_Op ;

Reply reply

Id failure
byte[] byte[]

Id failurebytes
Q her_Op ;
Request request

I d nessage
byte[] byte[]

I d act ual nessage
Q her_Op ;

Reply reply

I d nessageaccept ed
byte[] byte[]

I d successbytes
Q her_Op ;

Reply reply

I d nessagedeni ed
byte[] byte[]

Id failurebytes
O her_Op ;

End end

The method that classifies tokens ignores comments by discarding them since they

are not needed for compilation of the code.

34.2 Checking Syntax of M SPL Code

After parsing the file into tokens and classifying each token, then the actual syntax
ischecked. Thisisthe process where most errors are found. By thistimewe are
assured the file being compiled ists and contains all legal tokens. Now we may
look at the ordering of these tokens to determine if we can generate code from
them. The entire syntax of MSPL has been placed in atable called theMSPL

Syntax Table shown in Figure 3—6.

Figure3 - 6. MSPL Syntax Table

0[{1|2|3|4|5|6|7|8|910|11(12|13|14|15|16|17|18
0 Parameters 50{1|2|3|4|51|50{50|50|50{50|{50/50|50|50|50|50|50|50
1| defaultClientPort |59|52|52|52|52|52|52|52|52|52|10|52|52|52|52|52|52|52|52
2 | defaultServerPort |59|52|52|52|52|52|52|52|52|52|10|52|52|52|52|52|52|52|52
3 bufferSize 59|52|52|52(52|52|52|52|52|52{10|52|52|52|52|52|52|52 |52
4 |maxClientsSupported |59(52|52|52|52|52|52|52|52|52|10|52|52|52|52|52|52|52 |52
5 Begin 59|53|53|53|53|53| 6 |53|53|53|53|53|53|53|53|53|53|53|18
6 Request 59|54|54|54|54|54|54| 7 |54|54|54|54|5454|54|54|54|54 |54
7 ID 59|55|55|55|55|55|55|55|55|55|55|55|12|13|14|15|16|55|55
8 |Request_Parameters|59|56|56|56|56|56|56|56|56| 9 |56|51|56|56|56|56|56|56|56
9 timeout 59|52|52|52|52|52|52|52|52|52|10|52|52|52|52|52|52|52 |52
10 Constant_Int 59|57|57|57|57|57|57|57|57|57|57|57|57|57|57|15|16|57 |57
11 Reply 59|58|58|58(58|58|58| 7 |58|58|58|58|58|58|58|58|58|58|58
12 string 59|58|58|58(58|58|58| 7 |58|58|58|58|58|58|58|58|58|58 |58
13 Int 59|58|58|58(58|58|58| 7 |58|58|58|58|58|58|58|58|58|58|58
14 Byte[] 59|58|58|58|58|58|58| 7 |58|58|58|58|58|58|58|58|58|58 |58
15 , 59/1|2|3|4|60/60{61|60| 9 [62|60/12/13|14|63|64|60|74
16 ; 59|65|65|65(|65| 5| 6 |61| 8 |65/62|11|65|65|65|66|67|17|74
17 End 59|68|68|68|68|68|68|68|68|68|68|68|68|68|68|68|68|68|68
18 Handshake 59|57|57|57|57|57|57|57|57|57|57|57|57|57|57|57|16|57 |57

The rows represent every possible token that is accepted in MSPL and the error

states that may be entered depending on the next token input. For example, if the

current state is Parameters and the next token input is anything other than a

parameter variable (ie. defaultClientPort, bufferSizeetc.) you will go to an error

state. The error states are 50 and greater. States 19 to 49 are reserved for

extending thelanguage. The error states are not shown in the table but each

number greater than 50 refers to an error message, which is printed when that state

isentered. The number of error statesis large to enable more specific error

messages to be printed to the screen. If there was only one error message, it would

have to be very general such as “Error Found”. By increasing the number of error

messages, each message can be more specific to the problem encountered.

3.5 Generated Protocol M odules

Once the program written in MSPL passes through the Syntax Process successfully,
the Code Generation Process may begin. The process of code generation creates
four main files as output. These files can be categorized as the client file, the server

file, the server interface file and the message packet file.

351 M essage Packet Architecture

Every variable declared in a Request statement or a Reply statement appearsin the
message packet structure. This message class is the return type of the generated
functions. A graphical representation of the ESFTP message packet is shown in

Figure3-—7.

Figure 3 —7. ESFTP Message Packet Structure

String Type| int Type int Type byte Type String Type
String Type

— L~ _r £ 3 [t ~ _ Az

in Figure 3- 7 are ever sent in one message packet. These are all the datatypes

specified in theMSPL program written for ESFTP that will be required either for a
request or areply statement. Each datatypeis also assigned a variable name as

shown below the dotted line in Figure 3— 7. Depending on the Request made, the

message structure will change dynamically to send only the necessary parameters
for the specified request. The server code does the same for each reply sent back to
the client. The client knows which reply to expect by checkinga standard variable

called the Reply name. Thisisa part of theMSPL protocol.

35.2 Client Protocol M odule

The generated client module contains functions, which will be called by the user’s
client module to take care of low-level communication and tre ordering that was
embedded inMSPL. For example, in the ESFTP code shown earlier, afunction
called put would be generated with parameters Sring for the name of thefile, int
for the size of the file being sent andbyte]] for the actual bytes of the file which are
being sent to the server. All these parameters must be present when this functionis
called by the user’s client code. The main advantage here over the common RPC,
RMI and Corba code is that once this function is called, the work of receivirg the
reply to thisrequest is also executed and areply of success or an error is sent back
to the user’s client program in the form of a message, which contains several fields
that the user knows to check to get the relevant information needed. In other

words, the client and server code is automatically aligned as described earlier in

section 2.9.

3.5.3 Generated Server Interface

The generated interface file is the interface between the generated server module
and the user’ s server modules. The interface allows the user to not have to edit any
of the generated code. Theinterface is extended using theimplements command in

Java.

An advantage of using an interface fileisthat if for some reason, the code
generated must be regenerated, then since the user did not modify the generated

code, no extra coding or modifications by the user are lost.

3.5.4 Server Protocol Module

The next file generated is the server module, which calls the user’ s server program
once it receives a message from the client side. Thisfile receives messages from
the client Request statements and sends data over the network connection for Reply
statements.

Upon recelving data for a Request statement, it calls afunction in the
generated interface, which must be defined by the user’s code. For example, if the
put request is executed, then the generated server would call the put function in the
interface class which must be implemented by the user. Thisis true because a
server that implements a given interface promises to support dl the methods
defined by the interface. The client need not be concerned with how the server
implements the interface. The Server Interface box in Figure 3- 8 showsthe

interface class for the ESFTP example described throughout Chapter 3.

3.6 User-Written M odules
The user-written code is simplified greatly by writing afew lines irfMSPL, which
generates the communication code and also takes care of ordering. The main goal

of the user’s code is to manipulate the information it sends and receives from he

client or server in order to carry out the task the application is supposed to do. This
is called the Application Protocol and is the responsibility of the application

programmer to specify.

3.6.1 User -Written Client M odules

The user-written client modules import the generated client module, which then
permits the user to call any functionsin the generated client code. The reply type
of all the generated functionsis Message type. The user isresponsible for checking
the fields they asked to be created in the Message. For example, iInESFTP, if a
Reguest Statement was get and it had the variablefilename as a Sring, thenin
Message there would be afield of type String with the variable namefilename.

Now if the function returns type Message, which is stored in the variable putReply,

then to access the filename field you would write putReply.filename.

3.6.2 User -Written Server M odules

The server-written code consists of functions that should be called depending on
the Request Message received from the client. If the ESFTP put Request is sent to
the server, then the generated server calls the put function of the user’s server
module with the message packet that was sent to it from the client side. This
function is guaranteed to exist because of the generated interface that is

implemented by the user’s server module.

3.7 A Sampleof Generated and User-Written Code for ESFTP

Figure 3 — 8 shows the code that is behind the boxes in Figure3 — 2, representing
Other Client Modules, the Client Protocol Module, the Server Protocol Module and
Other Server Modules. The code shown for each module is a portion of the
complete code that was written by the user or generated by the compiler.

The put method is shown in Figure 3— 8. First, the client may receive some
data from the application user, requesting afile be copied from the local machine
they are on, to another machine running the server application. The lineftp.put(...)
calls the generated Client Protocol Module with the specified parameters. Upon
receipt of this call, the Client Protocol Module contacts the Server Protocol Module

and sends the data across the network using the M essage Packet described

earlier in Section3.5.1. Once the message packet arrives, the generated Server
Protocol

Module calls the put method through the generated Server Interface. Itisthen
up to the user to extract the information from the message packet and place the
appropriate data in areply message packet. The return command gives control

back to the generated Server Module, which then sends the reply message packet to
the generated Client Protocol Module. The user-written Client Module originally

called this module, so it returns a message packet type.

Figure 3 —8. Sample Generated and User-Written Code for ESFTP

%l . ! Server Protocol Module
punlic statiC messageType put(String filename,

int filelength, byt[] actualfile) { stringLength = receive.readintf);
send.writelnt(toSocket.filename.length()); for (inti=0; i <stringLength; i++) {
send.writeChars(toSocket.filename); fromSocket.filename += receive.readChar();
send.writel nt(toSocket.length); } .
System.out.printIn(" Sending bytes" +
"in actualfile"); fromSocket.length = receive.readint();

send.write(toSocket.actuafile);
System.out.printIn("Receiving bytes");
receive..read(fromSocket.replyName); receive.read(fromSocket.actualfile);

return fromSocket; toSocket = Generatedl nterfacel nstance.put(fromSocket);

1

| ey -

Server Interface

interface Generatedinterface {
public messageType get(messageTypeinfo);

public messageType put(messageType info);

| yumn BB |

info = ftp.put(fileName, length, theBuffer);

info = ftp.get(fileName);

public messageType put (messageType info) {
FiletheFile = new File(".", info.filename);
System.out.printin(* USER >> Filename receiving:” +
“info.filename);

try {
FileOutputStream writeFile = new
FileOutputStream(info.filename, true);
System.out.printin("USER >> writing " +
info.length + " bytes!!!");.
writeFile.write(info.actuafile, 0, info.length);
writeFile.close();

}

info.replyName = "successfull";
return info;

}

3.8 MSPL Library

There are several advantages to developing alibrary that islinked to the generated
code. They are great to help increase portability but the arrival of new hardware
platforms requires the redesign or at least extensive re-coding of the librariesin
general. Currently, the MSPL Library is not that extensive. Most of the code
linked to the generated modul es and the user-written modules are found in standard
javapackages. A potentia use for the library in future could be to add any RFC
specific modules that are standard. For example, there may be one or two modules
used by FTP RFC 959 that could be added to the MSPL Library. This may allow
more control over the code being generated, and thus lead to more efficient and

reliable generated code.

Chapter 4

| mplementation of RFC Protocols

In this chapter, we take a closer look at how MSPL can be used to implement Real
World protocols. As experiments for proof of concept and usability, parts of the
Smple Mail Transfer Protocol (SMTP), Hypertext Transfer Protocol (HTTP), and
the File Transfer Protocol (FTP) were implemented usingMSPL. These protocols
are widely used and are specified inRequest For Comments (RFC). After
compiling theMSPL programs, sample user code was also written.
Communication between the generated client code and another existing server
which implements the same RFC was attempted as was communication between
the generated server code with other existing clients that implement the same RFC.

The goal of testing a generated client with an existing server and a
generated server with an existing client is to demonstrate that ‘ real world’
protocols can be specified inMSPL and the Compiler produces the appropriate
code for communication.

4.1 Implementation of SMTP RFC 821

The Simple Mail Transfer Protocol is used for the sending and receiving of

electronic mail. Itisindependent of the particular transmission subsystem and

requires only areliable ordered data stream channel. The general model of
communication is that as the result of a user mail request, the senderSMTP
establishes atwo-way transmission channel to areceiverSMTP. Thereceiver-
SMTP may be either the ultimate destination or an intermediae. SMTP commands
are generated by the sender-SMTP and sent to the receiver-SMTP. SMTP replies
are sent from the receiver-SM TP to the sender-SM TP in response to the
commands[Postel, 1982].

In the SMTP example, the code written in MSPL is shown in Figure4 — 1.
The generated client along with user’ s client code, was used to send a message
through “winnie.fit.edu ESMTP Sendmail 8.9.3/8.9.1” server. Thiswas done
successfully and Figure 4— 2 is a script of the communication that occurred
between the generated client and the Florida Tech ESM TP server.

The defaultClientPort and the defaultServerPort on lines 2 and 3 were both
set to 25, which is the standard port to communicate on for SMTP. The buffersize
was set t01024 bytes on line 4. Since only the client side was implemented the
maxClientsSupported on line 5 did not play a major role in the script shown in
Figure 4 — 2. The Handshake command on line 7 is required for the RFC 821
implementation of SMTP. To successfully send a message, four requests hal to be
implemented. These requests were calledMAIL, RCPT, DATA and MESSAGE and
can be found on lines 8, 14, 20 and 26 respectively. All of these requests as for

most RFC protocols, require a stream of bytes to be sent between the client and

server, therefore, the field added by each of these requestsis a variable that stores

bytes.

Figure4 —1. MSPL Codefor SMTP

©CoN gk wdpE

el el el
wbhkE o

14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24,
25.

26.
27.
28.
29.
30.
31.
32.

Par anet ers

defaultCientPort 25, # between 0 and 65535

def aul t ServerPort 25, # between 0 and 65535
bufferSize 1024, # sanmesizebuffer for dient and Server
maxCl i ent sSupported 9;

Begi n

Handshake; # usedtoinformclient of versionof server
Request mail # conmmand to identify sender of nessage
byte[] id;

Reply mail &k # accept sender address
byte[] actual File;

Reply mail Error # reject sender address
byte[] error;

Request RCPT # address of potential mail recipient
byte[] toaddress;

Reply rcptk # accept recipient address
byte[] ok;

Reply rcptError # reject recipient address
byte[] error;

Request DATA # Prepare to send text nessage
byte[] sendnessage;

Reply dataCk # text nessage sent successfully
byte[] dataCkBytes;

Reply dataError #unable to send message
byte[] failurebytes;

Request message # command to send actual nessage
byte[] actual message;

Reply nessageaccepted # nmessage sent successfully
byte[] successbytes;

Reply nessagedeni ed # nessage rejected for some reason
byte[] failurebytes;

End

As mentioned earlier, the quit
command does not have to be
specified in theMSPL program
because it Is standard over most
protocols. Therefore, the quit
command is generated automatically.
In most if not all the RFC protocols,
there are two partsto areply message.
Thefirst part isusually a number that
specifies the type of reply being sent
and the second part is astring, which
helps the user understand which reply
ISbeing sent. Thisisthe format you
will observein all the conversation
scripts through out this chapter.

Figure4 —2. SMTP Conversation
Script

Script started on Wd Mar 22 02: 34: 39 2000
CS: 1>> java user SMIP
Starting user SMIP application...

Enter Address to Connect To >> fit.edu
From Server: 220 winnie.fit.edu ESMIP Sendnail 8.9.3/8.9.1; Wd, 22
Mar 2000 02:34:39 -0500 (EST)

User SMTP>> NAI L FROM Mel vi n@ esear ch. com
Mai | commrand:

"MAI L FROM Mel vi n@ esear ch. com
Executing mail function
Fi ni shed sendi ng Request Paraneters
Returning control to user...

From Server: 250 Melvin@esearch.com .. Sender ok
3/8.9.1; Wed, 22 Mar 2000 02: 35:24 -0500 (EST)
User >> Finished executing MAIL function!!!

User SMIP>> RCPT TO ndougl as@i t. edu
Reci pi ent conmand:

"RCPT TO ndougl as@it. edu’
Executing rcpt function
Fi ni shed sendi ng Request Paraneters
Returning control to user...

From Server: 250 ndougl as@it.edu... Recipient ok
3/8.9.1; Wed, 22 Mar 2000 02:35:37 -0500 (EST)
User >> Fini shed executing RCPT function!!!

User SMIP>> DATA

DATA command: DATA

Executing data function

Fi ni shed sendi ng Request Paraneters
Returning control to user...

From Server: 354 Enter mail, end with "."
Mar 2000 02: 35: 38 -0500 (EST)

on aline by itself, 22

khkkkkhkkk*k

Message Text:

Hel | o,
This is a nessage being sent from Melvin's Generated
SMIP Cient. It is interacting with the Florida

Tech ESMIP server.

Executi ng nmessage function

Sendi ng bytes in: actual message

Fi ni shed sendi ng Request Paraneters
Returning control to user...

From Server: 250 CAA07090 Message accepted for delivery
, 22 Mar 2000 02:37:13 -0500 (EST)

TEXT COVPLETE

khkkkhkhkkk*k

User >> Fini shed executing DATA function!!!

User SMIP>> qui t

User SMIP>> Quiting FTP Application
Fi ni shed sendi ng Request Paraneters
Returning control to user...

From Server: 221 winnie.fit.edu closing connection
, 22 Mar 2000 02:37:25 -0500 (EST)

User FTP>> Thank for using this code Generated FTP Application
User >> Finished executing quit function!!!
CS: 2>>
CS: 2>> exit

script done on Wd Mar 22 02:37:36 2000

Line 2 shows how the client software is started. Currently it istext based
Java program. With the information supplied on line 4, theconnectTo method in
the generated client module, establishes a connection with the fit.edu ESMTP
Sendmail server. Line 5 shows theHandshake sent by the server stating the
version of software running on the server and response code 220 signifying it is
ready to service requests from the client. The first request from the client isto
inform the server of the sender address shown on line 6. The format for this

request is shown on the next line;

MAIL <SP> FROM:<reverse-path> <CRLF>
The server can accept or deny the sender address. In this conversation, line 11

shows the server acknowledges the address M el vin@research.comas being ok with

response code 250. The next request is to inform the server of where the message

should be sent. Thisis known as the recipient address and the format for this

request message is shown on the following line;

RCPT <SP> TO:<forward-path> <CRLF>
Thisrequest is made on line 13 of the SMTP conversation script to make

mdouglas@fit.eduarecipient. The server then responds to this message on line 18,

again with aresponse code of 250. To add a second recipient, the request on line
13 would be repeated but with the different address desired. The Data request is
now a possible option as arequest by the client. Without the previous information
of recipient and sender address, this request would not be accepted. The Data
request shown on line 20, tells the server to prepare to receive the actual text
message. The format for this request is shown below;

DATA <CRLF>
If the server is capable of receiving the text message right away, it sends a response

code of 354 as shown on line 25. Response code 354 means enter a message and
enditwitha“.” onalineby itself. Once the user enters atext message as shown
online 27, then it is sent and the server acknowledges whether the message was
accepted or not as shown on line 32. At this point the user may choose to send
another message or to end their session. To end the session the quit request is used
as shown on line 35. The server replies on line 39 with response code 221, which

means “ service closing transmission channel” [Postel, 1982].

4.2 Implementation of HTTP RFC 2616

HTTP has been in use by the WorldWide Web global information initiative since
1990 [Fielding, 1999]. The Hypertext Transfer Protocol (HTTP) is an application

level protocol for distributed, collaborative, hypermediainfeamation systems. It isa

generic, stateless, protocol that can be used for many tasks beyond its use for
hypertext, such as name servers and distributed object management systems. This
would be done through extension of its request methods, error codes and headers
[Masinter, 1998].

The HTTP protocol is arequest/response protocol. A client sends a request
to the server in the form of arequest method, URI (Uniform Resource ldentifiers)
or URL (Uniform Resource Locator), and protocol version, followed by several
lines with client information. The server responds with a status line, including the
message's protocol version and a success or error code, followed by several lines
with server information [Fielding, 1999]. HTTP communication usually takes
place over TCP/IP connections. The default port is 80, but other ports can be used
[Reynolds, 1994].

For the purpose of afunctional client and or server, the only methods
required were the GET and QUIT methods. Figure 4 —3 shows the MSPL code

used to generate the java protocol modules.

Figure4 —3. MSPL Codefor HTTP

1. Par anet er s

2. defaultdientPort 55000, # between 0 and 65535

3. def aul t Server Port 55000, # between 0 and 65535

4. buf ferSi ze 1024, # sanmesizebuffer for dient and Server
5. maxCl i ent sSupported 10;

6. Begi n

7. Request Cet;

8. Reply Gk # successfully received, understood, and accept ed
9. byte[] actual File;

10. Reply fil eNot Found # The request contai ned bad
11. byte[] errorFourHundred; #syntax or cannot be

fulfilled

12. Reply server Not Avai l able # Theserver failedtoful fill

13. byte[] errorFiveHundred; # anapparentlyvalid
request

14. End

The generated client was also linked to user-written modules to produce the client
software. Thisisthe only example wheremaxClientsSupported was tested
extensively and seems to work moderately well. Most web browsers devel oped
now automatically request several connections to the same server in order to speed
up the time required to download aweb page that has several pictures. According

to line 5 of the MSPL code, up to 10 connections can be made to the server at once.

421 HTTP Server Software

For the implementation of the generated code of the HTTP RFC 2616 protocol, the
generated server was tested with the Microsoft Internet Explorer
Version 5.00.2314.1003 client. The server was set up to run on port 55000 instead
of port 80 where HTTP serversusualy run. To direct the HTTP client to my server
instead, the address and port had to be written in the address window as shown
below;

http://winnie.fit.edu:55000/~mdouglas
The generated server was able to send both graphics and text back to the client,
which was then able to display them. In this example, thebuffersize entered in
MSPL played amagjor role. Depending onthe buffersize, thetimeto load a

standard 8%2 by 11 inch page with one or two pictures varied by over 5 seconds.

There are several other commands that were not implemented but theGET
request was sufficient to successfully transfer files and images beiveen the client
and server being used. A script of the conversation is shown in Figure4—4. The
linesin bold are the relevant pieces of information that are currently being used to
service therequests. It is possible, however, to increase the functionality of the

server by using more of the information provided to the server from the client.

Figure4 —4. HTTP Server Conversation Script

1. Script started on Wd Mar 29 01: 56: 24 2000

2. /usr/ users/student/ ndougl as/ public_htm > java httpd

3. Accepting connections on port 55000

4. Docunent Root:

5. Connecti on Established!!

6. Request: get

7. USER HTTPD >> *** BEGQ N HTTP Packet :

8. CET /~mdougl as HITP/ 1.1

9. Accept: inmage/gif, image/x-xbitmap, image/jpeg,
i mage/ pj peg, application/vnd. ns-power point,
application/vnd. ms-excel, application/nmsword,
application/pdf, */*

10. Accept - Language: en-us

11. Accept - Encodi ng: gzip, deflate

12. User - Agent: Mozilla/4.0 (conpatible; MSIE 5.0; Wndows NT
Di gExt)

13. Host: fit.edu: 55000

14. Connection: Keep-Alive

15. USER HTTPD >> *** END HTTP Packet .

16. USER HTTPD >> pat hname: '/ ~ndougl as

17. USER >> Fi | enane sendi ng: i ndex. ht n

18. Bytes Sent: 2279

19. Fil el ength: 2279

20. USER HTTPD >> Fi ni shed Sending File!!

21. End Request

22. Now sending reply for request just received..

23. Sendi ng bytes

24.

25.
26.
27.
28.
29.
30.
31.

32.

33.

34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.

45.
46.
47.
48.
49.
50.
51.

52.

53.

54.
55.

End Request-Reply...

Request: get
USER HTTPD >> *** BEGQ N HTTP Packet :
CET /1 mages/ Fl agbda. gi f HITP/ 1.1

Accept: */*

Referer: http://fit.edu: 55000/ ~ndougl as
Accept - Language: en-us

Accept - Encodi ng: gzip, deflate

User - Agent: Mdzilla/4.0 (conpatible; MIE 5.0;
Di gExt)

Host: fit.edu:55000

Connection: Keep-Alive
USER HTTPD >> *** END HTTP Packet .

USER HTTPD >> pat hnane: '/ nages/ Fl agbda. gi f'
USER >> Fi |l enane sendi ng: | mages/ Fl agbda. gi f
Bytes Sent: 33325

Fil el engt h: 33325

USER HTTPD >> Fini shed Sending File!!l!

End Request

Now sendi ng reply for request just received...
Sendi ng bytes

End Request-Reply...

Request: get

USER HTTPD >> *** BEGQ N HTTP Packet :
CET /1 mages/ Wiat snew. gi f HTTP/ 1.1
Accept: */*

Referer: http://fit.edu: 55000/ ~ndougl as
Accept - Language: en-us

Accept - Encodi ng: gzip, deflate

User - Agent: Mdzilla/4.0 (conpatible; MIE 5.0;
Di gExt)

Host: fit.edu: 55000

Connection: Keep-Alive
USER HTTPD >> *** END HTTP Packet .

W ndows NT;

W ndows NT;

56. USER HTTPD >> pat hnane: '/ nmages/\Wat snew. gi f

57. USER >> Fi |l enane sendi ng: | mages/ What snew. gi f
58. Bytes Sent: 17709
59. Filelength: 17709
60. USER HTTPD >> Fi ni shed Sending File!!
61. End Request
62. Now sending reply for request just received..
63. Sendi ng bytes
64. End Request-Reply...
65. "C
/usr/ users/student/ ndougl as/ public_htm > exit
66. script done on Wed Mar 29 01:58: 45 2000

Line 2 in Figure 4 — 4 shows how the program is executed. The daemonis
started by running the generated Server Protocol module. On line 5, a connection
is accepted from a client, which is the Internet Explorer client. The first request
received isin bold on line 8. Every request consists of several lines. A line
without text on it, known as carriage-return line-feed (CRLF), denotes the end of a
request. RFC 2616 for HTTP also suggests that in the interest of robustness,
servers should ignore any empty lines received where a Request-Lineis
expected [Fielding, 1999].

The Request-Line begins with a method token, followed by the
Request-URI, the protocol version, and ends with a CRLF. Thetokensare
separated by <SP> (space) characters. Except in the final CRLF, no CRsor LFs
are allowed. The following line shows the protocol for a Request-Line;

Request-Line = Method<SP> Request-URI <SP> HTTP-Version< CRLF>
Online 8 in the HTTP conversation script, GET is the Method, /~mdouglasis the
Request-URI and HTTP/1.1 isthe HTTP-version. The entire HT TP packet sent for
the first request spans from line 8 to line 14. The Method token indicates the

method to be performed on the resource identified by the Request-URI. Itisaso

worth noting that the method is case-sensitive.

Line 13 isthe next portion of datathat was used to service the GET request.
A client must include a Host header field in all HTTP/1.1 request messages. If this
lineis not in the request message then all standard HTTP/1.1 must respnd with a
400 (Bad Request) status code [Fielding, 1999].

A second web page is requested on line 26. Thisfileisreferred to by alink
on the current page, therefore, line 28 is sent to inform the server of thisfact. The
Referrer request-header allows a server to generate lists of back-links to resources
that can be used for logging or optimized caching. The protocol for a Referrer is
shown on the following line;

Referrer = "Referrer" ":" (‘absoluteURI | relativeURI)

In HTTP/1.0, most implementations used a new connection for every
reguest/response exchange. In HTTP/1.1, a connection may be used for one or
more request/response exchanges. Lines 14, 33 and 53 inform the server of
whether the connection should be closed or not. A Connection, however, may be
closed for a variety of other reasons.

There are severa advantages to having one persistent HT TP connection
instead of several separate TCP connections. Firstly, latency on subsequent
requestsis reduced since there is no time spent in TCP'sconnection opening
handshake. Secondly, network congestion is reduced by reducing the number of
packets required for TCP opens [Fielding, 1999].

After receiving and interpreting a request message, the server responds with

an HTTP response message for which the protocol is shown below;

Response = Status-Line <CRLF> [message-body]
The Status-Line is thefirst line in the Response message and it consists of the
protocol version followed by a numeric status code and an optional text message
describingthe status code. The protocol can be seen on the following line;

Status-Line = HTTP-Version <SP> Status-Code <SP> Reason-Phrase <CRLF>
Figure 4 — 5 shows and gives a brief description of the five main StatusCode

categories. Thefirst digit of the Status-Code defines the class of response. The last
two do not have any categorization role but may be used by the programmer for

more specific meaning.

Figure4 —5. HTTP Status Codes [Fielding, 1999]

1xx: Informational - Request was received, and now continuing process.
2xx: Success- The action was successfully received, understood, and
accepted.

3xx: Redirection - Further action must be taken in order to complete the
request.

4xx: Client Error - The request contains bad syntax or cannot be fulfilled.
5xx: Server Error - The server failed to fulfill an apparently valid request.

After the status-line, there is aCRLF and then the message body, which in the case

of the GET request, is the actual bytes of the file that was requested.

4.2.2 HTTP Client Software

For HTTP RFC 2616, the client was also generated. In Figure4 — 6, theclient is

shown interacting with aNetscape-Enterprise/3.5.1G server. For the purpose of

this example, a oneline web page is requested and sent back to the client. The

client prints the one line directly to the screen. Thisistheline that would usually

be displayed by a graphics enabled web browser such as Netscape Explorer or

Internet Explorer.

Figure4—6. HTTP Client Conversation Script

wh e

PN U A

10.
11.

12.
13.

14.
15.
16.

17.
18.
19.
20.
21.
22.

23.
24.
25.
26.

27.

Script started on Sat Apr 15 23:59:31 2000
CS: 1>> java userHITP
Starting HTTP Application...

Connect Address: fit.edu

Enter Address: /~ndougl as/oneLine. htm

Packet being sent:
CET /~ndougl as/ oneLi ne. htm HITP/ 1.1
Accept: image/gif, image/x-xbitmap, inmage/jpeg,
i mage/ pj peg, application/vnd. ns- power poi nt,
appl i cation/vnd. ns-excel, application/nmsword,
application/pdf, */*

Accept - Language: en-us
Accept - Encodi ng: gzip, deflate
User - Agent: Mozilla/4.0(conpatible; MSIE 5.0;
W ndows NT; D gExt)

Host: mael stromcs.fit. edu
Connection: Keep-Alive

Executing get function
Fi ni shed sendi ng Request Paraneters
Returning control to user...

Reply packet for Request:
HTTP/ 1.1 200 &K
Server: Netscape-Enterprise/3.5.1G
Date: Sun, 16 Apr 2000 04:03:31 GVI
Content -type: text/htm
Li nk: <http://w nnie.fit.edu/ ~ndougl as/ oneLi ne. htm ?
PageSer vi ces>; rel ="PageServi ces"

Et ag: " 240f ef - b- 38f 8c9d2"

Last-nodified: Sat, 15 Apr 2000 19:58: 10 GMVI
Content -1 engt h: 40

Accept -ranges: bytes

H there, this is a one |line web page

28. Enter Address: quit

29. Finished sendi ng Request Paraneters

30. Returning control to user...

31. Thank you for using ME. (Melvin's Expl orer)
32. CS:2>> exit

33. script done on Sat Apr 15 23:59:58 2000

Figure 4 — 6 shows a successful conversation between the generated client and a
commercial MSInternet Explorer server. Online 2, theclientisinvoked. Lines4
and 5 allow the user to specify aspecific file they would like tobrowse. Lines6 to
13 inclusive, show the entire request packet sent. It informs the server of what the
client is capable of supporting such as what picture formats are recognized. Line7
isthefirst line read by the srver and identifies the service being requested. In this
case, it isthe GET method. The syntax for this command is shown on the
following line;

GET <SP> URI
This line along with line 12, informs the server of where to locate the file being

requested. The information of what host the client is running on is obtained at
run-time using the standard hostname command, which returns the information
showninitalicsonline12. INnHTTP versions 1.1 and higher, line 13 isused to
inform the server on whether to close the connection or keep it open. The last
request should say “Connection: close” informing the server to complete the
request and close the connection. Lines 14 to 17 are printed by the generated client
module to inform the user of what is happerning. Line 18 is sent from the server to
the client confirming the request was received and processedOK. The number 200,

asin previous protocols, implies the request was semantically correct and

successfully serviced. Thisline aong with the followindinesto line 26, are
known as the header. They inform the user about the file, which is about to be
sent. The date of request, the type and size of file, and the last date of modification
of the file are among the more important pieces of information sipplied to the
client. In amore complex client, this information may be used to decide whether
the file needed to be transferred to the client at all or if the client could simply
retrieve the file from its cache. Line 27 isthe actual datain the fileoneLine.html.
The following lines are used to gracefully close the connection to the server and

exit from the client application.

4.3 Implementation of FTP RFC 959

The File Transfer Protocol RFC 959 is used to transfer datareliably and efficiently
between two machines. It shields a user from variationsin file storage systems
among hosts [Reynolds, 1985]. One machine must have the server running while
the second machine makes requests through a FTP client.

The general File Transfer Protocol model is smilar to ESFTP, as described
in Section 3.2 earlier. The main differences, which were also mentioned earlier are
the handshake that is sent initially and the seconddata connection used to transfer
actual bytes of files. The communication between the ugr and server isintended to
be an alternating dialogue. Certain commands require a second reply for which the
user should also wait. These replies for example, may report the closure of the data

connection.

During the implementation of the FTP RFC 959 protocol, severa
interesting problems arose. Some were overcome, while others were too in-depth
and have been left as interesting prospects for future work.

The first problem encountered was that many protocols started the
conversation with the server sending a message first, basically informing the client
it was ready to communicate using a specific version of the application. This
problem was overcome by extendingMSPL to include the Handshake command,
which alows the server to send a stream of bytesfor which there isno Reply,
hence, it was not defined as a Request but as aHandshake command. Since the
syntax of the language was encoded into a table format, this extension was not that
hard to do.

The second problem encountered was that in RFC 959, FTP has two data
connections in operation at any given moment. One connection is called the
control connection and the second is called thedata connection [Reynolds, 1985].
Over the control connection, request for services are made. If the reply involves
sending or receiving afile or alist of al thefilesin the current directory, then a
second connection called thedata connection is opened. This connection remains
open only long enough to fulfill the Request made, and then it is closed.

There are two reasons why this was a problem that could not be solved
using the current version of MSPL. Thefirst reason is that the current version does
not support more than one connection between the client and server. The second

reason was that the assignment of the connection on the second port would have to

be dynamic, changing during one execution of the program. Possible solutions to
this problem are discussed in Chapter 5. Figure 4— 7 shows the MSPL code written
that works successfully for the commands that do not require a second data
connection. Some of these commands are print working directory (pwd) and

change directory (cd).

Figure4-7. MSPL Codefor FTP

1. Par anet er s

2. defaul tdientPort 55000, # between 0 and 65535
3. def aul t Server Port 55000, # between 0 and 65535
4. buf ferSi ze 1024, # buffersize in bytes

5. maxCl i ent sSupported 9;

6. Begi n

7. Handshake;

8. Request user;

9. Repl y gooduser nane

10. byte[] needPassword;

11. Repl y baduser nane

12. byte[] stop;

13. Request pass;

14. Repl y goodpasswor d

15. byte[] ready;

16. Reply badpassword

17. byte[] stop;

18. Request get;

19. Reply gettwohundred # positive conpletion reply
20. byte[] getgood;

21. Reply get Four Hundr ed #tenporary negativereply-trylater
22. byte[] msgFour Hundr ed;

23. Reply get Fi veHundred # permanent negative reply
24. byte[] msgFi veHundr ed;

25. Request pwd;

26. Reply currentpath # positive conpletion reply
27. byte[] msgTwoHundr ed;

28. Reply error PAD

29. byte[] error;

30. Request cwd;

31. Reply cwdCk

32. byte[] msgTwoHundr ed;

33. Reply cwdError

34. byte[] error;

35. End

The standard port used for FTP communication is port 21. To avoid having to shut
down the current FTP server running on this port, the MSPL code set up the server
to listen on port 55000 by assigning this value tothe defaultClientPort and
defaultServerPort on lines 2 and 3. Since no files were able to be transferred, the
specified buffersize of 1024 was more than sufficient to transfer any one request or
reply inits entirety. The use of the Handshake command online 7 was also
necessary for this protocol. Several Request—Reply statements were coded in
MSPL for thisexample. The request user on line 8 is arequest for the server to log
the client on with the specified username that follows the method nameuser. The
Handshake command is where the server asks the client to provide this
information. If the username is valid then the server sends back an integer
signifying that a password is also required. Once the password has been confirmed
valid then the cliert is free to make other requests such as cd or pwd. The
implementation of the other commands using the seconddata connection has been
left as future work. The script for the generated server isshown in Figure4 - 8. It
shows the messages that are exchanged with the standard ftp client on the

winnie.fit.edu server.

Figure4 —8. FTP Conversation Script

1. Script started on Wd Mar 29 15: 38: 58 2000
2. CS:1>> java ftpd

3. Accepting connections on port 55000
4. Docunent Root :
5. Connection Established!!!

6. Handshake Sent ...

7. Now r ecei vi ng paraneters for Request: user

8 Server got usernane: 'USER Melvin'

9 Fi ni shed receiving request paraneters called user nodul e
now send reply info

10. Now sending reply for request just received...

11. Sendi ng bytes

12. Fi ni shed executing conmand...Waiting for next command...

13. Now r ecei vi ng paraneters for Request: pass

14. Server got password: 'PASS SonOf TheMbst Hi gh'

15. Fi ni shed receiving request paraneters called user nodul e
now send reply info

16. Now sending reply for request just received...

17. Sendi ng bytes

18. Fi ni shed executing command...Waiting for next command. ..

19. Now recei vi ng paraneters for Request: pwd

20. Fi ni shed receiving request paraneters called user nodul e
now send reply info

21. Now sending reply for request just received...

22. Fi ni shed executing conmand...Waiting for next command...

23. ~C

24. CS: 2>> exit

25. script done on Wd Mar 29 15:40: 34 2000

The pwd command shows the current directory path on the server machine. The
path is sent back to the client. An example of the path sent back would be
export/home/gsa/mdouglas. Thistype of request does not require a second data
connection and thus, can be done using the current version of MSPL.

Thefirst five lines of the FTP Conversation Script have the same purpose as
thosein the HTTP Conversation Script. Once a connection has been established,
however, a Handshake is sent from the server to the client in which the client is

informed of the version of software being run and whether the server is ready to

service requests. Line 7 shows the server receiving the client’ s request for auser to
log on to the server with the specified username. The FTP command sent by the
client side is shown below;

USER <SP> <username> <CRLF>
It is now up to the application protocol to decideif thisisavalid username it wants

to accept. In Figure 4 — 8, the application protocol decides the usernameis fine but
apassword isalso required. Therefore, the reply sent signifies username was
accepted but a password is needed. The client application protocol understands this
response and sends the user’ s password as shown below;

PASS <SP> <password> <CRLF>
The request is received by the server on line 13. The server modul e accepts the
password as being valid and then sends this information back to the client protocol
module, which then passes it on to the client module.

One of the few commands that do not require the use of the data connection
shown in Figure 4— 10, is the pwd command. This command sends the Reply back
over the FTP Replies line shown in Figure 4— 10. The FTP Replieslineisthe
same connection that the client sends the FTP commands or requests over. The
command is used as shown on the next line;

PWD <CRLF>

FTP commands are "Telnet strings’ terminated by the "Telnet end of line
code". The command codes themselves are dphabetic characters terminated by the

character <SP> (Space) if parameters follow and Telnet-EOL

otherwise [Reynolds, 1985]. Similar to HTTP, there are five possible types of

reply codes shown in Figure 4- 9.

Figure4 —9. FTP Status Codes[Reynolds, 1985]

lyz Positive Preliminary reply
The requested action is being initiated; expect another reply before proceeding

with a new command.

2yz Positive Completion reply
The requested action has been successfully completed. A new request may ke
initiated.

3yz Positive Intermediate reply
The command has been accepted, but the requested action is being held in
abeyance, pending receipt of further information. The user should send another
command specifying thisinformation. Thisreply isusd in command sequence
groups.

4yz Transient Negative Completion reply

The command was not accepted and the requested action did not take place, but
the error condition is temporary and the action may be requested again. The
user should return to the beginning of the command sequence, if any.

5yz Permanent Negative Completion reply
The command was not accepted and the requested action did not take place.
The User-process is discouraged from repeating the exact request (in the same
sequence).

Figure4 —10. FTP Modd [Reynolds, 1985]

User
User &—r Interface
User P FTP Commands R Server
P FTP Replies P
. File
File User Data Server ¢ p!
«— < > System
System DTP Connections DTP y

User-FTP Server-FTP

In Figure 4 — 9, thereisareference to User DTP (Data Transfer Process) and
Server DTP. Thereisaso mention of aUser Pl (Protocol Interpreter) and Server
Pl which is the same as generated Client andServer Protocol modules. The User
and Server DTP are the two modules that would have to be developed in order to
use the put and get commands among other similar commands that require the use
of the data connection. Chapter 5 discusses possible extensians in MSPL and the

Compiler in order to generate aUser DTP and Server DTP.

Chapter 5

Conclusion

Overall, the research done can be considered a success. There have been severdl
definitive steps taken in the right direction to increase thelevel of quality in the
development of client-server software. The Compiler and MSPL combined, proved
to be useful not only in non-standard protocols like ESFTP, but also in standard

protocolslike SMTP RFC 821, HTTP RFC 2616, and even FTP RFC 959.

5.1 Significance and Expected Impact of Research

This research could have a significant impact on the development of future network
code generation applications and protocol specification languages. Most network
applications in the past have concentrated on providing just function calls. This
research, however, looks more closely at how generated code can make use of
ordering that is embedded in protocols. There has already been a substantial
impact in the area of re-use of code by other research and this research shall at least
add more arguments for re-use of code.

A strength of MSPL isit is easy to read and understand. The way in which

the syntax parser was implemented makes it fairly easy to extend the language to

entail new features. This was the casewhen the Handshake command was added
to thelanguage. MSPL seems pretty easy to use athough there have not yet been
many users of the system and thus, not much evidence to base this statement on.
The independent devel opment of MSPL from the compiler m&kes this solution very
portable since a compiler fromMSPL code to any programming language can

easily be developed.

5.2 Prospectsfor Future Work

There are several prospects for future work, some of which are currently being
worked on. The primary future work that needs to be done in order to support
RFC 959 File Transfer Protocol, is to allow more than one connection between a
client and aserver. Thisleads to more problems that must be thought through and
tackled. For example, in FTP RFC 959, the port for the data connection can
change several timesin one session as it is only open long enough to service one
Reguest. Onceit closes and reopens again for another Request, it is quite possible
and likely that a different port will be used. Thisimples the port would have to be
changed more than once during the execution of the application. Thisleadsto the
next question of whether it is worth changing the language to allow the user to
change the port from the user’s code. This method could be placed in the MSPL
Library. Other future works include improving the compiler. By making it

smarter, it can optimize the MSPL code before compilation.

Another interesting future work would be to provide more error handling
features similar to the BEA Tuxedo package described in Chapter 2. Thiswould

greatly increase the reliability of the language when used in theReal World.

Appendix

EBNF definition for M SPL

<My_Si npl e_Language>
<decl ar ati on>

<gl obal _paraneter _|ist>

<gl obal _par anet er >

<t erne
<body>

<statement |ist>

<st at enent >

<r equest _st at enent >

<var _|ist>
<type>
<repl y_st at enent >

<paraneter_|ist>

<par anet er >

<decl ar ati on> <body>
Par anet ers <gl obal _paraneter _list> | ?
<gl obal _paraneter > <ternp |

<gl obal _parameter > <ternp,

<gl obal _parameter _I|ist >
defaultdientPort | defaultServerPort |

buf ferSi ze | maxd i ent sSupported
Const ant _I nt
Begin <statement _|ist> End |

Begi n Handshake;
<st at enent > |

<statenment |ist> End

<statenent> <statenent |ist>
<request _st atement > <repl y_st at emrent >
Request id <var_list> |
Request id <var_list>

Request _Paraneters <paraneter_list>
<type> id; | <type> id,
byte[]

? | Reply id <var_list> |

<var _|ist>
i=int | String |

Reply id <var_list> <reply_statenent>
<paraneter> <terne | <paraneter>
<terne, <paraneter_list>

ti meout

References

[Amarasinghe, 1993] S. P. Amarasinghe and M. S. Lam, “Communication
Optimization and Code Generation for Distributed Memory Machines,”
Proceedings of the ACM SIGPLAN'93 Conference on Programming Language
Design and Implementation, June, 1993.
http://researchsmp?2.cc.vt.edu/DB/db/conf/pldi/pldi93.html

[BEA,1996] “Programming a Distributed Application: The BEA Tuxedo®
Approach”, White Paper 1996.
http://www.bea.com/products/tuxedo/paper _distributedapp.html

[Clark, 1990] D. D. Clark and D. L. Tennenhouse. “ Architectural Considerations
for aNew Generation of Protocols,” ACM Communication Architectures,
Protocols, and Applications (SIGCOMM) 1990, September 1990.

[Coulouris, 1994] George Coulouris, Jean Dollimore, Tim Kindberg,“Distributed
Systems Concepts and Design,” pp. 130- 152 Second Edition 1994.

[Engelen, 1996] Robert A. Van Engelen, Lex Wolters, and Gerard Cats,

“ Automatic Code Generation for High Performance Computing in Environmental
Modeling,” Proceedings of the 1996 EUROSM International Conference on
HPCN Challengesin Telecomp and Telecom: Parallel Smulation of Complex
Systems and Large-Scale Applications, June 10-12, 1996
http://www.wi.leidenuniv.nl/home/robert/

[Engler, 1994] Dawson R. Engler and Todd A. Proebsting, “ DCG: An Efficient,
Retargetable Dynamic Code Generator,” ASPLOS-VI Proceedings - Sxth

International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, California, October 4-7, 1994.
http://www.stanford.edu/~engler/

[Fielding, 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, “Hypertext Transfer Protocol Request For Comments
(RFC) 2616,” June 1999.

[Fraser, 1991] Chritopher W. Fraser and David R. Hanson. “ A Code Generation
Interface for ANSI C. Software-Practice and Experience,” 21(9):963-988,
Proceedings of the International Workshop on Code Generation, September 1991.

[Grenier,1996] Christina Grenier, “The TXRPC Specification, X/Open CAE
Specification,” November 1995.

[Hsieh, 1996] Dawson R. Engler and M. Frans Kaashoek, “"C: A Language for
High-Level, Efficient, and Machineindependent Dynamic Code Generation,”
The 23rd annual ACM S GACT-S GPLAN Symposium on Principles of
Programming Languages, St. Petersburg Beach, Florida on January 21-24, 1996.
http://www.stanford.edu/~engler/

[Kohler, 1999] E. Kohler, M. F. Kaashoek, and D. R. Montgomery (MIT) “A
Readable TCP in the Protocol Language,” SGCOMM 1999, August 1999.

[Lee, 1996] Peter Lee, Mark Leone, “ Optimizing ML with RunTime code
generation,” Proceedings of the ACM S GPLAN'96 Conference on Programming
Language Design and Implementation (PLDI), Philadelphia, Pennsylvania, May
21-24, 1996. SIGPLAN Notices 31(5), May 1996.

http://www.acm.org/sigmod/dbl p/db/conf/pldi/pl di 96.html

[Masinter, 1998] L. Masinter, “Hyper Text Coffee Pot Control Protocol
(HTCPCP/1.0),” RFC 2324, April 1998.

[Postel, 1982] Jonathan B. Postel, “Simple Mail Transfer Protocol RFC 821",
August 1982.

[Reynolds, 1985] J. Reynolds, J. Postel, “File Transfer Protocol RFC 959,”
October 1985.

[Reynolds, 1994] Reynolds, J. and J. Postel, “ Assigned Numbers’, STD 2,
RFC 1700, October 1994.

[TanenBaum] Andrew S. TanenBaum, “ Computer Networks’ Third Edition, pp. 28-29, 1996.

[Scheifler, 1986] R.W. Scheifler, J. Gettys, “The X Window System” ACM Trans.
On Computer Graphics, pp. 76-109, 1986.

