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Abstract

Title:

Forecasting >100 MeV SEP Events and Intensity based on CME and other Solar

Activities using Machine Learning

Author:

Daniel Lee Griessler

Major Advisor:

Philip Chan, Ph.D.

There is a severe risk for astronauts and machinery from high intensity Solar Ener-

getic Particle (SEP) events which can be mitigated through accurate forecast of their

presence and peak intensity. By using characteristics of CME and other space weather

phenomena, machine learning techniques have the potential to classify and predict

the peak intensity of SEP events. The extreme scarcity of SEP events in current

datasets poses a challenge to traditional machine learning techniques. In this work, we

first demonstrate classifier machine learning techniques that can achieve an F1 score

of 0.800 in forecasting SEP events. We then propose techniques for forecasting SEP

peak intensity including Combining Richardson forecast (RC), learning Richardson

Error (RE), and integrating retraining with DenseLoss (DL+rRT+AE). Finally, we

demonstrate through DL+rRT+AE that we can achieve the same F1 score of 0.800 for

forecasting SEP peak intensity.
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Chapter 1

Introduction

1.1 Motivation

Solar energetic particles (SEPs) are composed of mostly highly charged electrons and

protons and are accelerated by various activity such as in conjunction with a solar

flare on the Sun or at the front of a coronal mass ejection in space [11]. A solar

particle storm, or SEP event, occurs when the SEPs have such high speed that they

reach Earth travelling 93 million miles in less than an hour. [22]. An SEP event can

cause severe damage to spacecraft and expose astronauts to dangerous radiation. For

spacecraft, SEPs can fry electronics, corrupt computer programming, damage solar

panels, and disorient a spacecraft’s navigational star tracker. For astronauts as they

are unprotected by Earth’s magnetic field and atmosphere, SEPs can damage cells

or DNA increasing future risk for cancer or cause acute radiation sickness as they

pass through spacecraft or astronaut’s skin. This makes it crucial to forecast their

occurrence and intensity with high-fidelity.

Coronal mass ejections (CMEs) form after a solar eruption and are large clouds

of solar plasma and embedded magnetic fields [11]. They expand, often measuring
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millions of miles across, as they travel through space and can collide with planetary

magnetic fields. CMEs are a large contributor to the production of SEPs; CMEs often

drive magnetic shocks that can accelerate SEPs to high energy levels [9]. CME features

have been gathered through advanced Earth and Space based instruments. Through

analysis and interrelation of the patterns in these CME features, it may be possible to

forecast SEP event occurrence and forecast SEP event intensity.

1.2 Problem Statement

The first problem that we study is classifying a CME event to be associated with a

SEP or a Non-SEP event using its set of features. The second problem that we study

is predicting the ln peak intensity of 100 MeV protons associated with a CME event

using its set of features. A 100 MeV SEP event is defined as an event in which the

intensity of 100 MeV protons meets or surpasses a threshold of 1 proton flux unit (pfu).

The dataset of CMEs that we were able to form is very imbalanced. The percentage of

100 MeV SEP events in the entire dataset is 0.57%. The imbalanced dataset presents

a challenge both to the first problem of classification and to the second problem of

regression.

1.3 Approaches

To form our dataset, we adapt the dataset from Thomas [19] whose dataset was created

for 10 MeV SEP events to include only the 100 MeV SEP events. We can adapt his

already imbalanced dataset because it contained events for >10 MeV, and this study

is for a subset with >100 MeV.

In the first problem, we use three machine learning classifier architectures to predict
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if a CME event is an SEP event or not. Performance on the original dataset will be

poor because of its heavy imbalance towards Non-SEP events. To compensate, we use

oversampling to increase the performance on the otherwise rare occurring SEP events.

We also experiment with improving performance by first learning the representation

and then secondly learning the classification of a CME event in two stages. We use

two-stage learning because it has been proven to improve performance in imbalanced

classification problems in other applications.

In the second problem, we adapt the three approaches from the first problem to

regression and additionally experiment with several other machine learning regression

architectures to predict the peak intensity of >100 MeV protons associated with a CME

event. We experiment with improving upon one of the features we use for training,

the Richardson formula [15], in two of the additional architectures. We learn new

coefficients for their equation and adapt it into a network in two new techniques,

firstly to train a weighted combination between its output and our own prediction

and secondly to train our network to model the error left over in its output. Finally,

we apply an adapted technique, DenseLoss [17], which applies weights to individual

instances based on the density distribution of the peak intensity values. The weights

applied by DenseLoss offers customized weights for larger SEP events replacing the

need for oversampling in this technique.

1.4 Contributions

In this work, we propose three main contributions, namely

• For forecasting SEP events, Classifier Re-Training with Autoencoder (cRT+AE)

can achieve 0.800 in F1.

• For forecasting SEP peak intensity, we propose Combining Richardson forecast
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(RC), learning Richardson Error (RE), and integrating retraining with DenseLoss

(DL+rRT+AE).

• For forecasting SEP peak intensity, DenseLoss with Regression Re-Training and

Autoencoder (DL+rRT+AE) can achieve 0.800 in F1.

The proposed techniques in our contribution for forecasting SEP peak intensity

can be generalized to other regression related tasks. The key idea of the Combining

Richardson forecast is to learn the weights for combining two forecasts together. We

use Richardson’s equation as the first forecast, and we output the second forecast with

a neural network. In other problem domains, works may be completed to forecast in

their respective domain, and they can combine their forecast with another such as an

equation or model from their own previous works. The idea of learning Richardson Er-

ror is for our neural network to model the error remaining in the Richardson equation’s

forecast. This can be generalized to other problems as again they might have an equa-

tion or model from prior work that is fairly accurate, and they can apply their network

to learn the error remaining in that forecast. The DL+rRT+AE is the proposed com-

bination of techniques from several separate papers combined together. DenseLoss [17]

was developed for general use in imbalanced regression problems. It was a new loss

function that used a new weight, DenseWeight, applied per sample based on the target

value’s distribution to help overcome the imbalanced dataset. Regression re-training

and autoencoder (rRT+AE) was found in previous works including Thomas [19] as

a two stage training technique to separately train the feature representation and the

regressor along with an autoencoder to discover new features. These techniques both

apply to imbalanced regression problems in general, so their combination also applies

to imbalanced regression problems. We apply it specifically to forecasting SEP peak

intensity.
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1.5 Organization

In Chapter 2, we discuss related work in SEP forecasting and Machine learning tech-

niques to deal with imbalanced datasets. In Chapter 3, we discuss the features of

CME events and details of our dataset. In Chapter 4, we describe our approaches for

predicting the classification of SEPs. We then present the results and analyze both

their performance and errors. In Chapter 5, we describe our approaches for predict-

ing the peak intensity of >100 MeV protons followed by analyzing the results of their

application.
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Chapter 2

Related Work

2.1 SEP Forecasting

These works were focused on forecasting SEP events and other information. They

varied in the intensity of SEP events that they studied with many studying >10 MeV

events. We group them by their input features. There is a set that used solar flares

and X-ray features, a set that used CME features, and a set that used other space

weather phenomena.

2.1.1 Using Characteristics of Solar Flares and X-rays

Several of the papers in current literature used features of solar flares and X-rays to

perform prediction for SEP events. Solar flares contribute to the acceleration of SEP

particles making them more dangerous. Various characteristics of solar flares have

been observed and used as input when predicting SEPs including X-ray readings. X-

ray features can provide advanced warning and forecasting capabilities in real-world

application since the information we can obtain from these features travels faster than
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other space weather effects.

Boubrahimi et al. [1] predicted SEP events >100 MeV using decision trees on pro-

ton and X-ray time series data. Their dataset was collected from measurements by

Geostationary Operational Earth Satellites (GOES) including short and long X-ray

channel data and proton channels that covered various ranges of MeV. They used un-

dersampling to ensure their dataset was balanced selecting only enough negative events

to equal the positive events. To perform classification, they generated features based

on a 10-hour span window using a Vector Autoregression Model (VAR). A VAR allowed

them to express each proton time series window as a linear function of past values of

itself and other proton and x-ray time series. A feature vector was formed from the

coefficients of the proton equations for a data sample. Missing values in the gener-

ated features were filled with the 3-nearest neighbors class-level imputation technique.

Through this method, a missing value was filled by weighting the 3 closest neighbors

in the same class based on the mean squared difference of the features that were not

missing. The fully fleshed out feature vectors were fed into the decision tree model.

Brea et al. [2] improved on the Proton Prediction Model (PPM) cited from Balch

(2008) to predict SEP events through two techniques. The first technique was logistic

regression, a linear model used for classification. Weights for features were learned

through gradient descent, and the output layer applied a sigmoid activation function

to predict if the event was an SEP event. They used a fixed threshold of 0.5 to change

the probability into a classification. The second technique was boosted decision trees

through AdaBoost. AdaBoost applied classification through the sum of the predictions

from an ensemble of decisions trees each with a single split. They used GridSearchCV

to tune hyperparameters such as the size of the ensemble and the learning rate. They

experimented with several sets of features. The first set was chosen to match the

feature set of the PPM model they were improving on which included flare X-ray peak
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flux, integrated X-ray flux, presence of a type II radio burst, and presence of a type IV

radio burst. In the second set, additional features were added including flare location,

flare integrated flux, and flare X-ray temperature and emission measure.

Kahler and Ling [5] revisited prior studies of X-ray measurements in 0.05-0.4nm

and 0.1-0.8nm bands and their application to >10 MeV SEP forecasting. The authors

noted that X-ray flare events typically preceded CME events which can drive SEP

events and have shorter time scales making them standard for SEP forecasting. After

making observations about the relations between the ratio of the different X-ray bands

and the location of the flare source to SEP occurrence, they used observed peak flux

ratios from events in the western hemisphere of the sun as input features into their

classification techniques. They applied multi-layer perceptron and k-nearest-neighbor

classification techniques to classify events as either SEP or No-SEP.

Kasapis et al. [7] evaluated the potential use of Space-Weather MDI Active Region

Patches (SMARP) related to solar flares to predict > 10 MeV SEP events. They com-

pared their predictive potential with the baseline use of two other features: solar flare

peak intensity and flare location. They applied two groups of ML algorithms. The

first group was variations of Support Vector Machines (SVMs) originally designed to

solve binary classification problems. SVMs map an input feature vector to a higher

dimensional space forming a trained weight vector using a user-defined kernel. They

used four different kernels: linear, second order polynomial, third order polynomial,

and Gaussian Radial Basis Function (RBF). They used cross-validation to mitigate

overfitting. A regularization parameter, C, controlled the scale of the SVM loss func-

tion which they varied. The second group was linear models i.e. regression methods

where the target value is the linear combination of input features. A threshold value

was used to classify the regression output. One linear model they applied was the

ridge regression algorithm which minimized the Least Squares loss function with an
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additional hyperparameter controlled penalize term applied to the size of the coeffi-

cients. For this method, they did not apply cross-validation due to non-significant

selection bias in their training data random picking process. Another linear model

they applied was Logistic Regression which included ℓ2 regularization as a penalty

and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization

algorithm as a solver. This model had a constant hyperparameter that controlled its

regularization strength which they varied. For data construction, they utilized under-

sampling to form balanced training and test sets. They repeated constructing balanced

training and testing pairs 100 times with negative samples randomly sampled without

replacement and positive samples randomly sampled with replacement with different

training/test splits. This was to guarantee with probability almost 1 that they covered

the best and worst cases for their metrics.

2.1.2 Using Characteristics of CMEs

The main catalogs of data for CMEs included the SOHO LASCO CME Catalog at

CDAW and Space Weather Database Of Notifications, Knowledge, and Information

(DONKI) at CCMC. These works pulled raw features from either one or both catalogs

and created derived feature values to use alongside.

Richardson et al. [15] assessed whether a formula created by Richardson previously

that predicted peak intensity of 14- to 24-MeV protons in an SEP event at 1 AU to the

solar event location could be used to predict the SEP intensity at any location at 1 AU.

Richardson cited many patterns that had been identified in the properties of CMEs that

were related to SEPs. For example, there was a widely reported correlation between the

peak intensity of an SEP event and the expansion speed of its related CME. Conversely,

the intensity tended to decrease as the connection angle increased between the related

solar event and the magnetic field line that linked the observing spacecraft to the sun.
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Other influences included, but were not limited to, occurrence of preceding CMEs and

variations in the seed particle population for acceleration remaining from previous solar

events. None of these patterns could perfectly predict the peak intensity of SEP events.

The equation created by Richardson previously used the connection angle and speed of

a CME to estimate a predicted peak intensity value. They calculated the peak intensity

using Richardson’s formula on CMEs collected from the DONKI catalog in a carefully

chosen timeframe when the spacecraft observers were approximately equally spaced in

longitude around the sun. They attempted to reduce the number of false positives they

observed through filtering events based on speed and width. They experimented with

including the type II radio emissions accompanying the CMEs which were believed to

be evidence for particle acceleration at CME-driven shocks. Then, they experimented

with including type III radio emissions usually associated with SEP events since large

SEP events were almost always associated with bright, long-lasting type III emissions.

Type III emissions were characterized in two ways. The first way was by its visual

effect which split the CMEs into four groups: no type III, weak, moderate, and bright.

The second way was by the duration for which the type III emission intensity was >6

dB accompanying each CME. Some of the events included in their dataset were used

during the creation of the Richardson equation in the first place which made their

results not completely independent. Therefore, they also experimented with applying

the formula to an independent sample of CMEs from the CDAW catalog with filters

for a minimum width and speed. They filled in missing longitude values through an

automated procedure that compared CDAW CME parameters to NOAA flare reports

with various considerations.

Bruno and Richardson [3] developed an empirical model using a 2-dimensional

Gaussian to predict 10-130 MeV protons at 1 AU. They formulated that the inten-

sity can be represented by the maximum intensity of the event E, Φ0(E) and the 2D
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Gaussian, G(E, δ):

Φ(E, δ) = Φ0(E)G(E, δ) (2.1)

where δ is the connection angle. Connection angle was calculated from the longitude

and latitude of the event and the latitude and longitude of the SEP distribution peak.

Tarsoly [18] created a merged CME dataset and studied forecasting 10 MeV SEP

events. To form the merged CME dataset, they matched CME events between the

DONKI CME catalog containing measurements gathered with Sun-centric instruments

and the CDAW CME catalog containing measurements gathered with Earth-centric

instruments. In comparison, the DONKI catalog was found to be more suitable to build

a model while the CDAW catalog had measurements taken from a better perspective

which was part of the motivation to match up the two catalogs. They developed a

matching algorithm handling cases from the ideal case of a one-to-one match to the

less ideal cases such as multiple entries in either catalog or missing entries in CDAW.

The final dataset contained a ratio of 60:1 non-SEP to SEP events. They then leveraged

this catalog to forecast 10 MeV SEP events. They built off the work of Torres [21] by

applying additional machine learning techniques. They explored classifier re-training

(cRT) to separate learning the representation and classification of SEP events in two

stages instead of jointly. They augmented cRT with the autoencoder technique they

called cRT+AE. The autoencoder technique was supposed to help by learning new

features from the data through an encoder and decoder pair. In the joined technique,

there were two stages. In the first stage, they had two branches, the autoencoder

branch and the classifier branch, whose loss functions were combined with a weighted

sum controlled with a hyperparameter α. In the second stage, the autoencoder branch

was discarded, the representation was frozen, and they reinitialized and relearned the

classifier. To overcome the imbalanced dataset, they used oversampling throughout
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their techniques.

Thomas [19] studied predicting the intensity and times of 10 MeV SEP events.

They used the imbalanced dataset composed by Tarsoly[18]. Their initial approach

used random oversampling of SEPs to overcome the imbalance in the dataset. They

further experimented with additionally randomly oversampling high-speed and large

width Non-SEPs after observing that higher predicted events had similar features. By

oversampling the Non-SEP instances in particular, they hoped to reduce their erroneous

prediction since there would be more examples of Non-SEPs with those features. For

their next approach, they adapted cRT to regression tasks and augmented it with an

autoencoder which they called rRT+AE. The rRT+AE method had two stages. In

the first stage, there were two branches: one branch was the autoencoder branch, and

the other branch was the regressor branch trying to predict the peak intensity. In the

second stage, the autoencoder branch was discarded, the representation was frozen,

and they reinitialized and relearned the regressor. Their final approach was called

adaptive calibration which was also adapted to regression from a classifier technique.

This technique had three stages. The first stage was the same as the rRT+AE method,

and, from it, they extracted the representation frozen for use in the next stage. In the

second stage, they added two regression layers forming two branches. One branch was

trained on a uniform training distribution to learn a regressor that performs well on

most of the instances in the uniform distribution. The other branch was trained on

an oversampled distribution to perform well on the minority instances. The weights

from these layers at the end of training were frozen. In the third stage, they added a

third branch which learns a calibration value from the internal representation form of

the input. The calibration value is then used in the weighted sum of the frozen two

branches from the second stage. They applied these same techniques to predict the

time it takes for an event to reach threshold and peak intensity.
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2.1.3 Using Characteristics of Other Space Weather Phenom-

ena

These other works either used multiple of the previous categories or used other space

weather phenomena to perform SEP predictions. The features were derived from a

variety of sources such as flux of protons and radio waves and combinations of the

previous features in solar flares, x-ray, and CMEs.

Kim et al. [8] applied an artificial neural network (ANN) and a genetic algorithm

(GA) to predict >10 MeV SPE events using solar radio flux (SRF) at 2800 MHz, 1415

MHz, and 610 MHz from 1976-1994. SPE is an older term for SEP. Their ANN design

had 3 hidden layers fed by two input features consisting of overall rate of increase and

daily total SRF. The first hidden layer used a tan-sigmoid activation function, the

second hidden layer used a log-sigmoid activation function, and the third layer used a

linear transfer activation function. The output was the number of SEPs predicted. For

the GA input, they normalized the values of daily totals SRF at 2800, 1415, and 610

MHz between 0 and 1. They used the overall equation from the ANN approach, from

the input to output layers with successive weight and activation function applications,

as the fitness function to be minimized in GA. They applied the GA to find optimum

parameters for predicting SPEs from SRF.

Torres et al. [20, 21] accomplished two tasks. The first task was a classification

problem forecasting SEP events. To perform this task, they aggregated features from

the CDAW CME catalog, a set of derived features, and features occurring at the time of

the CME from other sources. They submitted this aggregated feature set as one of their

main contributions. The features were fed into a multilayer perceptron neural network.

The ratio of SEP events, 1 to 300, revealed an imbalanced dataset towards non-SEP

instances. To compensate, they used oversampling to increase the relative importance
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of the SEP events. To perform analysis on the features that contributed to the errors

in their model, they formulated and used a feature importance algorithm based on the

learned model weights. This feature importance calculation was another contribution

of their work. The second task was forecasting SEP intensity using time series data of

electron intensities for >0.25 and >0.67 MeV channels, proton intensities from the >10

MeV channel, and program generated phases. Their time series input data included

data from the past two hours, and their output was predicting the output proton

flux either at the next hour or next half hour. Firstly, they compared the multilayer

perceptron algorithm to a recurrent neural network (RNN) which were designed for

better use with time-series data. However, there was still an imbalance in the data

which could not be addressed through methods such as oversampling. Instead, they

separated their data in two approaches into different intensity ranges with separate

models per range. In the first approach, they set high, medium, and low thresholds to

create the three groups selected through manual inspection. In the second approach,

they split labels into rising (between onset and peak), falling (between peak and end),

and background (everywhere else) for the related event timestamps using their designed

program. In another set of experiments using the three prior approaches, they added

x-ray features interpolating missing data as needed.

2.2 Machine Learning with Imbalanced Data

2.2.1 Imbalanced Classification

These works focused on machine learning techniques when performing classification

tasks on imbalanced data. When training a machine learning model, an input is en-

coded into an internal representation inside the model before a classification is output

based on that internal representation. We group these works based on how they han-
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dle training the feature representation and the classifier parts of a machine learning

network.

We first discuss the first category focused on training the two parts jointly. Zhou

et al. [28] proposed a method of learning the representation and classifier at the same

time. Their solution was offered to alleviate issues they found in the general methods

of re-balancing and re-weighting used to handle long-tailed problems. They stated that

re-balancing through over-sampling can cause over-fitting of the minority events while

under-fitting the overall data distribution. They also stated that re-weighting will

disfigure the original data distribution. Their proposed method was Bilateral-Branch

Network (BBN). It is Bilateral because there are two branches: the ”conventional

learning branch” to train the representation and the ”re-balancing branch” to train

the classifier. The conventional learning branch used a uniform sampler i.e. the orig-

inal data distribution while the re-balancing branch used a reversed sampler i.e. the

inverse of the original data distribution. The outputs of the two branches were com-

bined through a softmax classification layer with an automatically generated parameter

α based on the epoch number. The α parameter started with more weight for the rep-

resentation learning and then gradually shifted over epochs to provide more weight to

the classifier learning. Their model used this α value in their loss function to weight

the cross-entropy loss from each branch in a linear sum. After training, α was set to

0.5 during testing since both branches were equally important.

Wang et al. [23] questioned whether the typical cross-entropy loss function was ideal

for learning features from an imbalanced dataset for classification. They proposed a

custom network structure with two branches. The first branch learned the representa-

tion, i.e. the features, using a contrastive loss function. The goal was that instances

in the feature space should be close to other instances of the same class while far from

instances of other classes. The input to the first branch was an anchor point with
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positive samples from the same class and negative samples from other classes. The

second branch learned the classifier using a cross-entropy loss function. The input to

the second branch was image and label pairs class-sampled. The two branches shared

an initial backbone network to learn the representation vector, r, of an image input,

x. In the first branch for feature learning, the representation vector, r, was mapped

to a vector representation, z, through a nonlinear multiple-layer perceptron with one

hidden layer. The ℓ2 normalization was applied to z before being fed to a supervised

contrastive loss function. They identified a memory consumption issue when applying

the supervised constrastive (SC) loss function linear to the product of the number of

positive and negative samples included. To resolve this issue, they proposed a loss func-

tion called prototypical supervised contrastive (PSC) loss. In PSC, their goal was to

learn a prototype for each class and force the representation of samples in that class to

be close to their class prototype and far away from the prototypes of the other classes.

They also generalized PSC to multiple prototype supervised contrastive (MPSC) loss

to support multiple prototypes per class. In the second branch for classifier learning,

the representation vector, r, was fed to a linear layer to predict the likelihood that the

representation belonged to each class. These likelihoods were fed to a cross entropy

loss function. The two loss functions were combined through a parameter α calculated

based on the epoch number.

The second category focused on decoupling the training of the feature representa-

tion and the classifier training parts. Kang et al. [6] explored several techniques to

decouple the representation learning from the classifier learning for long-tailed classi-

fication including Classifier Re-training (cRT), Nearest Class Mean classifier (NCM),

τ -normalized classifier (τ -normalized), and Learnable weight scaling (LWS). They jus-

tified this decoupled approach through experimentation finding better performance

in decoupling into two stages instead of training both the representation and classifier

16



jointly for long-tailed classification. With the ImageNet-LT dataset, cRT had the high-

est long-tail recognition accuracy using most of the backbone architectures. The cRT

technique decoupled the representation learning from the classifier learning through two

stage training. In the first stage, they sampled uniformly from the dataset to train the

entire network. The outcome of the first stage was a model that had learned the repre-

sentation of the data through the encoded trained weights. The representation weights

were then frozen for use in the second stage. Since these weights were frozen, during

the second stage training they were not updated through gradient backpropagation.

In the second stage, the classifier weights were randomly re-initialized, and the model

was provided a class-balanced dataset to optimize the classifier. The class-balanced

dataset was generated through over or undersampling to equalize the representation

of all classes. This equal representation helped equalize each class’s influence on the

backpropagated gradient during classifier training.

Zhang et al. [26] explored two-stage learning starting with an ablative study into the

two stages. For the first stage when learning the representation, they found instance-

based sampling produced better results and that learning the features can lead to large

performance gain. For the second stage when learning the classifier, they explored

methods such as cRT and found a large performance gap from the ideal classifier.

They posited this performance gap could be shortened by adjusting the distribution of

the dataset in the second stage. They proposed their own two-stage learning scheme.

Their first stage learned the features of the data using the imbalanced dataset with

instance-balanced sampling. In the second stage, they froze the representation and

introduced two techniques. In the first, an adaptive calibration function calculated the

weighted sum of the original class score from the first stage and a transformed class

score to provide the final output classification vector. The transformed class score

was the original class score adjusted by a linear equation with calibration parame-
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ters learned for its class. The weight for the linear sum of these scores was a defined

confidence score function σ(z) implemented in a linear layer followed by a non-linear

activation function trained during the second stage. The confidence score was thus

tuned to the feature representation z provided by the frozen representation from the

first stage for its associated input x. The calibrated class scores were combined to form

a predicted distribution for the model. The second technique they termed ”General-

ized Re-weighting” was a method for re-weighting the classes in the loss function. The

predicted distribution from their first technique is aligned with a reference distribu-

tion chosen by the model trainer which they suggested should favor a class-balanced

distribution. The alignment is done through minimizing the expected KL-divergence

between the predicted distribution and the reference distribution.

Zhong et al. [27] discovered that models trained on long-tailed datasets and two-

stage models were over-confident, and classification models tended to inaccurately label

minority classes. They measured overconfidence through the widely used expected

calibration error (ECE), the difference between the accuracy of the model and the

model’s confidence in its predictions. They first applied mixup with two-stage models

such as cRT which helped lower the over-confidence with representation learning, but it

had no effect or, if there was an effect, it was negative with classifier learning. Although

they do not specify, mixup comes from Zhang et al. [25] who proposed a method of data

augmentation by combining the input vectors and labels of pairs of samples through

weighted linear sums. The samples generated by mixup encourage the model to perform

linearly in-between actual training samples. Zhong et al. proposed a Mixup Shifted

Label-Aware Smoothing model (MiSLAS) to address the issues of over-confidence and

limited improvement in the classifier learning from mixup. This technique introduced a

scaling term in the cross-entropy loss function per class. They required that the scaling

term would be inversely proportional to the number instances in its class to resolve the
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disparity of much larger weight norms for majority classes vs minority classes. They

also introduced a shift learning strategy for two-stage model training after showing

a unreasonable comparison of statistics such as mean and variance between different

amounts of class-based oversampling.

2.2.2 Imbalanced Regression

These works focused on machine learning techniques for regression tasks with imbal-

anced datasets. Their implemented approaches corrected the imbalance in some way.

We first discuss the first category focused on balancing the loss function. Steininger

et al. [17] introduced a sample weighting approach called DenseWeight which they

included into a cost-sensitive learning approach called DenseLoss. These were meant

to be used with imbalanced regression datasets. DenseWeight used the distribution

of the target values to weight rarer samples higher in the loss function than the more

common samples. The weights were applied per sample, so samples within the same

class such as outlier rare events had even higher weights than other rare samples with

lower target values. To calculate the DenseWeight, they started by estimating the

target value distribution using kernel density estimation. Then, they normalized the

density value into the range [0, 1]. Next, they ensured that the weights did not get

smaller than a small positive constant ϵ. Finally, they made the mean weight 1. In

DenseLoss, the loss per sample was calculated using the user-selected original metric

weighted by its DenseWeight. They used a parameter α to manipulate how much

DenseWeight was applied.

Ren et al. [13] performed a statistical analysis of Mean Squared Error (MSE), the

standard loss function in regression, and found it will cause regressors to underestimate

rare labels. They proposed Balanced MSE which used the training label distribution

to create a balanced prediction across labels. They defined Balanced MSE as the sum
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between standard MSE and a balancing term which contains an integral weighted by

the training distribution. They showed through proof a unified statistical view of im-

balanced classification and regression through their definition of Balanced MSE. They

also showed closed-form calculations of the integral in their Balanced MSE definition.

The first they called GMM-based Analytical Integration (GAI) where GMM stands for

Gaussian Mixture Model. This approach required expressing the distribution of the

training labels as a Gaussian. To remove this constraint, they also offered closed-form

solutions based on the Monte Carlo Method (CMC). The first was called Batch-based

Monte-Carlo (BMC). BMC employed a tunable parameter with random batches to

calculate a closed-form solution within each training batch. The second was called

Bin-based Numerical Integration (BNI) which divided the label space into evenly dis-

tributed bins before applying KDE to estimate the label distribution per bin to form

the closed-form solution. There was a hyperparameter in their integral, σnoise, that

they optimized by making it learnable.

The second category involved balancing the feature space. Yang et al. [24] iden-

tified three major challenges in imbalanced regression tasks. The first was with the

continuous nature of target values there is a lack of hard boundaries separating them

into classes making it difficult to adapt techniques such as re-weighting or re-sampling

from imbalanced classification tasks. The second was that metrics calculated with con-

tinuous target values such as distance have impact on how imbalance is measured. The

third was possible missing data motivated the application of strategies such as inter-

polation or extrapolation. To address these challenges, they proposed two techniques.

The first technique they termed label distribution smoothing (LDS). They applied a

symmetric kernel function to the label density distribution. The produced smoothed

label distribution was closer aligned to the similarity of the continuous target values

whose data samples likely had some overlap e.g. images of close ages. This allowed
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them to apply techniques such as re-weighting for addressing the remaining issue of

the imbalanced dataset directly as LDS did not alone fix it. The second technique they

termed feature distribution smoothing (FDS). FDS was motivated by the assumption

that the output was continuous, so the feature space should also be continuous. Thus,

by collecting the feature mean and variance and applying a smoothing kernel function,

a new smoothed representation could be generated. The FDS technique sat as an extra

layer between the last representation layer and the output layer calculating the evolv-

ing smoothed statistics to adjust the internal representation before sending it to the

output regression function.

Gong et al. [4] proposed a RankSim regularizier on the intuition that, for regres-

sion problems, the natural order of the target values should be reflected in the feature

representation. They gave the example of age as target value, and they state that

the feature representation of a 21-year-old should be closer to that of a 25-year old

rather than a 70-year old. They started outlining their RankSim method by defining a

ranking function through a minimizer of a linear combinatorial objective to ensure that

backpropagation could be applied using a tunable gradient of continuous interpolation.

They obtained a pairwise similarity matrix in the label space by applying a similarity

function on the labels in a subset of all samples, and they obtained a pairwise similarity

matrix in the feature space by applying a similarity function to the feature represen-

tation of the elements in the subset. They ranked each similarity matrix using their

ranking function. They defined their loss function as the sum of the loss between the

ranks in label and feature space. This effectively encouraged the sorted list of labels

to match the sorted list of features as closely as possible. This method does not fix

the imbalanced dataset issue, so they applied it to existing methods such as rRT, LDS,

and FDS.

The third category focused on balancing the input data. Moniz et al. [10] adapted
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the SMOTEBoost approach originally designed for classification tasks to imbalanced

regression. They first defined a relevance function that mapped target values into

the range [0, 1] with the value 1 indicating the most relevant and 0 indicating the

least relevant. They then augmented four different boosting algorithms with SMOTE.

With some modifications per algorithm, in each iteration, the current distribution of

samples was augmented with new synthetically highly relevant examples generated

using SMOTE. A new model was generated from this distribution. The error was then

calculated as the sum of the weights in samples with high relative error between their

predicted and actual target values. This error becomes part of the update parameter

applied to the current distribution for use in the next iteration. The output is the

weighted sum of all the model predictions, one per epoch, with weights proportional

to a function of their error rates on the training set.

2.3 Explaining Predictions and Models

Ribeiro et al. [14] outlined solutions for ”trusting a prediction” and ”trusting a model”.

For the former solution, they introduced Local Interpretable Model-agnostic Explana-

tions (LIME) to identify an interpretable model over a interpretable representation that

is faithful to the classifier. An interpretable model could be understood by humans.

Similarly, an interpretable representation was an encoding that can be understood by

humans while the representation of the actual model may be more complex and in-

comprehensible. The model-agnostic part meant they made no assumptions about the

model they were explaining. To learn the local behavior of the model around an in-

stance, they generated samples around the instance to form a linear fit that was locally

faithful. The output was a set of local feature importance weights for the given sample.

For the latter solution, they looked for a global view of a model by explaining a set
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of instances. The pick algorithm they initially defined was NP-hard, so they intro-

duced submodular pick (SP-LIME) with a greedy algorithm that iteratively added the

instance with the highest marginal gain to the solution. Once they had a set of in-

stances, they used their former solution to generate the local importance of the features

of each instance. They let Ij denote the global importance for feature j and Wij denote

the local importance for instance i of feature j. They wanted the global importance of

features present in many instances to be be higher than other features not present in

many instances. They also did not want to select instances with similar explanations

to avoid redundancy. To calculate global importance Ij for some feature j, they used

the equation:

Ij ←

√ N∑
i=1

|Wij| (2.2)

where an instance i had local importance for feature j represented by the value Wij

and where N was the number instances.
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Chapter 3

Description of SEP and CME Data

Our dataset includes CME events from two sources: SOHO LASCO CME Catalog

at CDAW and Space Weather Database Of Notifications, Knowledge, and Informa-

tion (DONKI) at CCMC that span from 4/3/2010 to 9/6/2017. Previously, Tarsoly

matched up the CME events from the CDAW and DONKI catalogs to form a cohesive

dataset [18]. Tarsoly’s dataset for CMEs associated with SEPs with >10 MeV protons

was already an imbalanced dataset with SEP events occurring very rarely compared

to Non-SEP events. From Tarsoly’s dataset, our dataset for CMEs associated with

100 MeV SEP events was derived and formed a more imbalanced dataset. Tarsoly’s

dataset included 44 SEP events, 39 Elevated events, and 2309 Background events vs

our dataset with 13 SEP events, 16 Elevated events, and 2256 Background events as

summarized in Table 3.1. The reduced number of SEP events (from 44 down to 13)

makes the dataset more imbalanced and the forecasting of 100 MeV SEP events more

difficult. To augment these sparse SEP events whose peak intensity of 100 MeV pro-

tons are ≥1 pfu, we identified Elevated proton events as those whose 100 MeV protons

peak intensities are between 1/e2 and 1 pfu and added them to the dataset.

Within the problem of classification, we distinguish between two classes: SEP and
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Table 3.1: Distribution of 100 MeV SEP, Elevated, and Background CME events.

Event Category Peak Intensity (pfu) Number of Instances Percentage

SEP ≥ 1 13 0.57
Elevated > 1

e2
and < 1 16 0.70

Background 1
e2

2256 98.73

Non-SEP. The Elevated and Background event categories are combined together to

form the Non-SEP events. Therefore, if a CME event is an SEP event, then it has a

value of 1, but if a CME event is a Non-SEP event then it has a value of 0.

Within the problem of regression, we are predicting the ln peak intensity of 100

MeV protons of each event. We have the peak intensity values for each CME, so we

take the ln to form the ln peak intensity per CME.

In both the classification and regression problems, we have a set of input features.

We used similar features to Torres [21], Tarsoly [18], and Thomas [19]. There are

features that come from the DONKI and CDAW catalogs directly. There are a set of

features derived using the raw DONKI and CDAW values. Finally, there are features

from outside the DONKI and CDAW catalogs.

3.1 Features from DONKI and CDAW CME Cat-

alogs

From the DONKI catalog, we included the following features:

• Latitude

• Longitude

• Half Width

• Linear Speed
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From the CDAW catalog, we included the following features:

• Acceleration

• 2nd order speed final

• 2nd order speed at 20 solar radii

• Central Position Angle (CPA)

• Measurement Position Angle (MPA)

• Whether or not the CME is a Halo (CPA = 360°)

3.2 Features derived from DONKI and CDAWCME

Catalogs

Tarsoly [18] and Thomas [19] calculated a set of features calculated from the past

CMEs they called the CME History features. We calculated the same history features

for our dataset. Specifically, the history features include:

• Number of CMEs in the Past Month

• Number of CMEs in the Past 9 Hours

• Number of CMEs with Speed over 1000 km/s in the past 9 Hours

• Maximum Speed for a CME in the Past Day

The speed referenced in the speed history features is the DONKI speed.

We calculated additional features following along with Thomas [19].

• V Log V
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• Richardson’s equation

• Diffusive Shock

The V Log V feature is exactly what it sounds like and is derived from the DONKI

speed:

featureV LogV = V ∗ ln(V ) (3.1)

Richardson et al. modeled peak intensity of CMEs from the CDAW catalog with

proton intensities from 14- to 24-MeV [15]. We used part of Richardson’s equation as

one of the input features. For more details of our Richardson feature see Appendix A.

Torres outlines the calculation for Diffusive Shock in their Appendix A [21]. We

adapted the Diffusive Shock equation by replacing some of the constants with the

appropriate values for our dataset. For more details of our Diffusive Shock feature see

our Appendix B.

3.3 Features from outside DONKI and CDAWCME

Catalogs

We have additional features from outside the DONKI and CDAW catalogs:

• Daily Sunspot count

• Type II visualization area

The Daily Sunspot count was directly linked by DONKI entry and was provided by

the Solar Influences Data Analysis Center [16].

Type II visualization area was calculated from the CDAW catalog of Type II bursts

associated with timestamps of CME events. The Type II visualization area is the
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difference in start and end time for the Type II bursts in minutes multiplied by the

difference in the starting and ending frequency of Type II burst in kHz.

3.4 Feature value adjustments

Almost all the raw feature values drawn directly from the DONKI and CDAW catalogs

were the original, unchanged values reflected in their respective catalogs. However,

under expert guidance, we made a few adjustments to specific events based on careful,

individual analysis. The motivation and summary of these adjustments is summarized

in Appendix C.

3.5 Normalization of features

Before being passed into a neural network, each feature, f , is scaled into the range [0, 1]

to avoid biasing the network with features that have large values using the following

equation:

fi =
fi − fmin

fmax − fmin

, (3.2)

where the feature f has value fi in CME event i, fmin = min(fi), and fmax = max(fi).

For the Diffusive Shock and Type II Area Visualization features, we took the log before

normalization, that is using ln(fi) instead of fi in Equation 3.2 and when calculating

fmin and fmax. The difference between the maximum and minimum Diffusive Shock

was on the order of 10−13, and the difference between the maximum and minimum Type

II Area Visualization was on the order of 107. Without the log before normalizing, the

values for the events on the lower end of the ranges for these two features would become

insignificant which is not desired during normalizing.
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Chapter 4

Forecasting SEP Events

The first problem that was studied in this work was classifying a CME event as an SEP

or a Non-SEP event using its set of input features as outlined in Chapter 3. An SEP

event is a CME with 100 MeV protons whose peak intensity has a value ≥1. These

events are of particular importance because they cause the most damage if undetected.

4.1 Approaches

All neural networks were implemented using Keras on top of TensorFlow. All neural

networks use a sigmoid activation function to output a prediction, p, in the range [0, 1]

predicting if the event is considered an SEP event. For each technique, we select the

threshold, t, that maximizes the performance. An event, i, is predicted to be an SEP

event if pi ≥ t.

4.1.1 Regular Neural Network with Oversampling (cRegNN)

The regular neural network is a multi-layer Leaky ReLU classifier using 2 hidden layers.

Figure 4.1 depicts the architecture of the network. We use the binary cross entropy
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(CE) loss function during training:

LCE = −ylog(ŷ)− (1− y)log(1− ŷ), (4.1)

where y is the observed class, and ŷ is the predicted score between [0, 1]. We find a

threshold, t, during evaluation that transforms the predicted score, p, into 1 if p ≥ t

or 0 otherwise. In our case, a prediction of 1 indicates a CME is an SEP event and a

prediction of 0 indicates a CME is not an SEP event. The first instance was run with

the original, imbalanced dataset.

Figure 4.1: Network Architecture for cRegNN.

We next explored oversampling the minority SEP and Elevated events to improve

performance. Events are duplicated by replicating them until a certain percentage of

duplication is achieved. For example in 10% oversampling, 5% of the samples are SEP

events, 5% of the samples are Elevated events, and 80% of the samples are Background

events. We abuse the notation to say 0% oversampling is the original, imbalanced

dataset. The network architecture is the same as in Figure 4.1, but the training data

is oversampled to increase the importance of the SEP and Elevated events.
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4.1.2 Classifier Re-training (cRT)

We also explored a technique called classifier re-training (cRT) [6]. This technique

separates training into two stages. In the first stage, the NN model is trained on the

original, imbalanced dataset to learn the features in the hidden units. Then, all but the

output layer is frozen and reused along with an extra hidden layer and a reinitialized

and retrained output layer in the second stage which is trained using a class-balanced

dataset to learn the classifier. Figure 4.2 illustrates the two stages. The green section

is frozen and reused from stage 1 to stage 2. The orange section is retrained and

reinitialized in stage 2.

Figure 4.2: Network architecture for cRT.

4.1.3 Classifier Re-training with Autoencoder (cRT+AE)

First, an overview of the autoencoder. The autoencoder model consists of the encoder

and decoder parts. The encoder transforms the input into an intermediate represen-

tation in the model. The decoder transforms the intermediate representation to the
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original input. Figure 4.3 illustrates the autoencoder architecture. To train the au-

toencoder, we use the mean square error (MSE) loss function:

LMSE =
1

N

N∑
n=1

(x− x̂)2, (4.2)

where N is the number of training samples, x is the input vector, and x̂ is the output

of the autoencoder. The autoencoder’s encoded intermediate representation, here the

z-layer, holds new features based on the training data.

Figure 4.3: Network architecture for the Autoencoder model.

Tarsoly proposed a combination of cRT and autoencoder called cRT+AE [18]. We

adapt his technique to our model with a few modifications. We use a joint loss function

with the α tunable parameter, but only with one of the functions:

LcRT+AE = LCE + αLMSE (4.3)

The goal is to estimate an α value to roughly equalize the influence of both the au-
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toencoder and classifier branches. Our network architecture of the cRT+AE approach

is very similar structurally to Tarsoly’s as illustrated in Figure 4.4. To learn the α

parameter, we train the autoencoder and classifier branches illustrated in Figure 4.4

separately and then combine their errors:

α =
1

N

N∑
n=1

LCEn

LMSEn

, (4.4)

where N is the number of epochs, LCEn is the binary cross entropy loss for epoch n,

and LMSEn is the mean squared error loss for epoch n.

Figure 4.4: Network architecture for cRT+AE.

With the α value estimated, we train the cRT+AE network in two steps. In the first

step, we train the network shown in Figure 4.4 using the original, imbalanced dataset.

The goal of the first step is to learn the features of the input data which will be preserved

in the z-layer like the cRT method. In the second step, the Decoder/Autoencoder

branch is discarded, the layers from the InputLayer up to the z-layer are frozen and

reused, a new hidden layer is inserted between the z-layer and the Classifier, and the

Classifier layer is reinitialized and retrained. The resulting network architecture is the
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same as the second stage of cRT, and we use an oversampled dataset for training.

4.2 Experimental Evaluation

4.2.1 Evaluation Criteria

We split data into two classes, SEP and non-SEP, based on their actual peak intensity.

If a CME event has a peak intensity ≥1 pfu, then we classify it as an SEP event. All

other events are non-SEP events. The classification models use a sigmoid activation

function which outputs a prediction, p, that a CME event is an SEP event. With a

threshold, t, we can classify the output as SEP if p ≥ t. Therefore, the CME events

that are classified as SEP events and have a prediction p ≥ t are ”true positives”. The

same CME event classified as an SEP event would be a ”false positive” if its prediction

p < t. The confusion matrix is displayed in Table 4.1.

Table 4.1: Confusion matrix for classification tasks.

Prediction p ≥ t Prediction p < t

Actual Peak Intensity ≥1 True Positive (TP) False Negative (FN)
Actual Peak Intensity <1 False Positive (FP) True Negative (TN)

From the confusion matrix categories, we define a set of metrics beginning with

precision and recall. Let TP be the number of true positives, FP be the number of

false positives, TN be the number of true negatives, and FN be the number of false

negatives then:

precision =
TP

TP + FP
(4.5)

recall =
TP

TP + FN
(4.6)

Precision measures the fraction of correctly identified SEP events over all SEP event
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classifications. Recall measures the fraction of correctly identified SEP events over all

actual SEP events. A combined metric, F1-Score, gives an insight into a measure of

the algorithm’s performance on both measurements.

F1 = 2× precision× recall

precision+ recall
=

TP

TP + 1
2
(FP + FN)

(4.7)

We add an additional metric used in the astrophysics community for binary classifi-

cation problems: the true skill statistic (TSS). TSS is defined as the difference between

the true positive rate (TPR) and the false positive rate (FPR). TSS measures the trade-

off when more events are classified as true positives which is typically accompanied by

an increase in the number of false positives.

TSS =
TP

TP + FN
− FP

FP + TN
= TPR− FPR (4.8)

The final metric we use to measure performance is the Heidke-Skill Score which

measures how well the model performs relative to a random selection. A score of

0 indicates the model is not better than random. A score <0 indicates worse than

random while a score >0 indicates better than random.

HSS =
2(TP · TN − FP · FN)

(TP + FP )(FP + TN) + (TP + FN)(FN + TN)
(4.9)

These are the same metrics as used in Thomas [19]. Thomas proved that HSS

reduces to the F1-score when the number of true negatives is much greater than the

other values in the confusion matrix.
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4.2.2 Evaluation Procedures

Our dataset is composed of 13 SEP events, 16 Elevated Events, and 2256 Background

events. Due to the small number of SEP samples, 3-fold cross validation was applied.

To form the 3-folds, we used stratified sampling based on the ln Peak Intensity to

ensure an equal distribution of events between the training, validation, and test sets.

From the sorted list of events by ln Peak Intensity, we used buckets of 6 samples which

were then split randomly with 3 samples going to the training set, 1 sample going to the

validation set, and 2 samples going to the test set. The 3-fold datasets are summarized

in Table 4.2.

In Table 4.2, the number of elevated training, validation, and test events and SEP

training, validation, and test events are not the same across the 3 fold groups, but they

do still add up to the correct total. This is because of how we split up the SEP and

Elevated events. There are 29 SEP and Elevated events combined which means there

are 4 groups of 3/1/2 (training/validation/test) with 5 events left over. The concept

of 3-fold cross validation is every sample is in exactly one of the test sets. Therefore,

the last 5 events are split 2/1/2, 2/1/2, and 3/1/1 between the first, second, and third

fold respectively. Since we apply stratified sampling based on ln Peak Intensity across

SEP and Elevated events combined, 1 of the 5 events is an SEP event and the rest are

Elevated events. Based on which group, training/validation/test, the SEP randomly

ends up, we generate different combinations of training, validation, and test sets across

the 3-fold cross validation.

Each fold is composed of three sets: the training set, the validation set, and the test

set. The training set is used as input into a machine learning model during training.

The output of the model is compared to the actual target value using a loss function

such as binary cross entropy. The loss is then back-propagated through the layers of
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Table 4.2: Distribution of events in our 3-fold data sets.

Fold Type Training Set Validation Set Test Set Total

1 Background 1240 340 676 2256
1 Elevated 8 3 5 16
1 SEP 6 2 5 13

2 Background 1240 340 676 2256
2 Elevated 7 3 6 16
2 SEP 7 2 4 13

3 Background 1240 340 676 2256
3 Elevated 8 3 5 16
3 SEP 7 2 4 13

the network using batch stochastic gradient descent using Equation 4.10.

∆w = −η∇L (4.10)

where w are the weights of the last layer of the model, L is the loss calculated for a

batch of inputs, and η is the learning rate. The learning rate is a hyperparameter.

Selecting a large learning rate increases the rate at which the model converges, but, if

too large, can prevent convergence. Selecting too small of a learning rate can result in a

model getting stuck in local minimums, and it takes longer to converge. The validation

set is used to evaluate the model’s performance during initial training. During initial

training, the model does not see the validation set. Every epoch, the model is trained

using the training set, and the loss is calculated from the validation set. The training

error will continue to decrease, but the validation error usually forms a V shape where

it decreases to a minimum before increasing. Continuing to train the model after the

minimum validation error can cause overfitting. Using the validation set, we find an

optimal epoch number for actual training. During actual training, we combine the

training and validation sets together into one training set and train up to the found
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epoch number.

All neural networks are run 5 times with different random initializations of the

neural network weights for an optimal number of epochs. The optimal number of

epochs was found from an initial run with a validation set. Metrics are calculated in

each of the 5 runs. The final metrics supplied in the results are the average over the

5 runs. This approach helps justify the results as not caused by the lucky or unlucky

initial random initialization of weights and to help avoid finding local minimum during

training.

After a technique is run 5 times to the optimal epoch number, we tested threshold

values from 0.1 to 0.9 in 0.1 increments to find the best performing threshold in the

average F1 score performance over the 5 runs. The threshold value, t, is used to

classify the model’s output, p, in the range [0, 1] to a classification SEP if p ≥ t or to

a classification non-SEP for p < t.

Unless otherwise specified, all unmentioned parameters were the default values in

the keras Tensorflow library.

4.2.2.1 Procedures for Training Regular Neural Network with Oversam-

pling

This approach included varying an oversampling percentage from 0%, i.e. the original,

imabalanced dataset, to 90% in 10% increments forming 10 different networks. To

initialize each model, we used a random uniform initializer between -0.05 and 0.05. We

used an Adam optimizer with a learning rate of 0.001 and Adam epsilon 1.0. Hidden

layers used the LeakyReLU activation function with an alpha of 0.3. The optimal epoch

number varied per oversampling rate. We summarize the epoch numbers in Table 4.3.
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Table 4.3: Epoch counts for cRegNN, cRT, and cRT+AE techniques used per over-
sampling percent.

Oversampling Percent cRegNN cRT cRT+AE

0 7683 N/A N/A
10 2422 913 1029
20 2042 671 1262
30 1612 704 1828
40 1284 524 1070
50 1029 470 785
60 800 400 617
70 602 342 429
80 408 238 263
90 215 115 122

4.2.2.2 Procedures for Training cRT

Classifier retraining included two steps. The first step was completed by recalling the

trained model from the Regular Neural Network with 0% oversampling. We took that

model and froze and reused the layers up to the z-layer, added a new hidden layer,

and then reinitialized and reused the output layer in the second step. Like the Regular

Neural Network with Oversampling, this approach used an oversampled dataset in

the second step which varied from 10% to 90% in 10% increments forming 9 different

networks. The weights were initialized using a random uniform initializer between -

0.05 and 0.05. We used an Adam optimizer with a learning rate of 0.001 and Adam

epsilon 1.0. Hidden layers used the LeakyReLU activation function with an alpha of

0.3. The optimal epoch number in the second step varied per oversampling rate. We

summarize the epoch numbers in Table 4.3.

4.2.2.3 Procedures for Training cRT+AE

Classifier retraining with autoencoder began with estimating a suitable α value. We

trained the autoencoder and classifier branches of the cRT+AE method separately for
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50000 epochs. They both used a random uniform weight initializer between -0.05 and

0.05 and a LeakyReLU activation function on the hidden layers with alpha as 0.3.

The autoencoder branch used a Mean Squared Error loss function while the classifier

branch used a Binary Cross Entropy loss function. We combined the errors using

Equation 4.4 and found an alpha value. With the α value estimated, we trained the

cRT+AE network in two steps. For the first step, we used a random uniform weight

initializer between -0.05 and 0.05 and a LeakyReLU activation function on the hidden

layers with alpha as 0.3. The first step used the original, imbalanced dataset. We found

20788 epochs to be optimal for the first step. The first step was fully trained only once

(not 5 times), and it was used as the basis for the second step which was run 5 times

per oversampled dataset. Like the Regular Network with Oversampling and cRT, we

varied oversampling in the second step from 10% to 90% in 10% increments forming

9 networks. In the second step, we used another random uniform weight initializer

between -0.05 and 0.05 to initialize the additional hidden layer and to reinitialize the

classifier layer, and we used LeakyReLU activation functions on the hidden layers with

alpha as 0.3. The output layer used a Binary Cross Entropy loss function. The optimal

epoch number for the second step varied per oversampling rate. We summarize the

epoch numbers in Table 4.3.

4.2.3 Results

In this section, we present the results for the first fold of the 3-fold dataset. The same

training and validation sets are used across the respective techniques e.g. cRegNN

with 10% oversampling is the same training and validation sets as cRT with 10%

oversampling. The same test set was used for all approaches. Therefore, the metrics

presented below are comparable across techniques.
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Figure 4.5: F1 score vs oversampling rate for classifier techniques.

4.2.3.1 Regular NN with Oversampling (cRegNN)

Table 4.4: Summarized metric results averaged over 5 runs for the cRegNN technique
with the test set in 3-fold Dataset 1. Each row in a technique has an oversampled
dataset by some percent indicated by the trailing number after the row technique
name, e.g. cRegNN 10 is the cRegNN technique with 10% oversampling. The best
value for each metric in cRegNN is underlined. The value of the metric is in bold if it
is the best across all tested techniques.

Technique Threshold FP FN TP TN F1 HSS TSS

cRegNN 0 0.5 0.0 5.0 0.0 681.0 0.000 0.000 0.000
cRegNN 10 0.2 7.2 2.2 2.8 673.8 0.309 0.305 0.550
cRegNN 20 0.4 5.8 0.4 4.6 675.2 0.598 0.594 0.911
cRegNN 30 0.4 6.8 0.2 4.8 674.2 0.587 0.583 0.950
cRegNN 40 0.4 10.2 0.2 4.8 670.8 0.497 0.491 0.945
cRegNN 50 0.5 8.8 1.2 3.8 672.2 0.463 0.457 0.747
cRegNN 60 0.5 11.6 1.2 3.8 669.4 0.441 0.435 0.743
cRegNN 70 0.4 24.6 0.6 4.4 656.4 0.300 0.291 0.844
cRegNN 80 0.4 41.8 0.4 4.6 639.2 0.196 0.185 0.859
cRegNN 90 0.5 28.6 2.4 2.6 652.4 0.131 0.125 0.478

Table 4.4 shows the classification metrics averaged over 5 runs for the cRegNN

technique with the test set in 3-fold Dataset 1. Each row used a training set with

different amounts of oversampling. It is easy to have 0.0 FP and all 681.0 TN as seen
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in cRegNN 0 by under classifying all events. This also results in having all 5.0 FN

events as well. cRegNN 30 has the best TSS score due to the almost perfect count of

TP events. The best F1 score is cRegNN 20 which has just 0.2 more FN and 1.0 less

FP. The fractional difference in FN count is because the results are averaged over 5

runs: 2 of the 5 runs had a FN in cRegNN 20 vs of 1 of the 5 runs in cRegNN 30.

Figure 4.5 helps illustrate the effect of oversampling on the average F1 in cRegNN.

This technique has a peak at 20% oversampling with rapid decline at 10% and 20%

oversampling but a more gradual decline with high oversampling rates. Since 20% and

30% oversampling are about the same amount, it suggests that there might be an even

higher peak with an oversampling between 20-30%. We leave this for future study.

4.2.3.2 Classifier Re-Training (cRT)

Table 4.5: Summarized metric results averaged over 5 runs for the cRT technique with
the test set in 3-fold Dataset 1. Formatting is the same as in Table 4.4.

Technique Threshold FP FN TP TN F1 HSS TSS

cRT 10 0.2 11.4 0.2 4.8 669.6 0.463 0.457 0.943
cRT 20 0.3 10.4 0.4 4.6 670.6 0.467 0.461 0.905
cRT 30 0.5 5.0 1.0 4.0 676.0 0.571 0.567 0.793
cRT 40 0.5 5.8 1.0 4.0 675.2 0.541 0.536 0.791
cRT 50 0.5 7.2 1.0 4.0 673.8 0.498 0.492 0.789
cRT 60 0.6 3.2 1.2 3.8 677.8 0.641 0.638 0.755
cRT 70 0.6 5.0 1.0 4.0 676.0 0.571 0.567 0.793
cRT 80 0.6 5.2 1.0 4.0 675.8 0.564 0.560 0.792
cRT 90 0.6 5.2 1.0 4.0 675.8 0.564 0.560 0.792

Table 4.5 shows the classification metrics averaged over 5 runs for the cRT technique

with the test set in 3-fold Dataset 1. Each row used a training set with different amounts

of oversampling. The best F1 score in cRT is an improvement at 0.641 over the best

F1 score in cRegNN at 0.598, however the TP count fell by 0.8. The increase in F1

score is due to the reduced number of FP now 3.2 instead of 5.8. The tradeoff of more
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FP corresponding to more TP is well known since usually to include more TP events

you must decrease the threshold which includes more FP events. We can see that the

threshold for cRegNN 30 was lower at 0.4 vs 0.6 in cRT 60, and cRegNN 30 had more

TP and FP events. Figure 4.5 helps illustrate the effect of oversampling on the average

F1 metric in cRT. This technique has a much different distribution shape for the average

F1 score. Figure 4.5 for cRT has two peaks with the peak at 30% oversampling below

the overall peak at 60% oversampling. The 30% oversampling improved performance

is consistent with the cRegNN technique, but the higher peak at 60% oversampling is

more unique. It could be argued that the cRegNN has a secondary peak around 60%

since the F1 score does not decline as significantly for cRegNN from 50-60 as 40-50.

4.2.3.3 Classifier Re-Training with Autoencoder (cRT+AE)

Table 4.6: Summarized metric results averaged over 5 runs for the cRT+AE technique
with the test set in 3-fold Dataset 1. Formatting is the same as in Table 4.4.

Technique Threshold FP FN TP TN F1 HSS TSS

cRT+AE 10 0.1 1.4 2.4 2.6 679.6 0.496 0.494 0.518
cRT+AE 20 0.2 5.4 0.4 4.6 675.6 0.622 0.619 0.912
cRT+AE 30 0.6 2.2 1.0 4.0 678.8 0.718 0.715 0.797
cRT+AE 40 0.6 1.6 1.0 4.0 679.4 0.756 0.754 0.798
cRT+AE 50 0.6 1.6 1.0 4.0 679.4 0.756 0.754 0.798
cRT+AE 60 0.6 1.4 1.0 4.0 679.6 0.771 0.769 0.798
cRT+AE 70 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799
cRT+AE 80 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799
cRT+AE 90 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799

Table 4.6 shows the classification metrics averaged over 5 runs for the cRT+AE

technique with the test set in 3-fold Dataset 1. Each row used a training set with

different amounts of oversampling. We achieve the highest F1 score in cRT+AE 70,

80, and 90 at 0.800 vs the prior highest F1 in cRT 60 at 0.641. The threshold value

remains the same at 0.6, but we have dropped to 1.0 FP while increasing to 1.0 FN. The
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whole number of FP and FN events indicates that the results were the same across

all 5 runs. Figure 4.5 helps illustrate the effect of oversampling on the average F1

metric in cRT+AE. In contrast to the previous two techniques, the cRT+AE approach

shows a positive correlation between F1 score and the oversampling rate. This shape

was expected from all techniques since the goal of increasing the oversampling rate is

to make the minority SEP and Elevated events more and more emphasized thereby

increasing performance, but it only occurred in this technique.

4.2.3.4 Comparing the Main Approaches

Table 4.7: Summarized metric results averaged over 5 runs for the best F1 rows of the
cRegNN, cRT, and cRT+AE techniques with the test set in 3-fold Dataset 1. Row
formatting is the same as in Table 4.4. The best metric value is in bold.

Technique Threshold FP FN TP TN F1 HSS TSS

cRegNN 20 0.4 5.8 0.4 4.6 675.2 0.598 0.594 0.911

cRT 60 0.6 3.2 1.2 3.8 677.8 0.641 0.638 0.755

cRT+AE 70 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799

In analyzing the highest F1 scores across all techniques, we see an improvement from

cRegNN to cRT to cRT+AE with a maximum of 0.800 F1 and 0.799 HSS in cRT+AE

with 70, 80, and 90 oversampling. The average metrics for cRT+AE 70/80/90 were

identical, so Table 4.7 shows only the cRT+AE 70 row. However, the highest TSS

of the best F1 scores is cRegNN 20. There, the TP count indicates almost a perfect

SEP prediction across all 5 runs at 4.6, however this comes at the cost of about 6.0

FP events. In comparison, the cRT+AE 70 row has only 1.0 FP, but it also has a

solid 1.0 FN. This means we consistently missed an SEP event classification across

all 5 runs. Due to the severity of the protons, it could be more advantageous to use

the cRegNN 20 model which predicts almost perfectly the SEP events, however this
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(a) cRegNN with 20% oversam-
pling

(b) cRT with 60% oversampling (c) cRT+AE with 70% oversam-
pling

Figure 4.6: Predicted classification score vs Actual classification for cRegNN, cRT, and
cRT+AE. Events above dotted threshold line are predicted SEP events. FPs and FNs
are in the upper left and lower right respectively.

would depend on the acceptance of FPs. We do not have a threshold for how many

FPs are allowed, so we instead aim to optimize the F1 score. Therefore, we would say

that there is an improvement from cRegNN to cRT to cRT+AE culminating with the

cRT+AE 70/80/90 models performing the best.

4.2.4 Analysis

4.2.4.1 Regular NN with Oversampling (cRegNN)

The highest average F1 score for the cRegNN technique was 0.598 using 20% oversam-

pling. The average FN count was very close to but not quite 0.0. In 2 of the 5 runs, 1

of the SEP events was predicted as a FN. We illustrate the median run in Figure 4.6a.

Here, we can see there are no FN events and 6 FP events.

Table 4.8 lists a set of important features for the FP events in the cRegNN technique

with 20% oversampling. These features include the same features presented in the

DONKI catalog answering how fast, what direction, and how wide a CME. They

also include the acceleration feature which had some strong patterns across the three

techniques possibly contributing to high classifier score. To illustrate the distribution

of each feature, we include feature plots in Figure 4.7. Each feature plot shows the
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Table 4.8: The important features for the False Positive (FP) and False Negative
(FN) events for cRegNN 20 from Figure 4.6a. The features are given across the top
in abbreviated format: DONKI Date (DD), Latitude (Lat), Longitude (Lon), Linear
Speed (Spd), Half Width (Hw), Acceleration (Acc), Actual 100 MeV Peak Intensity ln
(Peak ln), Classifier Score (Score), and the Classifier Prediction (FP/FN).

DD Lat Lon Spd Hw Acc Peak ln Score FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.664 FP
1/1/2016 23:12 -34 73 1588 37 12.7 -2.000 0.533 FP
2/15/2011 2:25 -20 15 920 35 -18.3 -2.000 0.518 FP
3/15/2013 6:54 -3 -2 1485 66 25.8 -2.000 0.508 FP
12/28/2015 12:39 -15 14 850 58 4.6 -2.000 0.480 FP
3/18/2012 0:39 25 105 1450 60 -8.2 -2.000 0.413 FP

feature values on the x-axis and the classifier score on the y-axis. While the rest of the

features have raw values on the x-axis, the acceleration feature uses the symlog scale

to better emphasize the distribution of the feature otherwise dominated by outlier

acceleration value. Many of the acceleration values are negative meaning they are

actually decelerating upon observation. The classifier scores for the FP events vary

from just above the threshold value to the highest classifier score among all the other

events. By studying these events, we can better understand what feature or features

may contribute to their erroneously high scores.

From analyzing the Linear Speed feature in Figure 4.7a, we see a weak positive

correlation between speed and classification score. The TP events all have relatively

high speed and high classifier score, but there are several FP background events with

speeds below 1000 yet relatively higher classifier scores compared to other background

events. A higher DONKI speed may not be the sole cause of a higher classifier score.

The longitude feature in Figure 4.7b shows a peak around 57 degrees. We expected

a peak around 57 degrees because it is approximately the longitudinal direction of the

inter-planetary magnetic field (IMF) line with the Earth, although the value varies.

Most of the FP and TP events have longitude values close to 57. As we move away
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 4.7: Predicted classifier score vs 5 features for cRegNN with 20% oversampling.

from 57 degrees in either direction, the score in the FP and TP events drops. All but

1 FP event is within the range of the other SEP longitude values which may make the

FP events difficult to distinguish from the TP events. Therefore, the longitude feature

may be contributing to the higher scores for the FP events.

We also see a peak in the latitude feature in Figure 4.7c around 0. We expected a

peak around 0 degrees because it is approximately the latitudinal direction of the IMF

line with the Earth. The FP events are mixed with some very favorable latitude values

of 0 while others deviate by as much as -34 degrees. However, the highest predicted

FP event has a less favorable latitude value along with the highest score among the TP

events. These events likely have other features that are contributing to their higher

scores. One of the FP events even has the same latitude value, -3, as a TP event but a

higher score. Clearly, the latitude feature is not the only contributor to the FP events

elevated scores.
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Another weaker peak can be seen in the half width feature in Figure 4.7d around

45. We classify as a weaker peak because of some of the other FP events with higher

scores but less half width. The FP events with the higher prediction scores have half

widths close to 45. The half width values may be contributing to their increased score.

Meanwhile, the FP with the lowest score has the same half width as the TP with

the highest score. For this event, there must be other features contributing to either

its lower score or the TP event’s higher score. Since several other FP events with

similar half widths have lower scores, it is likely that the TP event has other features

contributing to its much higher score.

The average Acceleration feature value of the TP events is about -60 before symlog

scale shown in Figure 4.7e as a peak close to −102 in symlog scale. The FP events are

mixed with some that have acceleration values close to that peak and others farther

away. There are two FP events with acceleration close to -60 with values -63.1 and -42.3

with another FP event a farther away at -8.2. We can see that there is a linear drop in

score for the three FP events as we move away from the peak at 10−2. Conversely, three

of the FP events have positive values and appear to be forming a second smaller peak

at close to symlog 102. The similarity in acceleration values between the FP events

and the TP events could be contributing to their higher classifier score. The peak on

the positive side is likely caused by other features since most of the TN events with

similar acceleration values have very low scores.

4.2.4.2 Classifier Re-Training (cRT)

The highest average F1 score for the cRT technique was 0.641 using 60% oversampling.

This is a higher average F1 score than the highest average F1 in the cRegNN technique

due primarily to the fewer average FP events, 3.2 down from 5.8, despite slightly more

average FN events, 1.2 up from 0.4. The increase in FN events is due to 1 run when
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a second SEP event fell just barely below the threshold value of 0.6. This run also

had only 1 FP event which is why its F1 score was higher than the run with the worst

F1 score. We illustrate the median run in Figure 4.6b. We use the same red for SEP,

green for Elevated, blue for Background, and dotted threshold indicator as the cRegNN

analysis.

Table 4.9: The important features for the False Positive (FP) and False Negative (FN)
events for cRT 60 from Figure 4.6b. Acronyms are the same as in Table 4.8.

DD Lat Lon Spd Hw Acc Peak ln Score FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.625 FP
5/17/2012 1:48 -10 75 1500 45 -51.8 2.708 0.599 FN
1/6/2014 8:09 -3 102 1275 45 -7.1 1.061 0.501 FN

Table 4.9 lists a set of important features for the FP and FN events in the cRT

technique with 60% oversampling. We tabulate the same features as the cRegNN for

comparison. We can see that one of the FN events is just barely a FN with a prediction

of 0.599 and a threshold of 0.6. We could remove the FN by shifting the threshold down

just below the FN, but we would actually add another FP event that is not listed in

that table which has just slightly more prediction than the FN event. A more thorough

search of an optimal threshold value could improve the average performance, but we

leave that for future study.

We saw the FP event in the cRegNN, but the FN events are new. We include feature

plots in Figure 4.8 to show the score vs feature distribution where the feature values

are on the x-axis and the classifier scores on the y-axis. In terms of classifier score, the

FP event on 3/7/2011 again has the highest score amongst all events including the TP

events. The FN event on 5/17/2012 is very close to being a TP event, but the other

FN event on 1/6/2014 has a much lower score. The cRT technique does seem to be an

improvement over the cRegNN technique with reducing the FP events but at the cost
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 4.8: Predicted classifier score vs 5 features for cRT with 60% oversampling.

of 2 FN events.

In terms of Linear Speed in Figure 4.8a, we see a stronger positive correlation

between Linear Speed and classifier score. There’s a sharp decrease in score just below

1000 Linear speed, and the scores of events with higher speeds mostly have high scores.

The FN event with a lower speed also has a lower score than the FN event with higher

speed. The positive correlation suggests that the higher speeds could be contributing

to higher classifier scores.

The longitude feature does not have as distinctive of a peak in Figure 4.8b as it did

in the cRegNN analysis. Around the 50 degree area, there is a gentle sloping curve to

the right and left with a decreasing score. However, some of the TN events have higher

scores than the FN events despite their varied longitude values, especially events such

as the elevated event around -100. These higher predictions in the TN events may

be due to the outlier TP event with longitude around -60. It is still likely that the
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longitude values are contributing to the scores though the pattern seems less clear than

in the previous analysis.

Similar to longitude, the latitude peak has spread out more in Figure 4.8c than we

saw previously in the cRegNN analysis. The effect does not seem as extreme as the

longitude comparison as latitude values have higher predictions between about -25 and

25 vs the entire range of the longitude values. The FP elevated event has a somewhat

favorable latitude value of 10 which may have contributed to its incorrect classification.

A similar trend to longitude and latitude can be seen in the spread out peak of the

half width feature in Figure 4.8d. The peak looks spread further because of some of

the higher predicted TN events to the right and left sides. The FP event and both

FN events share the same half width. Clearly, other features are contributing to their

varied predictions.

The acceleration feature still appears to have a peak around -60 in Figure 4.8e,

however the peak prediction values are lower than in the cRegNN analysis. There are

also higher scores close to the positive peak, but they are now all TN events. The

FP elevated event has an acceleration of -68.3 which is very favorable. This favorable

acceleration may be increasing its classifier score. The FN event that is very close to

being a TP event also has very favorable acceleration. The other FN event has a higher

acceleration, and this is likely contributing to its lower score.

4.2.4.3 Classifier Re-Training with Autoencoder (cRT+AE)

The highest F1 score across all techniques was 0.800 with the cRT+AE technique when

using 70%/80%/90% oversampling. We will focus on analyzing the 70% oversampling

due to their similarity. We have seen the FP throughout all three approaches and

the FN since the rRT. Figure 4.6c is a plot of the median run although they all had

identical F1 scores showing the classifier score vs the actual classification.
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Table 4.10: The important features for the False Positive (FP) and False Negative
(FN) events for cRT+AE 70 from Figure 4.6c. Acronyms are the same as in Table 4.8.

DD Lat Lon Spd Hw Acc Peak ln Score FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.872 FP
1/6/2014 8:09 -3 102 1275 45 -7.1 1.061 0.370 FN

(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 4.9: Predicted classifier score vs 5 features for cRT+AE with 70% oversampling.

Table 4.10 lists features for the FP and FN event in cRT+AE similar to the previous

two approaches. We added feature plots in Figure 4.9 to illustrate the classifier score vs

feature distributions. The classifier score for the FP event is still the highest compared

to all the other events. The FN event has a lower classifier score than in the cRT

technique.

The Linear Speed in Figure 4.9a has the strongest positive correlation yet. There

is a distinct increase in classifier score as the speed increases. The speed of the FN

event is only 1250 which is not much larger than 1000 speed, so it could be that its
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lower speed compared to the TP and FP events is contributing to its lower score.

When analyzing the longitude feature in Figure 4.9b, we have recaptured the peak

at 57 degrees though not as distinctly as the original cRegNN technique. The FP

longitude is more favorable, and the FN longitude is less favorable to a peak around

57. The fact that these events have persisted across the top techniques makes it more

likely that longitude is contributing more significantly to their respective scores.

The shape of the latitude feature in Figure 4.9c does not have as distinctive of a

peak at 0 degrees similar to cRT. The FN event has a fairly favorable latitude score

for a peak around 0 degrees. Therefore, the latitude feature may be helping increase

the FN score above most of the other TN events, but there are other features pulling

its score down in comparison to some of the higher predicted TN events with similar

latitude values. In contrast, the FP event has a much higher score but less favorable

latitude. Other features are likely contributing to its increased score.

Similar to the longitude feature, we have recaptured the peak around 45 in the half

width feature in analyzing Figure 4.9d. The FP, one of the TP, and the FN have a half

width of 45 with two of the other TP events close by with values of 49 and 50. When

considering the FP and TP events, the half width feature appears to be contributing to

their increased scores. However, the FN event has a lower classifier score than several

other TN events with varying half width values. Therefore, there are other features

reducing the FN score even with its favorable half width value.

We still seem to have a peak in the acceleration feature in Figure 4.9e. The peak

seems more distinctive than cRegNN due to the fewer FP events and the more precise

classifier scores for the TP events. In the cRegNN, the TP events had a much higher

spread of classifier scores than in this approach. The acceleration feature appears to

contribute to the increased classifier score of the FP event with the favorable -63.1

acceleration. It also appears to contribute to the decreased classifier score of the FN
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event with the less favorable -7.1 acceleration. There still seems to be a peak on the

positive side as well, but it has shifted closer to 101 in symlog scale. Despite high

classifier scores, they remain correctly classified.

4.2.4.3.1 Feature Importance

To further analyze the cRT+AE 70 model, we calculate the feature importance values

using Local Interpretable Model-agnostic Explanations (LIME) developed by Ribeiro

et al. [14] both to help explain the overall model and to help explain the remaining

FP and FN events present in the model. Please refer to Section 3.5 for the details

on how feature importance values are calculated using this method with the following

additions.

For a given instance i, we calculate the local feature importance values, Wij, using

LIME. LIME utilizes a random seed to generate samples during the process of calcu-

lating the local feature importance values. To compensate, we generate local feature

importance values using LIME with 5 different seeds, so instance i has 5 values Wijk

for k ∈ [1, 2, 3, 4, 5]. We then combine them together to calculate the average Wij:

Wij =
1

R

R∑
k=1

Wijk (4.11)

where R = 5.

To calculate the global model feature importance values, we use all instances in the

entire dataset. The calculation of the global importance values is based on the local

importance calculations, so more samples should provide a more accurate estimate of

global importance. To calculate the global importance for feature j denoted as Ij:

Ij =

√ N∑
i=1

|Wij| (4.12)
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where N is the number of samples. The importance value are then normalized:

Îj =
Ij∑M
i=1 Ii

(4.13)

where M is the number of features.

We take a step further than LIME for analyzing the specific FP and FN instances.

In analyzing the Wij for the FP and FN event and the Îj values, we found that the

Wij values were not completely representative of how important a feature was to the

resulting classification. The Wij value is a weight that can be interpreted as the slope

of a linear fit around the instance, i. For a change in any feature value by the same

amount, say 1, the Wij quantifies the impact on the prediction positive/negative and

larger/smaller. Therefore, for a single instance i, a Wij value that is higher means that

the feature j is more important than another whose value is lower since it assumes

the features both change by the same amount. However, we have some extreme cases

such as the feature CMEs over 1000 km/s in the past 9 hours which has a value of 1

for a handful of background events, 1 elevated event, and 0 SEP events in the entire

dataset and the rest have a value of 0. This results in a high Wij value for the CMEs

over 1000 km/s in the past 9 hours feature which we will see later in Table 4.11 despite

the feature having no actual impact on the prediction when the feature value for an

instance is 0. To compensate, we also calculate the contribution of a feature Cij.

Cij = Wij ·Xij (4.14)

where Xij is the normalized value we feed into the model as from Chapter 3 for feature

j and for instance i.

Simply comparing feature rankings in bins may disregard how the features them-

selves are related. This gives the motivation for introducing an additional technique
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originally introduced by Tarsoly [18] to group the feature importance methods sum-

ming over related features before ranking. They defined five primary groups which we

also use: Speed, Location, Size, CME History, and Other. The Speed group contains

the following features:

• Linear Speed

• Diffusive Shock

• 2nd order speed final

• 2nd order speed at 20 solar radii

• V Log V

The Location group contains features related to the physical origin of the CME event

and any derived features:

• Latitude

• Longitude

• Richardson’s equation

• CPA (weighted by 0.5)

• MPA

CPA is weighted by 0.5 because it encodes both location and event size information.

The Size group related to features conveying the width of the CME event:

• CPA (weighted by 0.5)

• Halo
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• Half Width

The CME History group is made up of features that are measured using previous

CMEs.

• Number of CMEs in the Past Month

• Number of CMEs in the Past 9 Hours

• Number of CMEs with Speed over 1000 km/s in the past 9 Hours

• Maximum Speed for a CME in the Past Day

Finally, the Other group consists primarily of other space weather phenomena:

• Acceleration

• Type II visualization area

• Daily Sunspot count

We calculate group feature importance for the FP and FN events specifically and

for the overall model. For an individual event, i, we calculate a quantity WiJ which

represents the feature importance for a group of features, J , which is a subset of feature

indexes. We calculate WiJ using the Wij values from Equation 4.11.

WiJ =
∑
j∈J
|Wij| (4.15)

In the special case of the feature CPA, it is weighted by 0.5 in Equation 4.15. We then

normalize these values:

ŴiJ =
WiJ∑G
k=1Wik

(4.16)

where G is the number of feature groups.
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For the overall dataset, we calculate a quantity ÎJ which represents the feature

importance for a group of features, J , which is a subset of feature indexes. We calculate

ÎJ using the global model importance values, Îj, obtained from Equation 4.13.

ÎJ =
∑
j∈J

Îj (4.17)

In the special case of the feature CPA, it is weighted by 0.5 in Equation 4.17.

Table 4.11: Overall Feature importance values (Îj) for cRT+AE 70.

Feature (j) Importance (Îj)

1. V Log V 0.117
2. Diffusive shock 0.111
3. Linear Speed 0.086
4. Richardson’s equation 0.084
5. 2nd order speed final 0.071
6. 2nd order speed at 20 solar radii 0.067
7. Type II Visualization Area 0.056
8. CMEs over 1000 km/s past 9 hrs 0.052
9. Max speed past day 0.049
10. Halo 0.047
11. CMEs in past month 0.043
12. Longitude 0.040
13. MPA 0.037
14. Daily Sunspot Count 0.029
15. Half Width 0.029
16. Latitude 0.028
17. Acceleration 0.026
18. CPA 0.014
19. CMEs in past 9 hours 0.014

Table 4.11 lists the Îj values calculated over the entire dataset. Several members

of the speed group are highly important including V Log V, Diffusive Shock, and

Linear Speed in the top 3 and the other two speed members are not much farther

below at ranks 5 and 6. By the time we get to rank 7, the normalized importance

value has already dropped by half. Richardson’s equation, from the Location group
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since we use only the connection angle part of his equation in the feature, is rank 4

with relatively high importance. The high importance of speed and location supports

Richardson’s entire equation [15] which models peak intensity based on the speed and

location features of a CME.

Table 4.12: Feature importance values from LIME for FP and FN in Table 4.10 with
cRT+AE 70. Includes feature importance values, Wij, and contribution values, Cij,
with their respective rankings from largest to smallest feature importance value, RWij

and RCij
. The Cij shown are scaled by 1000. The top 3 are made bold, italic, and

underlined, respectively (positive for FP, negative for FN) for the Wij and Cij values.

Feature (j) FP FN

(ordered by Îj as in Table 4.11) RWij
Wij RCij

Cij RWij
Wij RCij

Cij

V Log V 1 0.033 2 22.296 1 0.012 3 4.788
Diffusive shock 13 0.003 12 2.896 19 -0.006 19 -5.892
Linear Speed 2 0.028 4 19.547 3 0.008 5 3.436
Richardson’s equation 7 0.015 6 14.067 6 0.006 4 3.908
2nd order speed final 3 0.026 5 15.863 5 0.006 6 2.774
2nd order speed at 20 solar radii 6 0.019 7 10.422 13 -0.000 14 -0.159
Type II Visualization Area 4 0.026 1 23.491 4 0.007 2 6.343
CMEs over 1000 km/s past 9 hrs 16 0.001 17 0.000 9 0.002 12 0.000
Max speed past day 14 0.002 15 0.550 18 -0.002 16 -0.260
Halo 5 0.022 3 21.609 2 0.010 1 10.077
CMEs in past month 18 -0.007 18 -0.674 14 -0.001 17 -0.319
Longitude 17 0.000 16 0.080 12 -0.000 13 -0.105
MPA 9 0.007 9 6.496 8 0.002 9 1.484
Daily Sunspot Count 11 0.006 10 4.031 7 0.002 7 2.021
Half Width 10 0.007 11 3.358 11 0.001 10 0.409
Latitude 15 0.002 14 1.118 17 -0.001 18 -0.358
Acceleration 19 -0.013 19 -2.391 16 -0.001 15 -0.170
CPA 8 0.008 8 7.605 10 0.002 8 1.640
CMEs in past 9 hours 12 0.006 13 1.387 15 -0.001 11 -0.000

Table 4.12 focuses on the FP and FN instances from Table 4.10. Here, the features

are listed in the same order as the overall feature importance for comparison, but the

ranks are calculated on the Wij and Cij values in each event. We analyze the top

positive feature contributors to the FP and the top negative feature contributors to

the FN to gain further insight into their respective incorrect classifications. We then

analyze the features in more detail referring to Figure 4.10.

In first analyzing the FP event, we see it shares the same top Wij rank as the

overall feature importance and the second, Linear Speed, and third, 2nd order speed

final, rankings are not much further down. This is not too surprising since this event
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(a) Type II Visualization Area with
Symlog Scale

(b) V Log V (c) Halo

(d) Diffusive Shock with Log Scale (e) Number of CMEs in the Past
Month

Figure 4.10: Predicted classifier score vs 5 features for cRT+AE with 70% oversam-
pling.

has one of the higher Linear speed values. When examining the contributions, the

highest contributor is shown to be Type II Visualization Area followed closely by V

Log V and Halo.

In the next analysis of the FN event, the top negative contributors are Diffusive

Shock, Latitude, and CMEs in the past month. The Diffusive Shock feature was one

of the features we took the log of before normalizing as discussed in Chapter 3 due

to the magnitudes of difference between the highest and lowest feature values. After

the log scale, the value is very close to the other SEP events as we see in Figure 4.10d

which makes its high negative contribution less expected. The latitude feature we

have analyzed previously. The FN event has a latitude of 0, and we had expected a

peak around 0. In reexamining Figure 4.9c, the background events do seem to suggest
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a negative trend as latitude increases while the FP events seem to vary around a

peak of 0. The behavior of the background events may be determining this negative

local importance value. When considered globally, latitude has a normalized feature

importance of 0.028 about 20% of the top importance value. The discrepancy between

the prediction behaviors between the background events negative trend and variance

in the SEP events may be why the overall feature importance is so low for latitude.

The CMEs in the past month is a new feature we did not previously analyze and has

a global importance just below the middle ranking.

We illustrate the feature plots for the top positive FP contributors and top neg-

ative FN contributors features that we have not previously analyzed in Figure 4.10.

There does seem to be a positive correlation in Type II Visualization Area shown in

Figure 4.10a as the Type II Area increases generally so does the prediction. In both

the FP and FN, it is considered a positive Wij contributing to classification as a SEP.

Its higher positive contribution value in both events seems due to the very high nor-

malized feature value after the log scaling was applied despite a lower Wij than other

features. Analysis of the V Log V plot in Figure 4.10b should be very similar to the

analysis of the Linear Speed feature, and we can see the same positive trend we saw

in the speed feature. The higher positive contribution in the FP event seems due to

its very high speed. The halo feature is categorical, either true or false. As we can see

in Figure 4.10c, most of events have a halo value of 1 including the FP, FN, and the

rest of the SEP events. In addition, the predictions on the events without a halo are

much lower forming a positive trend although if the feature value is 0 then it has no

contribution to their prediction value.

Figure 4.10d shows the Diffusive Shock feature with a log scale. The FN’s feature

value seems very close to the other SEP and the FP feature values. In analyzing the

background events around the FN, it could be argued there is a small negative trend as

61



quantified by the small negativeWij which when combined with such a high normalized

feature value results in a high negative contribution. Diffusive Shock has a very high

overall feature importance likely due to the compactness of the SEP feature values

after the log was taken. The feature number of CMEs in the past month has a much

lower rank. Figure 4.10e illustrates the negative trend quantified in the Wij values for

the FP and FN. An overall negative trend seems less evident especially considering the

TP event with a very similar feature value as the FN event, but, local to the FN event

and TP event, there does seem to be a negative trend for this feature.

Table 4.13: Feature Group Importance for cRT+AE 70 for the overall dataset (ÎJ),
the FP event (ŴiJ), and the FN event (ŴiJ) and their respective ranks (RÎJ

, RŴiJ
for

FP, RŴiJ
for FN).

Overall FP FN

Group (J) RÎJ
ÎJ RŴiJ

ŴiJ RŴiJ
ŴiJ

Speed 1 0.452 1 0.474 1 0.467
Location 2 0.196 4 0.125 4 0.142
CME History 3 0.158 5 0.067 5 0.076
Other 4 0.111 2 0.192 3 0.144
Size 5 0.083 3 0.142 2 0.170

Table 4.13 shows the group importance values for the overall dataset, the FP, and

the FN. In all three, the Speed group seems to dominate the group importance values.

From there, the FP and FN both have a second and third ranked group with similar

values but different groups. The very high Type II visualization area seems to drive

the Other group importance up for the FP, and the Halo feature seems to drive the

Size group importance for the FN event although it is a positive trend. The overall

group has Location and CME History as the second and third groups. We can see a

higher positive local feature importance for the Richardson’s equation in both events,

and we analyzed latitude as a top contributor to the FN local importance. While we

had seen some negative correlation in the Number of CMEs in the Past Day, several

62



of the other history features seem to have a modest contribution in the FP and FN

events.
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Chapter 5

Forecasting SEP Intensities

The second problem that was studied in this work was predicting the ln peak intensity

of 100 MeV protons associated with a CME event using its set of input features as

defined in Chapter 3. In the dataset, there were a few outlier peak intensity values

that caused issues with predicting the peak intensity directly. Across the entire dataset,

the highest and lowest peak intensity values differed by two orders of magnitude from

the highest peak intensity of 56.311 to the lowest 1
e2

= 0.135, the fixed constant we

used for background events. In Richardson’s equation [15], the predicted intensity

grows exponentially as speed increases. In addition, there were very few SEP events

in comparison to the number of background events. Training an accurate exponential

function to predict intensity from these few SEP events was expected to be difficult.

By applying the ln to Richardson’s equation [15], the equation predicts that the ln

peak intensity grows linearly to the speed. A linear equation was expected to be much

easier to learn on this dataset. By exponentiating our ln peak intensity prediction, we

can recover the predicted peak intensity of the protons.

Accurately predicting the peak intensity of the 100 MeV protons with a CME can

help categorize that event based on how severe its damage is likely to be. The threshold
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for determining an SEP event is not standardized among astrophysicists. Our approach

is easily adapted to any selected threshold since the model is trained on and predicts

the ln peak intensity. The threshold value is only used when evaluating a model’s

performance using classifier adapted metrics. In our case, we classify that CME event

as an SEP event when their 100 MeV protons have a peak intensity value ≥1 i.e. that

their ln peak intensity value is ≥0.

5.1 Approaches

All neural networks were implemented using Keras on top of TensorFlow. All neural

networks had no activation function in their output layer. Their single unit output was

the predicted log peak intensity of the 100 MeV protons of the associated CME event

input.

5.1.1 Regular Neural Network with Oversampling (rRegNN)

The regular neural network is a multi-layer Leaky ReLU regressor using 2 hidden

layers. The architecture is the same as the classification Regular Neural Network with

Oversampling and is illustrated in Figure 4.1. We use the mean square error (MSE)

loss function during training:

LMSE =
1

N

N∑
n=1

(y − ŷ)2, (5.1)

where N is the number of training samples, y is the actual log peak intensity, and ŷ

is the predicted log peak intensity. The dataset used during training is the original,

imbalanced dataset.

As in the classification regular Neural Network, we also explored oversampling
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the minority SEP and Elevated events to improve performance. The oversampled

training sets e.g. 10% oversampling, 20% oversampling etc. were the same between the

regression and classification tasks with the exception of the regressor output instead

of the classifier output. We also abuse the notation to say 0% oversampling is the

original, imbalanced dataset as we did in the classifier.

5.1.2 Regression Re-training (rRT)

Similar to Thomas [19], we modified the cRT approach from the classifier task in 4.1.2

for regression learning by replacing the output layer with a linear regression output

layer. The rRT method is broken into the same two stages as the cRT method. The

first stage is used to learn new features from the input. Then, all but the output

layer is frozen and reused with an extra hidden layer and a reinitialized and retrained

output layer in the second stage. The second stage is trained on a dataset with the

SEP and Elevated events oversampled. The oversampling increases the importance of

the minority SEP and Elevated events which helps train the regressor on the otherwise

rare events. The architecture is the same illustration as the architecture of the cRT

method in Figure 4.2.

5.1.3 Regression Re-training with Autoencoder (rRT+AE)

The rRT+AE technique is almost identical to the cRT+AE method. One difference is

the joint loss function is defined as:

LrRT+AE = LMSEREG
+ αLMSEAUT

, (5.2)

since the regression task uses the MSE loss function, here MSEREG, instead of the CE

loss function. The autoencoder still uses the MSE loss function, here MSEAUT . The
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network architecture is illustrated in Figure 5.1. The α term is estimated by separately

training the branches shown in Figure 5.1 and combining their errors:

α =
1

N

N∑
n=1

LMSEREG,n

LMSEAUT,n

, (5.3)

where N is the number of epoch, LMSEREG,n
is the loss for the regression branch for

epoch n, and LMSEAUT,n
is the loss for the autoencoder branch for epoch n.

Figure 5.1: Network architecture for rRT+AE.

With the α value estimated, we train the network in two steps. In the first step,

we train the network shown in Figure 5.1. The goal of the first step is to learn the

features of the input data which will be preserved in the z-layer like the rRT method.

In the second step, the Decoder/Autoencoder branch is discarded, the InputLayer up

to the z-layer are frozen and reused, a new hidden layer is inserted between the z-layer

and the Regressor, and the Regressor layer is reinitialized and retrained. The resulting

network architecture is the same as the second stage of rRT, and we use an oversampled

dataset for training.
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5.1.4 Incorporating Richardson’s model

One of the input features was part of an entire formula derived by Richardson et al. [15]

to model the peak intensity of a CME event with connection angle ϕ and speed V shown

in Equation 5.4.

I(ϕ) ≈ 0.013exp(0.0036V − ϕ2

2σ2
), σ = 43◦ (5.4)

Richardson et al. used CMEs from the CDAW catalog with proton intensities from 14-

to 24-MeV. Our dataset was composed of CMEs with proton intensities of >100 MeV.

We theorized we could improve Richardson’s formula by learning new coefficients in the

Richardson equation and replacing the Richardson input feature in our network with

a better approximation estimated from our dataset. First, we rewrote Richardson’s

equation into a form that was easier to translate into a neural network. We introduced

new notation, wexp and wv, to form the equation:

I(ϕ) ≈ wexpexp(wvV −
ϕ2

2σ2
), σ = 43◦ (5.5)

where wexp = 0.013 and wv = 0.0036 in Richardson’s equation. To predict the log of

the intensity, we took the log of both sides of the equation:

ln(I(ϕ)) ≈ ln(wexp) + wvV −
ϕ2

2σ2
, σ = 43◦ (5.6)

If we considered x1 = V , x2 = − ϕ2

2σ2 , σ = 43◦, and w0 = ln(wexp) then we arrived at

our final form of Richardson’s log equation:

ln(I(ϕ)) ≈ w0 + wvx1 + 1x2 (5.7)
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5.1.4.1 Richardson Network

We form a simple neural network to learn Equation 5.7 where we learn a new w0 and wv

while providing x1 and x2 input features from the SEP and Elevated CME events. We

specifically do not train on the Background CME events because we synthetically fixed

the peak intensity values of the background events to be a small constant, and it would

be detrimental to include these filler values during training. The network architecture

is shown in Figure 5.2. There are two inputs: x1 which is the speed as marked in the

DONKI catalog and x2 which is the connection angle term defined above calculated

using the DONKI catalog features. The output feature is the log of the peak intensity.

There is no activation function in the dense layer, and the dense layer’s construction

replicates Equation 5.7. The bias term for the dense layer is w0. From w0, we can

recover wexp through the equation: wexp = exp(w0). The wv is the weight of the x1

term. To avoid training the weight of the connection angle term, we fix it at 1 by

placing a constraint on the dense layer making that weight always 1.

Figure 5.2: Network architecture for learning Richardson’s formula coefficients.

When training this network, we use the raw DONKI speed and connection angle

values i.e. they are not normalized in the range [0, 1] as other input features in our

other networks. Richardson’s equation was based on the raw CME speed and connec-

tion angle, not normalized values. We want to learn new coefficients to Richardson’s

equation, so we do not want to change the input format to the model. In addition,

we want the differences in the DONKI speed to be emphasized such as 2200 vs 1000
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which would not be as extreme with normalized values.

5.1.4.2 Incorporating Richardson Network

5.1.4.2.1 Combining Richardson Forecast (RC)

To incorporate Richardson Network, our first approach (denoted as RC), combines the

forecast from Richardson Network with the forecast from our model for each input

instance. The technique is broken down into two steps. In step 1, we use the method

described in the previous section to learn new wexp and wv coefficients for the Richard-

son network. In step 2, we train our regular NN alongside the frozen Richardson

network to predict the log peak intensity of the CME event. In this approach, we do

not use any Richardson feature as input. The Richardson network frozen alongside our

training network provides the input from the Richardson equation. The output from

our regular NN and the frozen Richardson network are combined together in a hidden

layer, so the weights used in combining the frozen Richardson network and our regular

NN are learned during training. To formalize step 2, we first notate our feature vector

as −→x which includes the raw DONKI speed and connection angle term defined above

when formulating the Richardson network and all but the Richardson network feature

from the normalized features described in the Description of SEP Data feature list. We

notate −→xR as the isolated raw DONKI speed and connection angle term features from

−→x . We notate −→xN as the isolated normalized features from −→x . Then, the output from

our neural network is the combination of the output from the Richardson Network,

RN, and the output of our Neural Network, NN, using the equation:

ln(Intensity(−→x )) = w0 + w1 ∗RN(−→xR) + w2 ∗NN(−→xN) (5.8)

The network architecture is illustrated in Figure 5.3. The combine layer introduces
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three trainable weights in the output dense 3 layer: the bias term, w0, the weight

for the frozen Richardson network, w1, and the weight for our regular NN, w2. In

step 2 of approach RC, we apply the previous approaches including Regular Neural

Network with Oversampling which we call RC+rRegNN, rRT which we call RC+rRT,

and rRT+AE which we call RC+rRT+AE. The Richardson network remains fixed and

frozen after formation in step 1.

Figure 5.3: Network architecture for RC.

5.1.4.2.2 Learning Richardson Error (RE)

To incorporate Richardson Network, our second approach (denoted as RE), estimates

the error of Richardson forecast for each input instance. By taking the ln of both sides,

the formula produced by Richardson is an approximation for the ln peak intensity of

proton intensities associated with a CME. Instead of training a neural network to pre-

dict the ln peak intensity of the CME events as in our other techniques, we experiment

with training a neural network to model the error remaining in the prediction provided

by the Richardson ln equation using our trained coefficients. The technique is broken
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down into two steps. In step 1, we use the method described in the previous section

to learn new wexp and wv coefficients for the Richardson network. In step 2, we freeze

the model used to train the coefficients and train our regular NN model alongside

combining in 1:1 the output from the frozen Richardson network and our NN that is

being trained. In this approach, we do not use any Richardson feature as input. The

Richardson network frozen alongside our training network provides the input from the

Richardson equation. To formalize step 2, we use the same notation as in 5.1.4.2.1 with

the overall feature vector −→x and isolated feature vectors −→xR and −→xN . The output from

our neural network is the prediction from the Richardson Network, RN, with some

error, ϵ(−→xN), modeled by our Neural Network (NN) summarized in the equation:

ln(Intensity(−→x )) = RN(−→xR) + ϵ(−→xN) = RN(−→xR) +NN(−→xN) (5.9)

The network architecture is illustrated in Figure 5.4. The dense 3 layer has no

bias term, and the weights from both incoming branches are constrained to 1. In step

2 of approach RE, we apply the previous approaches Regular Neural Network with

Oversampling which we call RE+rRegNN, rRT which we call RE+rRT, and rRT+AE

which we call RE+rRT+AE. The Richardson network remains fixed and frozen after

formation in step 1.

5.1.5 DenseLoss (DL)

Steininger et al. proposed a sample weighting approach called DenseWeight which

they included into a cost-sensitive learning approach called DenseLoss [17]. The idea

of DenseWeight is to use the distribution of the training examples to weight lower-

probability training samples higher (SEP and Elevated events in our case) in the loss

function than the common training samples (background events in our case). To apply
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Figure 5.4: Network architecture for RE.

it, we need to calculate a DenseWeight for the SEP events, the Elevated events, and

the Background events. We define our datasets, df , to include all of the SEP events,

all of the Elevated events, but only one Background event where df is a list of the

included peak intensity values for events in 3-fold dataset f for f ∈ {1, 2, 3}. The SEP

and Elevated peak intensity values came from real data, but the Background peak

intensity value was a set constant value. To avoid biasing the weight computation, we

only include a single instance of a background event in each df . We still need the one

instance because we need to calculate its DenseWeight. The first step to calculate the

DenseWeight is to approximate the target value distribution. In our case, our event

distribution matches a Pareto Distribution. The Probability Density Function (PDF)

of a Pareto distribution is given by:

f(x;α) = α
xα
min

xα+1
;x ≥ xmin, α > 0 (5.10)
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where α is a shape parameter. We use the Maximum Likelihood Estimation method to

estimate the α values for each of the 3-fold datasets as defined in Equation 5.11 whereN

is the number of elements in the dataset df , xi are elements in df , and xmin = min(xi)

for all xi in df .

α =
N∑N

i=1 ln(xi)−Nln(xmin)
(5.11)

With pareto’s α calculated, we resume the notation of Steininger and notate the

pareto density function as p(y):

p(y) = α
yαmin

yα+1
(5.12)

From there, we can arrive at the final form of the DenseWeight’s weight function:

fw(αDW , y) =
max(1− αDWp′(y), ϵ)

1
N

∑N
i=1 (max(1− αDWp′(yi), ϵ))

(5.13)

where we notate the DenseWeight parameter as αDW since we already use α in the

pareto distribution and ϵ is a small constant such as 10−5. The DenseWeight parameter

αDW tunes the amount of weight that is applied. At 0, DenseWeight is disabled. At 1,

the common data point weights reach epsilon. All weights are positive for αDW < 1,

and common data point weights are negative for αDW > 1.

The DenseWeight function is used directly in the Dense Loss function:

LDenseLoss(αDW ) =
1

N

N∑
i=1

fw(αDW , yi) ·M(ŷi, yi) (5.14)

where we use the MSE as the metric M.

The DenseWeight function applies a weight to each individual sample increasing

the importance of rare events such as SEP events. This replaces the role of using an
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oversampled dataset but weights samples differently. In an oversampled dataset, rare

events are duplicated but weighted equally amongst their class in terms of importance.

DenseWeight applies varied weights within each class and across the entire dataset.

Concretely, this increases the importance of SEP events with much higher ln peak

intensity values more than other SEP events with smaller ln peak intensity values. For

this reason, we do not use oversampled datasets in this approach. Instead, we perform

a hyperparameter search for αDW that maximizes the performance in each DenseLoss

technique discussed below. We test αDW values in the list: [0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0]. We compare their performances over an average of 5

runs to find the best performer.

We experiment with using the DenseLoss technique with the previous rRegNN,

rRT, and rRT+AE techniques. Within these techniques, we replace oversampling

and MSE with DenseLoss. We denote the techniques as DL+rRegNN, DL+rRT, and

DL+rRT+AE.

5.2 Experimental Evaluation

5.2.1 Evaluation Criteria

In the regression task, we want to quantify the difference between the predicted ln peak

intensity and the actual ln peak intensity. We leverage several metrics to perform this

task. One metric is the mean absolute error (MAE). We are particularly interested in

SEP events, so we calculate the MAE over SEP events only as well as the MAE over

the entire test set. We also calculate the pearson correlation (PCC) for the SEP events

only and the SEP+Elevated events. The background events were arbitrarily set to a

constant small intensity value, so they are not added to the PCC metrics. The pearson

correlation measures the linear correlation between two sets of values. For a vector of
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values −→a = {a0, a1, ..., aN} and
−→
b = {b0, b1, ..., bN}, the PCC is defined as

PCC =

∑N
i=0 (ai − ā)(bi − b̄)√∑N

i=0 (ai − ā)2
√∑N

i=0 (bi − b̄)2
(5.15)

where ā = 1
N

∑N
i=0 ai and b̄ = 1

N

∑N
i=0 bi are the mean values for their respective sets.

In our case, −→a corresponds to the ln peak intensities predicted by the model, ŷpredicted,

and
−→
b corresponds to the observed ln peak intensities ŷobserved.

We also adapt the classification metrics to the regression task. We classify events

as either SEP or non-SEP (including Elevated and Background events) based on the

peak intensity. If the peak intensity is ≥1 pfu, an instance is classified as an SEP

event. Since we predict the ln peak intensity, it follows that an event is predicted to be

an SEP event if its predicted ln peak intensity is ≥0, otherwise it is predicted to be a

non-SEP event. This allows us to form a similar confusion matrix to the classification

confusion matrix as illustrated in Table 5.1. We calculate the same additional metrics:

F1, TSS, and HSS.

Table 5.1: Confusion matrix for regression tasks.

Predicted Log Peak ≥ 0 Prediction < 0

Actual Log Peak Intensity ≥ 0 True Positive (TP) False Negative (FN)
Actual Log Peak Intensity < 0 False Positive (FP) True Negative (TN)

5.2.2 Evaluation Procedures

We use the same training and test sets as the classification task. When learning

the Richardson coefficients, we also apply 4-fold cross validation to the training and

validation sets in each fold. The 4-fold of the training and validation sets help give a

more accurate epoch count to use during actual training. We also train each model

5 times with an initial run to find the optimal epoch number as in the classification
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evaluation procedures. The resulting metrics are reported as an average over the 5

runs.

5.2.2.1 Procedures for Training Regular Neural Network with Oversam-

pling

The procedures for this approach were identical to the Regular Neural Network with

Oversampling defined for the classifier in 4.2.2.1 with the exception of using the mean

squared error loss function in the output. The optimal epoch number varied per over-

sampling rate. We summarize the epoch numbers in Table 5.2.

Table 5.2: Epoch counts for rRegNN, rRT, and rRT+AE approaches used per over-
sampling percent.

Oversampling Percent rRegNN rRT rRT+AE

0 11594 N/A N/A
10 208 414 427
20 155 268 295
30 5862 1335 406
40 6906 11994 1514
50 5800 10645 9695
60 6400 10502 7707
70 4923 7141 24561
80 3577 13613 24598
90 4897 5362 18818

5.2.2.2 Procedures for Training rRT

The procedures for this approach were identical to the cRT defined for the classifier

in 4.2.2.2 with the exception of using the mean squared error loss function in the

output. The optimal epoch number for the second step varied per oversampling rate.

We summarize the epoch numbers in Table 5.2.
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5.2.2.3 Procedures for Training rRT+AE

The procedures for this approach were identical to the cRT+AE defined for the classifier

in 4.2.2.3 with the exception of using the mean squared error loss function in the

regressor branch which replaced the classifier branch. The optimal epoch count for

the first step was 11784. The optimal epoch number for the second step varied per

oversampling rate. We summarize the epoch numbers in Table 5.2.

5.2.2.4 Procedures for Learning Richardson Coefficients

To learn the Richardson coefficients, we used 4-fold cross validation to split up the

training and validation data sets. All models were initialized initially with a random

uniform initializer between -0.05 and 0.05. All models also used an Adam optimizer

with a learning rate of 0.0001 and Adam epsilon 1.0. The average optimal epoch number

varied between the 3-fold test sets. We summarize the epoch numbers in Table 5.3.

Table 5.3: Epoch counts for 3-fold learning Richardson coefficients.

Fold Epochs

1 272,974
2 327,482
3 224,278

5.2.2.5 Procedures for Training RC

All RC approaches began with learning the new Richardson coefficients. The net-

work used to train the Richardson coefficients was then frozen and placed alongside

the typical network of the respective techniques e.g. the rRegNN network for the

RC+rRegNN approach, the rRT network for the RC+rRT approach, etc. The pro-

cedure for the respective technique was directly applied to the left branch of the RC

architecture illustrated in Figure 5.3. The optimal epoch number for RC+rRegNN, the
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second step of RC+rRT, and the second step of RC+rRT+AE varied per oversampling

rate. We summarize the epoch numbers in Table 5.4.

Table 5.4: Epoch counts for RC+rRegNN, RC+rRT, and RC+rRT+AE approaches
used per oversampling percent.

Oversampling Percent RC+rRegNN RC+rRT RC+rRT+AE

0 39069 N/A N/A
10 19091 6830 1669
20 14588 2672 3688
30 5225 3815 3301
40 6181 2478 3134
50 4675 819 11080
60 6837 640 8118
70 3998 413 7386
80 17025 11350 3998
90 4727 40563 2979

5.2.2.6 Procedures for Training RE

All RE approaches began with learning the new Richardson coefficients. The network

used to train the Richardson coefficients was then frozen and placed alongside the typi-

cal network of the respective techniques e.g. the rRegNN network for the RE+rRegNN

approach, the rRT network for the RE+rRT approach, etc. The procedure for the

respective technique was directly applied to the left branch of the RE architecture il-

lustrated in Figure 5.4. The optimal epoch number for RE+rRegNN, the second step

of RE+rRT, and the second step of RE+rRT+AE varied per oversampling rate. We

summarize the epoch numbers in Table 5.5.

5.2.2.7 Procedures for Training DL

To form the Pareto PDF of the peak intensity, we estimated the α shape parameter

using the Maximum Likelihood Estimation Method. There are 3-folds, so we have
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Table 5.5: Epoch counts for RE+rRegNN, RE+rRT, and RE+rRT+AE approaches
used per oversampling percent.

Oversampling Percent RC+rRegNN RC+rRT RC+rRT+AE

0 6497 N/A N/A
10 12393 888 4105
20 11254 12744 2900
30 12546 1350 1899
40 12026 730 13420
50 5557 749 12314
60 35600 580 6436
70 20234 522 26623
80 46344 404 29446
90 4536 253 19900

three datasets, df , for f ∈ {1, 2, 3}. We summarize the α values in Table 5.6.

Table 5.6: Pareto estimates for α parameter for 3-fold datasets.

Fold α Estimate

1 0.5338
2 0.4833
3 0.4937

To implement the DenseLoss function, we created a lookup table for each αDW to

return the DenseWeight of a CME event from its ln peak intensity value. The lookup

table used integers as keys, but the ln peak intensity values were floating point values.

To form the keys of the table, and every time we provided a ln peak intensity value as a

query, we converted the floating point to an integer by multiplying by 105 and cutting off

any leftover fractional component. We created a custom DenseLoss loss function imple-

mentation for each αDW using their respective DenseWeight lookup table to lookup the

DenseWeight and apply it to the MSE loss function metric. For each DL technique, we

tested αDW values in the list: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0]. Each

αDW was tested in its own model for a total of 13 models per technique: DL+rRegNN,
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DL+rRT, and DL+rRT+AE. To initialize each model, we used a random uniform ini-

tializer between -0.05 and 0.05. We used an Adam optimizer with a learning rate of

0.001 and Adam epsilon 1.0. Hidden layers used the LeakyReLU activation function

with an alpha of 0.3. In addition, we used a batch size of 179 when training with a

validation set and 168 when training with the combined training/validation set. We do

not use oversampling in these approaches which means a batch during training might

not have any SEP or Elevated events at all. Using these batch sizes, we aimed to get

2 SEP or Elevated events per batch.

The DL+rRegNN procedure was the same as the rRegNN procedure except using

the values above, and we used the DenseLoss function using the DenseWeight cor-

responding to the tested αDW value. The DL+rRT procedure began with following

the first step of the rRT procedures except using the values above. We then followed

the second step of the rRT procedures, but we replaced the MSE loss function with

the DenseLoss function using the DenseWeight corresponding to the tested αDW value.

The DL+rRT+AE procedure began with following the first step of the rRT+AE proce-

dures except using the values above. We then followed the second step of the rRT+AE

procedures, but we replaced the MSE loss function with the DenseLoss function using

the DenseWeight corresponding to the tested αDW value. In both the DL+rRT second

step and the DL+rRT+AE second step, we continued to use the original, imbalanced

dataset.

The optimal epoch number varied in each technique per αDW . We summarize the

epoch numbers in Table 5.7.

5.2.3 Results

In this section, we present the results for the first fold of the 3-fold dataset. The same

training and validation sets are used across the respective techniques i.e. cRegNN
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Table 5.7: Epoch counts for DenseLoss DL+rRegNN, DL+rRT, and DL+rRT+AE
approaches used per oversampling percent.

αDW DL+rRegNN DL+rRT DL+rRT+AE

0.0 61684 145302 137272
0.1 59977 134839 136239
0.2 64299 143775 126619
0.3 62210 149600 108119
0.4 55000 146476 66763
0.5 50731 45532 39361
0.6 47385 41910 33870
0.7 42900 48648 93996
0.8 41850 130969 39055
0.9 55758 124152 31672
1.0 6638 110394 107301
1.5 98885 98779 86567
2.0 13959 99596 87271

with 10% oversampling is the same training and validation sets as cRT with 10%

oversampling. The same test set was used for all approaches. Therefore, the metrics

presented below are comparable across techniques. Metrics are discussed per method

for ease of presentation.

Figure 5.5: F1 score vs oversampling rate for rRegNN, rRT, and rRT+AE techniques.
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Table 5.8: Summarized regression metric results averaged over 5 runs for rRegNN,
rRT, and rRT+AE techniques with 3-fold Dataset 1. Each row in a technique has an
oversampled dataset by some percent indicated by the trailing number after the row
technique name, e.g. rRegNN 10 is the rRegNN technique with 10% oversampling.
The best value for each metric in each technique is underlined with the best overall
value for each metric in bold.

Technique PCC SEP PCC SEP+Elevated MAE SEP MAE

rRegNN 0 -0.042 0.693 2.753 0.068
rRegNN 10 0.175 0.390 3.074 0.170
rRegNN 20 0.153 0.334 2.711 0.221
rRegNN 30 -0.083 0.698 2.134 0.131
rRegNN 40 -0.269 0.647 2.151 0.118
rRegNN 50 -0.145 0.660 2.260 0.118
rRegNN 60 -0.450 0.519 2.512 0.117
rRegNN 70 -0.258 0.632 2.161 0.126
rRegNN 80 -0.155 0.686 2.125 0.142
rRegNN 90 -0.307 0.623 2.235 0.139

rRT 10 0.143 0.751 1.857 0.104
rRT 20 0.105 0.742 1.653 0.147
rRT 30 0.072 0.735 1.537 0.188
rRT 40 0.010 0.719 1.554 0.236
rRT 50 0.003 0.720 1.550 0.311
rRT 60 -0.025 0.718 1.557 0.397
rRT 70 -0.033 0.711 1.557 0.539
rRT 80 -0.033 0.667 1.495 0.627
rRT 90 0.065 0.660 1.716 1.108

rRT+AE 10 0.137 0.753 1.821 0.103
rRT+AE 20 0.094 0.742 1.613 0.144
rRT+AE 30 0.067 0.737 1.542 0.189
rRT+AE 40 0.061 0.735 1.530 0.246
rRT+AE 50 0.002 0.725 1.548 0.312
rRT+AE 60 -0.016 0.719 1.559 0.392
rRT+AE 70 0.013 0.678 1.458 0.480
rRT+AE 80 -0.156 0.601 1.443 0.658
rRT+AE 90 -0.273 0.320 2.109 0.866
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Table 5.9: Summarized classifier adapted metric results averaged over 5 runs for
rRegNN, rRT, and rRT+AE techniques with 3-fold Dataset 1. Formatting is the same
as in Table 4.4.

Technique FP FN TP TN F1 HSS TSS

rRegNN 0 0.4 5.0 0.0 680.6 0.000 -0.001 0.000
rRegNN 10 0.0 5.0 0.0 681.0 0.000 0.000 0.000
rRegNN 20 0.0 5.0 0.0 681.0 0.000 0.000 0.000
rRegNN 30 3.6 2.4 2.6 677.4 0.448 0.443 0.515
rRegNN 40 3.4 2.6 2.4 677.6 0.445 0.441 0.475
rRegNN 50 3.0 2.6 2.4 678.0 0.440 0.436 0.476
rRegNN 60 2.8 3.2 1.8 678.2 0.357 0.353 0.356
rRegNN 70 2.4 2.2 2.8 678.6 0.545 0.542 0.556
rRegNN 80 2.2 2.4 2.6 678.8 0.513 0.510 0.517
rRegNN 90 3.0 2.6 2.4 678.0 0.454 0.450 0.476

rRT 10 1.6 1.2 3.8 679.4 0.730 0.728 0.758
rRT 20 3.8 1.0 4.0 677.2 0.626 0.622 0.794
rRT 30 4.0 1.0 4.0 677.0 0.615 0.612 0.794
rRT 40 4.0 1.0 4.0 677.0 0.615 0.612 0.794
rRT 50 3.4 1.0 4.0 677.6 0.646 0.643 0.795
rRT 60 3.0 1.0 4.0 678.0 0.667 0.664 0.796
rRT 70 3.0 1.0 4.0 678.0 0.667 0.664 0.796
rRT 80 5.4 0.4 4.6 675.6 0.615 0.612 0.912
rRT 90 5.0 1.4 3.6 676.0 0.549 0.545 0.713

rRT+AE 10 1.8 1.0 4.0 679.2 0.742 0.740 0.797
rRT+AE 20 3.8 1.0 4.0 677.2 0.626 0.622 0.794
rRT+AE 30 4.0 1.0 4.0 677.0 0.615 0.612 0.794
rRT+AE 40 4.0 1.0 4.0 677.0 0.615 0.612 0.794
rRT+AE 50 3.6 1.0 4.0 677.4 0.636 0.633 0.795
rRT+AE 60 3.2 1.0 4.0 677.8 0.656 0.653 0.795
rRT+AE 70 4.2 0.6 4.4 676.8 0.650 0.647 0.874
rRT+AE 80 6.6 0.6 4.4 674.4 0.561 0.557 0.870
rRT+AE 90 15.2 1.8 3.2 665.8 0.270 0.262 0.618

5.2.3.1 Regular Neural Network with Oversampling (rRegNN)

Table 5.8 lists the regression metrics averaged over 5 runs for pearson correlation (PCC)

on the SEP events only, PCC on the SEP+Elevated events, the mean absolute error

(MAE) on the SEP events, and the MAE for all events. Table 5.9 lists the classification
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metrics adapted to the regression problem. The PCC metric for SEP events is only

maximized with the 10% oversampled training set across all three techniques with the

maximum value in rRegNN 10. This is also the worst performing technique because it

under-predicts all events with all 5.0 FN and 0.0 FP. Like the classifier task, we can

achieve all TN easily by under-predicting all events. The best performing F1 technique

is rRegNN 70 where our FN falls to 2.2, but we gain 2.4 FP events. The MAE of the

SEP events while one of the lower values at 2.161 is still significant for rRegNN 70.

There are further improvements by applying the other techniques.

Figure 5.5 illustrates how the F1 score changes as the rRegNN oversampling amount

varies. The plot slightly resembles a step function with a sudden jump at 30% over-

sampling and then later at 70% oversampling. The F1 begins to fall after the beginning

of each step which is a bit unexpected. We did see similar peak values around 30%

and 70% oversampling in the classifier for cRegNN, although, in this case, the 70%

oversampling is the higher peak.

5.2.3.2 Regression Re-training (rRT)

The worst F1 score in rRT is still better than the best F1 score in rRegNN. The best

F1 in rRT is 0.730 in rRT 10. The increase in performance is due to reducing the FP

by 1.0 and the FP by 0.8. This technique also has the highest HSS, PCC SEP, PC

SEP+Elevated, and MAE than the other rRT techniques. Like the classifier analysis

in cRT, the rRT approach, specifically rRT 80, has the lowest FN across all three basic

techniques at 0.4 FN events. While almost a perfect predictor, the FP have increased

up to 5.4 illustrating the same trade-off that more TP mean more FP. The rRT 10

technique does have the largest error in the MAE for SEP events only which we reduce

by using the autoencoder.

Figure 5.5 illustrates how the F1 score changes as the rRT oversampling amount
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varies. In rRT, we are back to a secondary peak around 70% instead of the primary

peak from rRegNN. If not for the sudden peak at 10% oversampling, the peak F1 score

would still be at 70%. Since the F1 score for 70 and 80 are the same, it could be there

is an event higher F1 score somewhere in-between, but we leave that exploration for

future work.

5.2.3.3 Regression Re-training with Autoencoder (rRT+AE)

The rRT+AE 10 technique has the highest F1 score of 0.742. Clearly, the rRT com-

ponent makes most of the improvement over the original rRegNN approach, but the

autoencoder increases our performance further. The FN has fallen by 0.2 to 1.0 and the

FP has risen by 0.2 to 1.8 over the rRT 10 technique. The rRT+AE 10 technique has

the highest PCC of SEP+Elevated across all three techniques. The high pearson score

suggests a strong linear correlation between the rRT+AE prediction and the actual

ln peak intensity values. There is room to improve however with the remaining 1.821

MAE in the SEP events.

Figure 5.5 illustrates how the F1 score changes as the rRT+AE oversampling

amount varies. The plot for the rRT+AE looks very similar to the rRT F1 score

plot. The difference is that the 90% oversampling has a sharp decline in F1 score per-

formance. It is not a large surprise that the plots are similar since both techniques have

two stages of training focused on learning the representation and classifier separately.

5.2.3.4 Learning Richardson Coefficients

We learned very different coefficients for Richardson’s equation as seen in Table 5.10.

Our wv coefficient is just less than half of the original. Typically, SEP events with

higher speed have higher peak intensity. Yet, according to our learned wv coefficient,

the speed is unexpectedly not emphasized very much. The wexp coefficient meanwhile
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Table 5.10: Original vs learned coefficients with their MAE of log intensity and intensity
(MAE ln, MAE), MAE of log intensity and intensity for SEP events (MAE SEP ln,
MAE SEP) calculated for SEP+Elevated dataset. Bold indicates the better metric
value.

Approach wexp wv MAE ln MAE MAE SEP ln MAE SEP

Original 0.013 0.0036 1.405 9.146 2.073 18.109
Learned 0.383 0.0015 1.559 7.727 1.806 14.907

Table 5.11: Classification metrics using ln Richardson’s Equation with original vs
learned coefficients calculated for SEP+Elevated+Background dataset. Bold indicates
the better metric value.

Approach FP FN TP TN F1 HSS TSS

Original 5.0 1.0 4.0 676.0 0.571 0.567 0.793
Learned 13.0 1.0 4.0 668.0 0.364 0.356 0.781

increased by about 30x. In Richardson’s ln equation, this coefficient is a constant

applied to all events, so it is not as important as the wv coefficient based on velocity.

These learned coefficients are our network’s best fit for the SEP and Elevated events

in the training/validation sets combined from 3-fold dataset 1. To evaluate our coef-

ficients against Richardson’s coefficients, we compared several MAE values. Our coef-

ficient network was trained to learn the Richardson’s ln equation, so the first MAE is

calculated between the predicted ln Peak Intensity (from our model or from Richard-

son’s original ln equation) and the actual ln peak intensity value. We also wanted

to compare the MAE on the actual peak intensity value. To calculate this MAE of

intensity, we exponentiated each prediction value before calculating the MAE against

the actual peak intensity value (instead of the actual ln peak intensity value in the

previous calculation). These MAE values were calculated for the entire training set

including SEP and Elevated events. We repeated these two MAE calculations on just

the SEP events and report those statistics as well in Table 5.10.

For the MAE of Intensity, MAE of SEP ln Intensity, and MAE of SEP Intensity, we
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perform better than Richardson’s original formula. We perform slightly worse when

comparing the MAE on the ln intensity across SEP and Elevated events increasing

from 1.405 to 1.559. When we examine the main contributors to the increased error

in our learned model, we find the largest error in an outlier SEP event. The output of

our learned model for that event is much less than Richardson’s prediction at -1.254

vs Richardson’s 0.036 though we both under-predict the actual ln peak intensity of

4.031. However, when examining the other events, in 4 of them we have on average

0.656 less error. It is our decreased error on these 4 events that dominate our increased

performance on the MAE of Intensity. In addition, we reduced the gap between our

prediction and Richardson’s prediction after exponentiating in most of the cases where

we had larger errors in ln Intensity.

We also calculated the classification metrics of the ln Richardson equation using the

original Richardson coefficients and our learned coefficients shown in Table 5.11. For

these metrics, we used all events including SEP, Elevated, and Background events unlike

the MSE calculations which only used the SEP+Elevated dataset. When comparing

the classification metrics, we see worse classification metrics in our learned model.

Using the original approach, it correctly classifies all but 1.0 TP event in the test set.

Our learned approach also generates only 1.0 FN event, but it also generates 13.0 FP

events versus the original 5.0 FP events. The FN event is not the same between the

two approaches, we missed the outlier SEP event in the learned approach. However,

on the remaining TP events, we reduced their error between the prediction and actual

ln peak intensity considerably as evidenced by the MAE results. The FP errors in

the learned approach seem to be due to overprediction as most had higher predictions

than Richardson’s original equation. In particular, all but 1 of the Elevated events

were predicted higher than their actual 100 MeV Peak Intensity ln.
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5.2.3.5 Combining Richardson Forecast (RC)

Table 5.12: Summarized regression metric results averaged over 5 runs for
RC+rRegNN, RC+rRT, and RC+rRT+AE techniques with 3-fold Dataset 1. For-
matting is the same as in Table 4.4.

Technique PCC SEP PCC SEP+Elevated MAE SEP MAE

RC+rRegNN 0 -0.629 0.313 3.092 0.062
RC+rRegNN 10 -0.382 0.424 3.061 0.114
RC+rRegNN 20 0.109 0.525 3.255 0.124
RC+rRegNN 30 0.333 0.813 2.589 0.208
RC+rRegNN 40 0.259 0.692 2.890 0.188
RC+rRegNN 50 0.185 0.731 2.584 0.229
RC+rRegNN 60 -0.113 0.656 2.717 0.152
RC+rRegNN 70 0.104 0.778 2.459 0.210
RC+rRegNN 80 -0.146 0.505 3.010 0.126
RC+rRegNN 90 -0.384 0.537 2.761 0.176

RC+rRT 10 -0.642 0.139 3.128 0.096
RC+rRT 20 -0.627 0.165 3.015 0.145
RC+rRT 30 -0.666 0.188 2.847 0.189
RC+rRT 40 -0.657 0.201 2.781 0.246
RC+rRT 50 -0.641 0.276 2.532 0.424
RC+rRT 60 -0.704 0.253 2.423 0.598
RC+rRT 70 -0.692 0.264 2.312 0.677
RC+rRT 80 0.216 0.295 2.238 0.560
RC+rRT 90 0.295 -0.012 3.321 0.470

RC+rRT+AE 10 -0.052 0.665 2.310 0.158
RC+rRT+AE 20 0.055 0.733 1.660 0.176
RC+rRT+AE 30 -0.050 0.731 1.588 0.234
RC+rRT+AE 40 -0.217 0.722 1.559 0.289
RC+rRT+AE 50 -0.183 0.686 1.571 0.354
RC+rRT+AE 60 -0.238 0.543 1.723 0.426
RC+rRT+AE 70 -0.076 0.663 1.477 0.507
RC+rRT+AE 80 -0.183 0.676 1.419 0.592
RC+rRT+AE 90 0.283 0.809 1.251 0.887

According to our MAE analysis, our Richardson coefficients perform better than

the original Richardson equation. It is true the MAE and MAE of SEP is lower when

using the RC techniques than over the original three techniques as seen in Table 5.12.
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Table 5.13: Summarized classifier adapted metric results averaged over 5 runs for
RC+rRegNN, RC+rRT, and RC+rRT+AE techniques with 3-fold Dataset 1. Format-
ting is the same as in Table 4.4.

Technique FP FN TP TN F1 HSS TSS

RC+rRegNN 0 2.2 4.8 0.2 678.8 0.050 0.046 0.039
RC+rRegNN 10 2.6 4.6 0.4 678.4 0.102 0.097 0.079
RC+rRegNN 20 2.8 4.8 0.2 678.2 0.040 0.035 0.039
RC+rRegNN 30 3.6 4.0 1.0 677.4 0.203 0.197 0.196
RC+rRegNN 40 3.4 4.4 0.6 677.6 0.129 0.123 0.117
RC+rRegNN 50 3.8 3.8 1.2 677.2 0.217 0.211 0.235
RC+rRegNN 60 3.8 4.2 0.8 677.2 0.153 0.147 0.156
RC+rRegNN 70 4.2 4.2 0.8 676.8 0.146 0.140 0.156
RC+rRegNN 80 3.8 4.2 0.8 677.2 0.163 0.157 0.157
RC+rRegNN 90 3.0 4.2 0.8 678.0 0.179 0.174 0.156

RC+rRT 10 3.0 4.0 1.0 678.0 0.222 0.217 0.196
RC+rRT 20 3.0 4.0 1.0 678.0 0.222 0.217 0.196
RC+rRT 30 3.0 4.0 1.0 678.0 0.222 0.217 0.196
RC+rRT 40 3.0 4.0 1.0 678.0 0.222 0.217 0.196
RC+rRT 50 3.2 3.8 1.2 677.8 0.265 0.260 0.235
RC+rRT 60 2.6 3.2 1.8 678.4 0.382 0.378 0.356
RC+rRT 70 3.0 3.2 1.8 678.0 0.365 0.361 0.356
RC+rRT 80 7.4 3.2 1.8 673.6 0.252 0.245 0.349
RC+rRT 90 10.0 3.6 1.4 671.0 0.174 0.166 0.265

RC+rRT+AE 10 1.6 2.6 2.4 679.4 0.480 0.478 0.478
RC+rRT+AE 20 4.8 1.0 4.0 676.2 0.583 0.579 0.793
RC+rRT+AE 30 6.4 0.2 4.8 674.6 0.593 0.589 0.951
RC+rRT+AE 40 7.0 0.0 5.0 674.0 0.588 0.584 0.990
RC+rRT+AE 50 5.2 0.2 4.8 675.8 0.644 0.641 0.952
RC+rRT+AE 60 4.4 1.2 3.8 676.6 0.553 0.549 0.754
RC+rRT+AE 70 6.0 0.6 4.4 675.0 0.571 0.567 0.871
RC+rRT+AE 80 7.0 0.6 4.4 674.0 0.539 0.534 0.870
RC+rRT+AE 90 39.6 0.0 5.0 641.4 0.243 0.234 0.942

However, the highest F1 score we achieve in RC is lower at 0.644 as seen in Table 5.13.

We do have the same pattern of increased performance from RC+rRegNN to RC+rRT

to RC+rRT+AE, but the increase from RC+rRegNN to RC+rRT is not as dramatic

as in previous results. Using RC+rRT+AE 40, we are able to achieve a perfect 5.0 TP
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Figure 5.6: F1 score vs oversampling rate for RC+rRegNN, RC+rRT, and
RC+rRT+AE techniques.

events which means we predicted them in all 5 runs, however the FP amount is even

higher at 7.0 compared to rRT 80 when we last almost had a perfect predictor. The

best F1 technique of RC+rRT+AE 50 is not much worse in terms of FN at 0.2 and

drops to 5.2 FP events. This is still a lot more FP events than our best results so far

in the rRT+AE 10 technique.

Figure 5.6 illustrates how the F1 score changes for the different RC techniques as

the oversampling amount varies. Although the RC+rRT technique has a similar peak

at 70% oversampling like the previous results, a new peak at 50% is present in the

RC+rRegNN and RC+rRT+AE figures. The RC+rRT+AE also shows the same steep

decline in F1 score at 90% oversampling as the rRT+AE 90 technique.

5.2.3.6 Learning Richardson Error (RE)

Using the RE technique performs even worse in terms of F1 than RC as seen in Ta-

ble 5.15. Although we see the pattern of improvement from RE+rRegNN to RE+rRT

to RE+rRT+AE, the highest F1 score is 0.545 with RE+rRT+AE 20. The RE+rRT

techniques did learn very strong linear correlations to the actual ln peak intensity with
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Table 5.14: Summarized regression metric results averaged over 5 runs for
RE+rRegNN, RE+rRT, and RE+rRT+AE techniques with 3-fold Dataset 1. For-
matting is the same as in Table 4.4.

Technique PCC SEP PCC SEP+Elevated MAE SEP MAE

RE+rRegNN 0 -0.512 0.464 2.454 0.400
RE+rRegNN 10 -0.559 0.514 2.405 0.442
RE+rRegNN 20 -0.409 0.538 2.591 0.456
RE+rRegNN 30 -0.498 0.428 2.735 0.466
RE+rRegNN 40 -0.587 0.510 2.596 0.475
RE+rRegNN 50 -0.397 0.438 2.533 0.493
RE+rRegNN 60 -0.157 0.636 2.307 0.481
RE+rRegNN 70 -0.539 0.153 2.864 0.473
RE+rRegNN 80 -0.364 0.427 2.939 0.472
RE+rRegNN 90 -0.123 0.654 2.278 0.494

RE+rRT 10 0.736 0.866 2.145 0.417
RE+rRT 20 0.130 0.760 1.912 0.443
RE+rRT 30 0.496 0.822 1.679 0.463
RE+rRT 40 0.653 0.832 1.584 0.504
RE+rRT 50 0.663 0.825 1.529 0.534
RE+rRT 60 0.694 0.829 1.480 0.570
RE+rRT 70 0.665 0.829 1.450 0.601
RE+rRT 80 0.729 0.841 1.415 0.657
RE+rRT 90 0.892 0.863 1.445 0.735

RE+rRT+AE 10 -0.582 0.579 2.166 0.413
RE+rRT+AE 20 -0.626 0.547 2.018 0.439
RE+rRT+AE 30 -0.609 0.557 1.946 0.460
RE+rRT+AE 40 -0.451 0.619 1.989 0.488
RE+rRT+AE 50 -0.385 0.643 1.938 0.525
RE+rRT+AE 60 -0.433 0.594 1.917 0.568
RE+rRT+AE 70 -0.386 0.637 2.144 0.530
RE+rRT+AE 80 -0.571 0.511 2.274 0.577
RE+rRT+AE 90 -0.153 0.572 2.005 0.566

peak values in RE+rRT 10 and RE+rRT 90. However, their F1 scores are much worse

due to large amounts of FN or FP events. Like RC+rRT+AE 40, there are multiple

oversample rates in RE+rRT that have all 5.0 TP events, but the FP events rise higher

to 13.0 over the 7.0 achieved previously. Overall, the rRT+AE 10 still appears to be
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Table 5.15: Summarized classifier adapted metric results averaged over 5 runs for
RE+rRegNN, RE+rRT, and RE+rRT+AE techniques with 3-fold Dataset 1. Format-
ting is the same as in Table 4.4.

Technique FP FN TP TN F1 HSS TSS

RE+rRegNN 0 2.4 4.0 1.0 678.6 0.194 0.190 0.197
RE+rRegNN 10 4.2 3.6 1.4 676.8 0.257 0.252 0.275
RE+rRegNN 20 4.4 3.8 1.2 676.6 0.238 0.232 0.234
RE+rRegNN 30 4.8 4.0 1.0 676.2 0.193 0.187 0.195
RE+rRegNN 40 4.6 4.0 1.0 676.4 0.193 0.186 0.195
RE+rRegNN 50 4.8 3.6 1.4 676.2 0.249 0.243 0.273
RE+rRegNN 60 6.2 2.4 2.6 674.8 0.369 0.363 0.511
RE+rRegNN 70 6.2 3.6 1.4 674.8 0.231 0.224 0.271
RE+rRegNN 80 4.8 4.2 0.8 676.2 0.144 0.138 0.154
RE+rRegNN 90 5.0 3.4 1.6 676.0 0.283 0.277 0.313

RE+rRT 10 3.4 4.0 1.0 677.6 0.213 0.208 0.195
RE+rRT 20 5.0 1.8 3.2 676.0 0.479 0.475 0.633
RE+rRT 30 6.4 1.0 4.0 674.6 0.521 0.516 0.791
RE+rRT 40 8.6 1.0 4.0 672.4 0.456 0.450 0.787
RE+rRT 50 11.2 0.8 4.2 669.8 0.415 0.409 0.824
RE+rRT 60 13.0 0.0 5.0 668.0 0.435 0.429 0.981
RE+rRT 70 13.6 0.0 5.0 667.4 0.425 0.418 0.980
RE+rRT 80 21.2 0.0 5.0 659.8 0.321 0.312 0.969
RE+rRT 90 22.8 0.0 5.0 658.2 0.306 0.297 0.967

RE+rRT+AE 10 2.8 3.0 2.0 678.2 0.409 0.405 0.396
RE+rRT+AE 20 3.0 2.0 3.0 678.0 0.545 0.542 0.596
RE+rRT+AE 30 3.2 2.0 3.0 677.8 0.536 0.533 0.595
RE+rRT+AE 40 4.6 2.4 2.6 676.4 0.427 0.422 0.513
RE+rRT+AE 50 6.2 2.2 2.8 674.8 0.404 0.398 0.551
RE+rRT+AE 60 6.0 2.2 2.8 675.0 0.406 0.401 0.551
RE+rRT+AE 70 6.6 3.2 1.8 674.4 0.277 0.270 0.350
RE+rRT+AE 80 7.4 2.8 2.2 673.6 0.308 0.301 0.429
RE+rRT+AE 90 11.4 2.6 2.4 669.6 0.277 0.269 0.463

the best performer.

Figure 5.7 illustrates how the F1 score changes for the different RE techniques as

the oversampling amount varies. In RE+rRegNN, there is a peak close to 70% as in the

previous results. In the RE+rRT and RE+rRT+AE techniques, the peak has shifted
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Figure 5.7: F1 score vs oversampling rate for RE+rRegNN, RE+rRT, and
RE+rRT+AE techniques.

lower to 20% or 30%. The decline in F1 score as oversampling increases is similar to

the results we saw in the rRT and rRT+AE techniques alone, but the F1 score around

70% oversampling is a minor peak if only because of the drop in F1 score at 80%

oversampling.

5.2.3.7 DenseLoss (DL)

Figure 5.8: F1 score vs αDW for DL+rRegNN, DL+rRT, and DL+rRT+AE techniques.
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Table 5.16: Summarized regression metric results averaged over 5 runs for
DL+rRegNN, DL+rRT, DL+rRT+AE techniques with 3-fold Dataset 1. Formatting
is the same as in Table 4.4 except the trailing number is the αDW instead of the
oversampling percent.

Technique PCC SEP PCC SEP+Elevated MAE SEP MAE

DL+rRegNN 0.0 -0.083 0.701 2.670 0.067
DL+rRegNN 0.1 -0.054 0.700 2.645 0.069
DL+rRegNN 0.2 -0.064 0.712 2.494 0.069
DL+rRegNN 0.3 -0.053 0.712 2.441 0.072
DL+rRegNN 0.4 0.018 0.702 2.441 0.077
DL+rRegNN 0.5 0.024 0.696 2.352 0.080
DL+rRegNN 0.6 0.025 0.707 2.187 0.082
DL+rRegNN 0.7 0.053 0.701 2.083 0.093
DL+rRegNN 0.8 0.098 0.689 1.968 0.117
DL+rRegNN 0.9 0.083 0.708 1.726 0.150
DL+rRegNN 1.0 -0.104 0.097 1.770 2.130
DL+rRegNN 1.5 -0.054 0.420 1.614 2.281
DL+rRegNN 2.0 -0.160 0.127 1.574 2.324

DL+rRT 0.0 -0.062 0.705 2.371 0.065
DL+rRT 0.1 -0.062 0.707 2.326 0.066
DL+rRT 0.2 -0.062 0.707 2.269 0.067
DL+rRT 0.3 -0.061 0.707 2.209 0.068
DL+rRT 0.4 -0.060 0.709 2.144 0.070
DL+rRT 0.5 0.032 0.734 2.015 0.077
DL+rRT 0.6 0.121 0.752 1.905 0.081
DL+rRT 0.7 0.153 0.757 1.793 0.086
DL+rRT 0.8 0.142 0.755 1.710 0.090
DL+rRT 0.9 0.061 0.734 1.649 0.107
DL+rRT 1.0 -0.065 0.708 1.544 1.512
DL+rRT 1.5 -0.065 0.709 1.501 1.701
DL+rRT 2.0 -0.065 0.708 1.487 1.794

DL+rRT+AE 0.0 -0.066 0.706 2.359 0.065
DL+rRT+AE 0.1 -0.066 0.707 2.312 0.066
DL+rRT+AE 0.2 -0.066 0.708 2.261 0.067
DL+rRT+AE 0.3 -0.062 0.711 2.209 0.069
DL+rRT+AE 0.4 -0.043 0.718 2.143 0.072
DL+rRT+AE 0.5 0.064 0.743 2.015 0.077
DL+rRT+AE 0.6 0.152 0.760 1.912 0.081
DL+rRT+AE 0.7 0.099 0.750 1.801 0.084
DL+rRT+AE 0.8 0.131 0.753 1.730 0.093
DL+rRT+AE 0.9 0.073 0.739 1.658 0.106
DL+rRT+AE 1.0 -0.068 0.708 1.543 1.512
DL+rRT+AE 1.5 -0.068 0.710 1.503 1.741
DL+rRT+AE 2.0 -0.068 0.710 1.489 1.838
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Table 5.17: Summarized classifier adapted metric results averaged over 5 runs for
DL+rRegNN, DL+rRT, and DL+rRT+AE techniques with 3-fold Dataset 1. Format-
ting is the same as in Table 5.16.

Technique FP FN TP TN F1 HSS TSS

DL+rRegNN 0.0 0.4 5.0 0.0 680.6 0.000 -0.001 0.000
DL+rRegNN 0.1 0.6 5.0 0.0 680.4 0.000 -0.001 0.000
DL+rRegNN 0.2 0.8 4.6 0.4 680.2 0.100 0.098 0.080
DL+rRegNN 0.3 0.8 4.6 0.4 680.2 0.100 0.098 0.080
DL+rRegNN 0.4 0.8 4.6 0.4 680.2 0.100 0.098 0.080
DL+rRegNN 0.5 0.8 4.0 1.0 680.2 0.257 0.255 0.199
DL+rRegNN 0.6 1.0 3.4 1.6 680.0 0.400 0.397 0.319
DL+rRegNN 0.7 1.0 3.2 1.8 680.0 0.457 0.454 0.359
DL+rRegNN 0.8 1.0 2.0 3.0 680.0 0.667 0.664 0.599
DL+rRegNN 0.9 1.8 1.0 4.0 679.2 0.744 0.742 0.797
DL+rRegNN 1.0 681.0 0.0 5.0 0.0 0.014 0.000 0.000
DL+rRegNN 1.5 681.0 0.0 5.0 0.0 0.014 0.000 0.000
DL+rRegNN 2.0 681.0 0.0 5.0 0.0 0.014 0.000 0.000

DL+rRT 0.0 1.0 4.2 0.8 680.0 0.200 0.197 0.159
DL+rRT 0.1 1.0 3.8 1.2 680.0 0.314 0.312 0.239
DL+rRT 0.2 1.0 3.2 1.8 680.0 0.457 0.454 0.359
DL+rRT 0.3 1.0 3.0 2.0 680.0 0.500 0.497 0.399
DL+rRT 0.4 1.0 3.0 2.0 680.0 0.500 0.497 0.399
DL+rRT 0.5 1.0 2.8 2.2 680.0 0.533 0.531 0.439
DL+rRT 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799
DL+rRT 0.7 1.0 1.0 4.0 680.0 0.800 0.799 0.799
DL+rRT 0.8 2.0 1.0 4.0 679.0 0.727 0.725 0.797
DL+rRT 0.9 3.8 1.0 4.0 677.2 0.626 0.622 0.794
DL+rRT 1.0 4.6 0.6 4.4 676.4 0.627 0.624 0.873
DL+rRT 1.5 9.0 0.0 5.0 672.0 0.530 0.525 0.987
DL+rRT 2.0 10.4 0.0 5.0 670.6 0.492 0.486 0.985

DL+rRT+AE 0.0 1.0 4.0 1.0 680.0 0.257 0.254 0.199
DL+rRT+AE 0.1 1.0 3.8 1.2 680.0 0.314 0.312 0.239
DL+rRT+AE 0.2 1.0 3.0 2.0 680.0 0.500 0.497 0.399
DL+rRT+AE 0.3 1.0 3.0 2.0 680.0 0.500 0.497 0.399
DL+rRT+AE 0.4 1.0 3.0 2.0 680.0 0.500 0.497 0.399
DL+rRT+AE 0.5 1.0 2.8 2.2 680.0 0.533 0.531 0.439
DL+rRT+AE 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799
DL+rRT+AE 0.7 1.0 1.0 4.0 680.0 0.800 0.799 0.799
DL+rRT+AE 0.8 2.6 1.0 4.0 678.4 0.691 0.688 0.796
DL+rRT+AE 0.9 3.6 1.0 4.0 677.4 0.638 0.635 0.795
DL+rRT+AE 1.0 4.6 0.6 4.4 676.4 0.627 0.624 0.873
DL+rRT+AE 1.5 9.6 0.0 5.0 671.4 0.514 0.508 0.986
DL+rRT+AE 2.0 14.0 0.0 5.0 667.0 0.420 0.414 0.979

The best F1 score in the DenseLoss+rRegNN technique outperforms the rRT+AE

10, and it just gets better through the other techniques as seen in Table 5.17. By

96



applying DL+rRT with αDW 0.6 or 0.7, we reduce the FP count down to 1.0 keeping

the FN at 1.0. These are the same FP and FN count in the best classifier technique. In

the analysis, we will examine the events to see if they are the same FP and FN events

we had in the classifier analysis. Adding the autoencoder in DL+rRT+AE does not

gain much improvement. The DL+rRT 1.5 with the 5.0 TP events has more FP events

than RC+rRT+AE 40, therefore RC+rRT+AE 40 remains the best F1 score for 5.0

TP events.

There are suspicious looking results when examining DL+rRegNN 1.0, 1.5, and

2.0. The F1 score was steadily increasing as the αDW was increasing before it suddenly

fell. These results are caused by the DenseWeight construction though the effect is

not as drastic in the other DL techniques. When αDW has a value of 1.0, the weight

of the background events falls to a very small constant. In our batches, only about 2

events were SEP or Elevated events, and their weights were higher. However, they were

drowned out by the many background events whose values were very small because their

weights were very small. The DenseLoss function adds all the values up and divides

them by the number of elements. With many of those values close to 0, the resulting

loss was much smaller than it was for smaller αDW values. We ran an adjusted version

of DenseLoss where we divided by the sum of the weights instead of the number of

elements in the dataset. While this did improve the performance of the DL techniques

with higher αDW values, they were still less performant than the lower αDW values, and

the remaining αDW values showed similar performance to the original implementation.

Therefore, we continue to present the original DL implementation and results.

Figure 5.8 illustrates how the F1 score changes for the different DL techniques as

the αDW increases. Like the oversampling, the higher αDW represents higher empha-

sis on SEP events, so we expected increasing performance as αDW increased. The

DL+rRegNN technique had positive correlation of αDW and F1 until 1.0 when there is
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a steep decrease to a flat 0.0 in F1. The best performing DL+rRT and DL+rRT+AE

have peak F1 at αDW 0.6 and 0.7. Due to the decreasing F1 on either side of these

αDW values, it could be there is a higher peak when using an αDW in-between 0.6 and

0.7, but we leave that for future work.

5.2.3.8 Comparing the Main Approaches

Table 5.18: Summarized regression metric results averaged over 5 runs for the best F1
across all techniques with 3-fold Dataset 1. Each row in a technique with either an
oversampling rate or an αDW indicated by the trailing number after the row technique
name. The best value for each metric across all techniques is in bold.

Technique PCC SEP PCC SEP+Elevated MAE SEP MAE

rRegNN 70 -0.258 0.632 2.161 0.126
rRT 10 0.143 0.751 1.857 0.104

rRT+AE 10 0.137 0.753 1.821 0.103

RC+rRegNN 50 0.185 0.731 2.584 0.229
RC+rRT 60 -0.704 0.253 2.423 0.598

RC+rRT+AE 50 -0.183 0.686 1.571 0.354

RE+rRegNN 60 -0.157 0.636 2.307 0.481
RE+rRT 30 0.496 0.822 1.679 0.463

RE+rRT+AE 20 -0.626 0.547 2.018 0.439

DL+rRegNN 0.9 0.083 0.708 1.726 0.150
DL+rRT 0.7 0.153 0.757 1.793 0.086

DL+rRT+AE 0.6 0.152 0.760 1.912 0.081

In comparing the rows of Table 5.18, RE+rRT 30 has the best PCC in both the

SEP only and SEP+Elevated datasets. In terms of the SEP events alone, the PCC SEP

in this technique is much higher than others with only a small increase in MAE SEP

over the optimal RC+rRT+AE 50. Comparatively when we add the Elevated events,

the PCC SEP+Elevated improvement is less impressive with the next highest value in

DL+rRT+AE 0.6. The improved values of PCC in RE+rRT 30 do not guarantee low

MAE error as its MAE error is one of the highest, 0.463, compared to the minimum in
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Table 5.19: Summarized classifier adapted metric results averaged over 5 runs for the
best F1 across all techniques with 3-fold Dataset 1. Formatting is the same as in
Table 5.18.

Technique FP FN TP TN F1 HSS TSS

rRegNN 70 2.4 2.2 2.8 678.6 0.545 0.542 0.556
rRT 10 1.6 1.2 3.8 679.4 0.730 0.728 0.758

rRT+AE 10 1.8 1.0 4.0 679.2 0.742 0.740 0.797

RC+rRegNN 50 3.8 3.8 1.2 677.2 0.217 0.211 0.235
RC+rRT 60 2.6 3.2 1.8 678.4 0.382 0.378 0.356

RC+rRT+AE 50 5.2 0.2 4.8 675.8 0.644 0.641 0.952

RE+rRegNN 60 6.2 2.4 2.6 674.8 0.369 0.363 0.511
RE+rRT 30 6.4 1.0 4.0 674.6 0.521 0.516 0.791

RE+rRT+AE 20 3.0 2.0 3.0 678.0 0.545 0.542 0.596

DL+rRegNN 0.9 1.8 1.0 4.0 679.2 0.744 0.742 0.797
DL+rRT 0.7 1.0 1.0 4.0 680.0 0.800 0.799 0.799

DL+rRT+AE 0.6 1.0 1.0 4.0 680.0 0.800 0.799 0.799

DL+rRT+AE 0.6 of 0.081. We expect that RC+rRT+AE 50 and DL+rRT+AE 0.6

should have higher classifier statistics as their MAE errors are lower.

When comparing the best F1 scores across the various techniques in Table 5.19, the

DL+rRT 0.7 and DL+rRT+AE 0.6 almost completely dominate the highest metrics.

The one exception is the TSS high score in RC+rRT+AE 50 which almost manages

to perfectly predict the TP events at the cost of 4.2 more FP events. This metric is

unsurprising considering it had the lowest MAE SEP. The RE+rRT 30 has the most

FP events across all techniques which reduces its performance considerably. It does do

fairly well on the TP events, but its high value of PCC SEP may not be the cause.

As evidence, the RC+rRT+AE 50 had an even higher TP count but much worse PCC

SEP. Across all four groups, F1 generally increases from the respective rRegNN to

rRT culminating with rRT+AE. Therefore, two stage training is outperforming joint

training with the addition of the autoencoder usually further improving performance.
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(a) rRT+AE with 10% oversampling (b) RC+rRT+AE with 50% oversampling

(c) RE+rRT+AE with 20% oversampling (d) DL+rRT+AE with 0.6 αDW

Figure 5.9: Predicted vs Actual peak intensity for rRT+AE, RC+rRT+AE,
RE+rRT+AE, and DL+rRT+AE. Perfect intensity predictions are on the diagonal
dotted line. The horizontal and vertical dotted lines indicate the threshold for classi-
fication. FPs and FNs are in the upper left and lower right quadrants respectively.

5.2.4 Analysis

Figure 5.9 allows for easy comparison of the top F1 performing models with plots

comparing their predicted output vs the actual ln peak intensity. The figures also

help illustrate the results we found when comparing these main approaches. Threshold

lines separate FPs in the upper left quadrant and FNs in the lower right quadrant. In

comparison to the other plots, the distribution in rRT+AE 10 is unsurprisingly fairly

like the DL+rRT+AE 0.6 when you compare the rRT+AE 10 model’s slightly lower

F1 score of 0.742 to its highest 0.800 F1 score. The rRT+AE 10 run shows an extra
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FP just above the threshold line which causes the reduced F1 score. The MAE on SEP

events in rRT+AE 10 is just a bit smaller than it is in DL+rRT+AE 0.6 which we

can spot in the very slightly increased predictions of the SEP events, but it is not very

significant. The lowest MAE error on the SEP events was in RC+rRT+AE 50. All of

the SEP events were predicted higher in comparison to rRT+AE 10 and DL+rRT+AE

0.6 moving them closer to the perfect prediction diagonal line. The most improvement

was made in the lower intensity SEP events with only minor movements in the higher

peak intensity events. The DL+rRT+AE 0.6 does not get all the TP events as the

RC+rRT+AE 50 model does, but it seems clearer from the RC+rRT+AE plot that it is

over-predicting most samples which allows it to capture the extra TP with the trade-off

of more FP events. Not only does it have the extra TP and FP events, but the elevated

events also have a higher prediction although they are still correctly classified. The

RE+rRT+AE 20 has comparable performance on the elevated events as DL+rRT+AE

0.6, but the 2 extra FP and 1 extra FN event reduce its F1 performance considerably.

5.2.4.1 Regression Re-training with Autoencoder (rRT+AE)

Table 5.20: The important features for the False Positive (FP) and False Negative (FN)
events in rRT+AE 10 visualized in Figure 5.9a. The features are given across the top
in abbreviated format: DONKI Date (DD), Latitude (Lat), Longitude (Lon), Linear
Speed (Spd), Half Width (Hw), Acceleration (Acc), Actual 100 MeV Peak Intensity ln
(Peak ln), Predicted 100 MeV Peak Intensity ln (Pred), and the classification (FP/FN).

DD Lat Lon Spd Hw Acc Peak ln Pred FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.665 FP
1/1/2016 23:12 -34 73 1588 37 12.7 -2.000 0.087 FP
1/6/2014 8:09 -3 102 1275 45 -7.1 1.061 -0.639 FN

Table 5.20 lists the important features for the rRT+AE 10 technique. We tabulate

the same features as we did in the classifier analysis namely: latitude, longitude, linear

speed, half width, and acceleration. To provide context to these values, we plot each
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 5.10: Predicted ln peak intensity vs 5 features for rRT+AE with 10% oversam-
pling.

feature against the predicted ln peak intensity in Figure 5.10.

Similar to our prior analysis of Linear speed vs classifier score, there appears to

be a positive correlation between linear speed and predicted ln peak intensity in Fig-

ure 5.10a. However, the slope of the correlation line seems shallow due to the slightly

elevated ln peak intensity of TN events around 1000 and 1250. The speed does seem

to be contributing to higher predictions since the TP and FP events all have higher

predicted values and higher speeds vs the FN event with a lower speed and lower pre-

diction. Other TN background and elevated events also seem to have higher predictions

with higher speeds which supports the positive correlation between linear speed and

prediction.

There is a less definitive shape in the longitude feature portrayed in Figure 5.10b.

We previously saw a peak around 57 degrees, and most of the TP and FP events
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which have higher predictions are close to that longitude. However, there is an outlier

TP event that has a longitude around -50 with a high predicted value. This outlier

event may be the cause of the variable increased predictions of some of the TN events

around 0 and -50 over other TN events. The FN event has a larger longitude and lower

prediction like most other TN events with larger longitudes. Its higher longitude value

may be causing its prediction to be lower.

The peak we previously saw in the latitude feature was around 0. In Figure 5.10c,

the peak seems to have flattened out to include the range of latitude values from -25 to

25. The cause of this spread may be due to the TP SEP events whose latitude values

vary across this range. The FP event on the lower end of the range past the smallest

TP event’s latitude value has a lower predicted value than the other FP event whose

latitude value is more favorable. The FN event has a more favorable latitude which

may be increasing its prediction above most of the other background events, but there

are exceptions. Other features are contributing to its lower prediction since there are

TN events with a higher prediction and similar latitude values.

The half width feature exhibits a similar transition from fixed peak to a more general

range of values that correspond to higher predictions illustrated in Figure 5.10d. In

this case, the range seems to be from just under 40 to about 75 with steep looking

drops in prediction on each side. The steeper looking drops are due to events sharing

the same half width such as the two elevated and one background event around 75.

Clearly, other features are contributing to their varied predictions. The half width of

the FP and TP event are also equal, supporting the conclusion that other features are

playing a major role in determining their prediction values given their disparity. Like

the latitude event, the high predicted FP event is within the range of the other TP

events while the other lower predicted FP event is outside. However, that outside FP

is within the range of half widths we identified corresponded to increased predicted
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value which may have increased its prediction above the other TN events.

We see familiar twin peaks in the acceleration feature exhibited in Figure 5.10e

as we have identified previously in the classifier analysis. Again, the highly predicted

FP event is right within the range of the other TP events, likely making it difficult

to distinguish. The other FP event along with some higher predicted TN events form

the secondary symmetrically opposite positive peak around 102 in symlog scale. In

comparison to the TP events, its acceleration is not very favorable which may be

contributing to its lower relative prediction to the other FP event. The FN event

is much more favorable in comparison, but its almost obscured by TN events with

higher predictions. Some of the TN events between the FN and TP events have higher

predictions which may have been influenced by the distance between them in their

acceleration feature despite both having a high actual ln peak intensity.

5.2.4.2 Combining Richardson Forecast (RC)

Table 5.21: The important features for the False Positive (FP) and False Negative
(FN) events in RC+rRT+AE 50 visualized in Figure 5.9b. Acronyms are the same as
in Table 5.20.

DD Lat Lon Spd Hw Acc Peak ln Pred FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.987 FP
12/13/2014 14:24 -9 150 2400 50 -84.4 -2.000 0.628 FP
6/21/2013 3:24 -19 -57 1970 70 1.5 -2.000 0.354 FP
1/1/2016 23:12 -34 73 1588 37 12.7 -2.000 0.339 FP
3/15/2013 6:54 -3 -2 1485 66 25.8 -2.000 0.147 FP

Table 5.21 and Figure 5.11 capture the feature details for the FP and FN events

for RC+rRT+AE 50. Although this technique had a lower F1 score than rRT+AE 10,

this run perfectly classified all SEP events as TP. This came at the cost of more FP

events. Analyzing the cause of the FP events may help eliminate them in the future.

There is a strong correlation between linear speed and prediction in Figure 5.11a.
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 5.11: Predicted ln peak intensity vs 5 features for RC+rRT+AE with 50%
oversampling.

The prediction on all events generally increases as the speed increases. Some of the

top predictions are with the events with top speeds though there does seem to be a

drop in prediction with the few largest speed value.

The spread in the longitude feature we saw previously seems more pronounced in

Figure 5.11b due to the higher predictions in the extra FP events. While the prediction

of the previously FN event in rRT+AE 10 has increased, several of the TN predictions

around it have also increased. Increasing its performance may have required putting

more weight for higher longitude values. This seems to be the case for one of the higher

predicted FP events which has a much larger longitude value. In analyzing the TP

events, there still seems to be a peak around 50 degrees.

Figure 5.11c shows higher predictions for latitudes in the range of -25 to 25 degrees

as we saw in rRT+AE 10. Four of the five FP events are within that range of values
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with three of them with almost the same latitude and prediction as one of the TP

events. Their similarity in latitude values and subsequent prediction values suggests

that their latitude feature contributed to their incorrect classification.

As we saw in rRT+AE 10, several events share the same half width but have varied

prediction values. This forms vertical lines in Figure 5.11d around 50, 60, and 70.

Clearly, there are other features contributing to their prediction because if the half

width dominated their prediction they would be on top of each other. The higher

predicted FP events share half widths with the TP events likely making them harder

to distinguish. There doesn’t seem to be a strong peak or correlation due to the varied

half widths in the TP and FP events.

Figure 5.11e continues to have twin peaks around 10−2 and 102. The additional FP

events are generally close to one of the two peaks. The FP on the left peak have close

to the same value and prediction in the symlog scale likely increasing their prediction

because they cannot be distinguished by acceleration alone. The other FP events at the

right peak make it more pronounced along with some higher predicted TN background

and elevated events.

5.2.4.3 Learning Richardson Error (RE)

Table 5.22: The important features for the False Positive (FP) and False Negative
(FN) events in RE+rRT+AE 20 visualized in Figure 5.9c. Acronyms are the same as
in Table 5.20.

DD Lat Lon Spd Hw Acc Peak ln Pred FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 1.708 FP
1/1/2016 23:12 -34 73 1588 37 12.7 -2.000 0.556 FP
3/24/2012 0:39 11 -161 1600 60 -46.6 -2.000 0.306 FP
1/6/2014 8:09 -3 102 1275 45 -7.1 1.061 -0.485 FN
3/7/2012 0:36 30 -60 2200 50 -88.2 4.031 -0.764 FN
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 5.12: Predicted ln peak intensity vs 5 features for RE+rRT+AE with 20%
oversampling.

Table 5.22 and Figure 5.12 present the important features for RE+rRT+AE 20.

This technique has the lowest F1 compared to the top F1 scores from the other tech-

niques. Its main differential is an additional FN event not found in the other top

techniques.

There still appears to be a linear correlation in Figure 5.12a between speed and

prediction, but it is much weaker than observed previously. The predictions are more

varied in the TN events with lower speed values which weakens the correlation. The

TP and FP events with higher speeds continue to have higher predictions generally,

but there is a high-speed FN exception which has low prediction. This is a more

emphasized case of the trend we saw in RC+rRT+AE 50 where the prediction was

higher as the speed got higher until it dropped off for the highest speed events. This

suggests there might be another feature that these very high-speed events share that
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decrease their prediction.

There is also variance in the predictions across the range of longitude values in

Figure 5.12b. The previous TP SEP event at longitude -60 blurs into the background

events as its prediction has fallen and the TN prediction has risen. Although the

three TP and 2 FP events have high predictions and longitude values around 57, the

background TN events have more and more variance in their prediction as the longitude

decreases with both the highest and lowest predictions for the TN events close to the

limit of the Longitude plot. This makes it difficult to assess if there is still a peak

around 57 degrees. With the higher predictions of the TN events and the outlier FP

event with longitude -161, the presence of the peak is less emphasized. If 57 is favorable,

then the outlier FP event mentioned must have other features increasing its prediction.

Its longitude value may be contributing to the fact that it’s the lowest predicted FP

event.

The variance of the TN events in the latitude on the other hand seems to emphasize

the peak around 0 in Figure 5.12c. Several TN events have increased predictions around

0 degrees and predictions decrease on either side. All three FP events have latitude

values close to 0 which is likely increasing their prediction. The previous TP close to 25

latitude has again dropped into the background events like the longitude feature. Its

prediction is lower than the other FN we have seen before which has a more favorable

latitude close to 0.

The linear lines seen previously in the half width feature seem less obvious in

Figure 5.12d. This is seems caused by the variation in the TN events, the extra FP

events, and the new FN event. The new FN event previously had a prediction very

similar to the TP with a latitude close to 50. Since it has a lower prediction value and

the other SEP event with a similar latitude is a TP, it seems less likely that the half

width feature is contributing to the FN low prediction.
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Figure 5.12e reveals the high concentration of events with either a quite positive or

quite negative acceleration feature with fewer events in between. There still seems to

be a peak around −102 with the secondary peak around 102. Several high predictions

in the TN and 1 of the FP events make the secondary peak on the right more distinct.

The other two FP events have acceleration values similar to the other TP events which

is likely contributing to their higher predictions. The two FN fall on either side at -7.1

and -88.2. We might expect the FN to the left of the peak to have a higher prediction

since it has a closer acceleration to the other SEP events, but its prediction is a little

less than the other FN’s prediction. This suggests that other features are contributing

to its lower prediction.

5.2.4.4 DenseLoss (DL)

Table 5.23: The important features for the False Positive (FP) and False Negative
(FN) events in DL+rRT+AE 0.6 visualized in Figure 5.9d. Acronyms are the same as
in Table 5.20.

DD Lat Lon Spd Hw Acc Peak ln Pred FP/FN

3/7/2011 20:12 17 50 1980 45 -63.1 -2.000 0.519 FP
1/6/2014 8:09 -3 102 1275 45 -7.1 1.061 -0.863 FN

Table 5.23 and Figure 5.13 list and illustrate the features for DL+rRT+AE 0.6,

respectively. Upon inspection, we can see that not only did these events persist as

errors in all the regression approaches, but these are the same two events as we had

in our best classifier technique. The feature plots for DL+rRT+AE 0.6 almost exactly

match with the feature plots of rRT+AE 10 illustrated in Figure 5.10. The only marked

difference is correctly classifying its extra FP event as a TN. Comparing these 5 feature

plots between the two techniques does not reveal the cause of this improvement. The

plots of all the other features also show almost identical distributions for each particular
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(a) Linear Speed (b) Longitude (c) Latitude

(d) Half Width (e) Acceleration with symlog scale

Figure 5.13: Predicted ln peak intensity vs 5 features for DL+rRT+AE with 0.6 αDW .

feature with very minor variations in a few choice events.

5.2.4.4.1 Feature Importance

Table 5.24 shows the overall feature importance values for the DL+rRT+AE 0.6 model.

The feature importance values and ranks are very similar to our previous analysis of

the cRT+AE 70 model. Some features have moved especially in the some of the mid

to lower ranked features such as Halo falling to rank 18. The top features are almost

the same with the same top speed and location features.

Table 5.25 shows the FP and FN local feature importance and contribution values.

As we saw in the cRT+AE 70 FP event, the V Log V, Type II Visualization Area, and

Linear Speed have high contributions. In the FN event, the Diffusive Shock, 2nd order

speed at 20 solar radii, and Latitude have high negative contributions. Compared to

the cRT+AE 70 analysis, we have seen the Diffusive Shock and Latitude features but
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Table 5.24: Overall Feature importance values (Îj) for DL+rRT+AE 0.6.

Feature (j) Importance (Îj)

1. V Log V 0.128
2. Diffusive shock 0.125
3. Linear Speed 0.093
4. Richardson’s equation 0.082
5. 2nd order speed at 20 solar radii 0.075
6. 2nd order speed final 0.075
7. CMEs over 1000 km/s past 9 hrs 0.053
8. Max speed past day 0.051
9. Type II Visualization Area 0.049
10. Longitude 0.036
11. CMEs in past month 0.034
12. Half Width 0.031
13. Daily Sunspot Count 0.030
14. MPA 0.028
15. Acceleration 0.027
16. Latitude 0.027
17. CMEs in past 9 hours 0.023
18. Halo 0.020
19. CPA 0.012

the 2nd order speed at 20 solar radii is new although also negative in the previous

feature importance analysis.

Figure 5.14 illustrates the features we have not previously analyzed for the DL+rRT+AE

0.6 model contributing to the FP and FN local importance values. Analysis of the V

Log V feature in Figure 5.14a reveals the same positive correlation we saw for the Lin-

ear Speed feature already analyzed. There is a positive correlation overall and locally

around the FP and FN feature values. The Type II Visualization Area in Figure 5.14b

looks similar to its counterpart in the cRT+AE 70 analysis in Figure 4.10a. The pre-

dictions are more compact than the scores were, but there still seems to be a small

positive correlation. We already saw the strong positive correlation in Linear Speed

previously in Figure 5.13a.
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Table 5.25: Feature importance values from LIME for FP and FN in Table 5.23 with
DL+rRT+AE 0.6. This Table has the same format as in Table 4.12.

Feature (j) FP FN

(ordered by Îj as in Table 5.24) RWij
Wij RCij

Cij RWij
Wij RCij

Cij

V Log V 1 0.140 1 93.895 1 0.088 2 35.526
Diffusive shock 18 -0.032 19 -32.086 19 -0.064 19 -62.507
Linear Speed 2 0.105 3 73.245 2 0.053 5 23.387
Richardson’s equation 6 0.063 5 57.069 5 0.038 4 23.738
2nd order speed at 20 solar radii 7 0.041 8 22.524 18 -0.016 18 -5.869
2nd order speed final 3 0.091 6 55.096 3 0.039 6 16.957
CMEs over 1000 km/s past 9 hrs 13 0.009 14 0.000 7 0.014 12 0.000
Max speed past day 15 -0.001 15 -0.284 17 -0.015 15 -1.761
Type II Visualization Area 4 0.080 2 73.882 6 0.031 3 28.790
Longitude 16 -0.003 16 -1.802 13 -0.002 16 -1.841
CMEs in past month 17 -0.025 17 -2.228 14 -0.003 14 -1.670
Half Width 11 0.019 11 8.766 11 0.001 10 0.561
Daily Sunspot Count 10 0.020 10 13.613 8 0.012 7 10.040
MPA 8 0.023 9 19.943 9 0.008 9 6.151
Acceleration 19 -0.040 18 -7.369 15 -0.005 13 -1.120
Latitude 14 0.004 13 2.213 16 -0.005 17 -2.214
CMEs in past 9 hours 12 0.018 12 4.406 12 -0.001 11 -0.000
Halo 5 0.064 4 63.944 4 0.038 1 38.141
CPA 9 0.023 7 22.555 10 0.007 8 7.075

Figure 5.14c depicts the prediction of events against the Diffusive Shock feature.

The global trend for this feature is positive. The Diffusive Shock feature of the FN

event is high, but it is less than the other SEP events. Locally to the FN event, most

of the events are background events which also have high feature values (about 0.92

normalized) but their actual ln intensity is about -2. Their proximity might explain

why the local linear model in LIME has a negative importance for Diffusive Shock. The

relatively large negative contribution Cij of this feature to the prediction is caused by

the high feature value Xij and negative importance Wij. Figure 5.14d depicts the 2nd

order speed at 20 solar radii which is the new feature we have not previously analyzed.

We see a similar overall pattern in this feature as it is related to speed with again an

overall positive correlation. Local to the FN event however, there does seem to be a

negative correlation due to the close background events and their higher predictions.

Revisiting the Latitude feature in Figure 5.13c, we also can see a negative correlation

local to the FN despite what we had considered a more favorable latitude value.

Table 5.26 shows the group feature importance for the overall dataset, the FP, and
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(a) V Log V (b) Type II Visualization Area with
Symlog Scale

(c) Diffusive Shock with Log Scale (d) 2nd order speed at 20 solar radii

Figure 5.14: Predicted classifier score vs 4 features for DL+rRT+AE 0.6.

Table 5.26: Feature Group Importance for DL+rRT+AE 0.6 with the same format as
Table 4.13.

Overall FP FN

Group (J) RÎJ
ÎJ RŴiJ

ŴiJ RŴiJ
ŴiJ

Speed 1 0.496 1 0.512 1 0.592
Location 2 0.180 3 0.130 2 0.128
CME History 3 0.161 5 0.065 5 0.073
Other 4 0.106 2 0.175 3 0.109
Size 5 0.058 4 0.118 4 0.098

the FN. Same as the group analysis in the cRT+AE 70, we have the same overall

group ranking order, and speed dominates in all three columns. The FP and FN again

differ in the second and third highest group. The FP again has Other as its second

highest group supported by the Type II Visualization Area importance. The FN has

Location as its second highest group supported by the high local importance values
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of Richardson’s equation, CPA, and MPA. We also have analyzed how the latitude

feature has a high contribution to the FN prediction. The overall group again has

Location and CME History as the second and third groups. The FP and FN show

some agreement on the group ranking for Location, but both of their CME History

rankings are 5.
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Chapter 6

Conclusions

6.1 Summary of Findings

In this work, we first addressed the problem of classifying SEP events using CME

measurements and derived values. We leveraged oversampling to overcome the large

imbalance of the very few SEP events vs the prolific number of Non-SEP events with

success as the best performing models across the three techniques used more and more

oversampling. Using cRegNN 20, we achieved the highest TSS score of 0.911 almost

perfectly classifying all of the SEP events, however we saw a trade-off because of its

5.8 FP events. There was an improvement when applying cRT 60 with the FP count

dropping to 3.2 but at the cost of almost another entire FN event. Our greatest

performance was in the inclusion of the autoencoder in cRT+AE 70 with an F1 score

of 0.800 and only 1.0 FP and 1.0 FN.

We secondly addressed the problem of predicting the ln peak intensity for SEP

events using the same dataset. Across all four main approaches, we found a similar

trend of increasing performance by applying re-training, rRT, and further the autoen-

coder, rRT+AE. The best performer in the first main approach was rRT+AE 10.
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With this technique, we had a fairly high F1 score of 0.742. Our experimentation into

learning new Richardson coefficients showed improvement over the original Richardson

equation in our MAE comparison, and the approaches of RC and RE showed that in

improved PCC and TSS. The RE+rRT 30 technique had the highest PCC over the

SEP and SEP+Elevated datasets, but its poor F1 performance was caused by its 6.4

FP. The RC+rRT+AE 50 had the top TSS score of 0.952 even closer to a perfect TP

count at 4.8 than the classifier’s top results, but this came with the trade-off of 5.2 FP

events. The last main approach of DL, specifically the DL+rRT+AE 0.6 technique,

maximized our F1 score at 0.800. The remaining 1.0 FP and 1.0 FN events were the

same across the top classification and top regression models.

6.2 Limitations and Possible Improvements

In the results and analysis, we only presented the evaluation on 1 of the 3-fold cross

validation (CV) datasets. Since we have so few SEP events, we may have gotten lucky

or unlucky in the random partitioning that produced the training/test pair that we

used. A better assessment of our approaches would be to present the average over

all 3 folds so that each SEP event ends up in one of the test sets. We can also

take the CV analysis a step further by running multiple rounds when generating the

CV datasets. Generating a CV dataset involves randomly partitioning a bucket into

training, validation, and test set for each fold. By repeating this random partitioning,

we can generate multiple CV datasets. The averaged and analyzed results over all the

CV datasets will be even more reliable than only including the remaining folds of the

CV dataset into additional results and analysis.

As mentioned in our contribution, the RC, RE, and DL+rRT+AE techniques can

generalize. The general idea of the RC technique is to combine the Richardson forecast
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and another forecast together in a learned weighted sum. The idea of the RE technique

was to learn the error remaining in the Richardson forecast. We can generalize that

to say its an Estimating Error (EE) technique which involves learning a model that

estimates the error remaining in another forecast. We stated that the RC+rRT+AE

50 model had the highest TSS almost perfect predicting all the SEP events (only 0.2

FN remaining). The DL+rRT+AE 0.6 technique had the highest F1 score, more FN

1.0 vs 0.2 but less FP 1.0 vs 5.2. We could apply the key idea of the RC technique

to combine these models together. That is, we could experiment with combining the

Richardson forecast with the DL+rRT+AE technique, RC+DL+rRT+AE, performing

a hyperparameter search for its best αDW value. The RE technique did worse on its

own, but we could also experiment further with applying the generalized form of the

EE technique to the RC+DL+rRT+AE technique, EE+RC+DL+rRT+AE. Thereby,

we would estimate the error remaining in the RC+DL+rRT+AE model’s forecast.

There are untested techniques that may have improved performance in either the

classification or regressions tasks if applied. For example, we discussed the RankSim

approach by Gong et al. [4] in the Related Work that was applied alongside other

techniques such as rRT to improve performance on imbalanced datasets by affecting

the feature space. Unlike the autoencoder technique which we used to help find new

features from the input data, the RankSim technique uses the target values to help

align the ranked feature representation with the ranked target values.

Looking to other tasks, this work does not give a time estimate either for onset or

when the predicted peak of the intensity will occur. The techniques outlined in this

work could be applied to predicting when the harmful protons will arrive or when they

will be at their highest level for better practical application.
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Appendix A

Richardson’s Model

Richardson et al. [15] modeled peak intensity using the following equation:

I(ϕ)(MeV s · cm2 · sr)−1 ≈ 0.013exp(0.0036V − ϕ2

2σ2
), σ = 43◦ (A.1)

for a CME with connection angle ϕ and speed V . Richardson used CMEs from the

CDAW catalog with proton intensities from 14- to 24-MeV to create Equation A.1. We

include only the connection angle term in our input feature derived from his equation

as

FeatureRichardson = 0.013exp(− ϕ2

2σ2
), σ = 43◦ (A.2)

for two reasons. Firstly, we already have linear speed as an input feature. Secondly,

we want the neural network models to find any possible relationship among connection

angle, speed, and other features without biasing it through the use of Richardson’s full

equation.

Connection angle is calculated from the DONKI features using the following equa-
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tion:

ϕ = arccos(sin(θ1) ∗ sin(θ2) + cos(θ1) ∗ cos(θ2) ∗ cos(ϕ1 − ϕ2)) (A.3)

where θ1 = latitude, θ2 = 0, ϕ1 = longitude, and ϕ2 = AngularSpeedOfSun∗1AU
SolarWindSpeed

=
360

27.27∗86400∗1.5∗10
8

SolarWindSpeed
. Solar wind speed was pulled from the OMNIWeb website [12] as the

Plasma Flow Speed averaged over the hour when the CME started according to the

DONKI timestamp. According to Appendix A in Torres [21], the value for θ2 varies

between -7° and 7° based on the seasons. We fix it at 0 for ease of implementation.
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Appendix B

Diffusive Shock

We adapted the Diffusive Shock Equation specified by Torres replacing the constants

used with 10 MeV data with constants for 100 MeV protons [21]. First, they define

the constants involved in the Diffusive Shock equation.

• v is particle speed; for 100 MeV protons, v = 128,474.629 km/s (see Equation

B.1)

• VA is Alven speed, which is typically between 500 and 2000 km/s; we fix this

value at 600 km/s

• vth is proton thermal speed, which is around 150 km/s

• η is shock efficiency, which is around 0.1

• κ is the distribution parameter, which is between 1.5 and 3; we fix this value at

2

• Vsh is shock speed, or the list of Linear speed values for each CME
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To explain the 100 MeV constant replacing the 10 MeV constant, v can be calculated

from:

v = c

√
1− (

1

γ
)2 = 128, 474.629 (B.1)

where c = 3 ·105km/s and γ = 100MeV+938MeV
938MeV

. The other constants are pulled directly

from Torres.

Torres next calculates a quantity M:

M =
Vsh

VA

(B.2)

They use a threshold of 1.1 to compute a quantity γ to be used in the Diffusive Shock

equation.

If M >1.1, then:

γ =
4M2

M2 − 1
(B.3)

Otherwise:

γ =
4 · 1.12

1.12 − 1
≈ 23 (B.4)

Torres calculates another quantity vinj for the final result:

vinj = 2.5Vsh (B.5)

Finally, the overall Diffusive Shock equation is defined:

DiffusiveShock = ηv
1

γ − 1

1

(1 +
v2inj

κv2
th
)κ+1

(
vinj
v

)γ+1 (B.6)
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Appendix C

Changes to CME Data

With expert knowledge from Dr. Ming Zhang, we made some adjustments to specific

samples in the dataset gathered from CDAW and DONKI catalogs. These adjustments

were made after careful analysis by Dr. Zhang of the specific events across both

catalogs. Modifications were considered because there is some discrepancy between

the CDAW and DONKI catalog entries for some feature values. Discrepancies can

exist because of the manual, human involved component when estimating their values

from relevant measurements. In Table C.1, we summarize the advised adjustments we

made to the original dataset.

Table C.1: Adjustments made to specific events in the dataset.

DONKI Date Feature Name Old Value New Value

2/25/2014 1:25 Linear Speed 1670 2147
9/22/2011 11:24 Linear Speed 1000 1905
4/11/2013 7:36 Linear Speed 675 1000
7/23/2012 02:36 Type II Area 18377000 3355800
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