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Abstract

Title: Machine Learning for Classifying Malware in Closed-set and Open-set Scenarios

Author: Mehadi Seid Hassen

Committee Chair: Philip K. Chan, Ph.D.

Anti-malware vendors regularly receive large amount of suspected malware files to be

examined. However, the sheer number of files makes manual analysis time-consuming. Therefore,

it is important to automate this process. Two of the main automation approaches are malware

classification and clustering, where similar malware samples are grouped into malware families.

Grouping malware into families allows malware analysts to examine fewer representative samples

from each family, hence streamlining the malware defense process.

In this dissertation, we focus on two aspects of the automated malware defense. For the first

part of our work, we focus on malware classification in a closed set scenario. The assumption

in this scenario is that instances seen during testing are from the same set of classes that are

seen in training. We explore ways to improve the scalability of feature extraction while retaining

discriminative information about the malware sample. We propose a method for extracting

features from function call graphs (FCGs). Our proposed approach achieves a linear time

complexity compared to previous FCG-based approaches which have quadratic time complexity

both in the size of the dataset and the size of the graph. Experimental results also indicate that

our proposed feature also improves the classification accuracy compared to past research.

For the second part of our work, we propose supervised and unsupervised approaches for

handling open set scenarios. Unlike closed set scenarios where the training data distribution

is the same as the test data distribution, in open set, test data contains instances from data
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distributions that were not seen during training. First, we present an approach that builds on

the output of an existing malware classifier and extracts features from its output to perform

open set recognition. Then, we present a supervised neural-network-based representation in

which instances from the same class are close to each other while instances from different classes

are further apart. We evaluate this approach on two malware datasets; one Windows malware

dataset and another Android malware dataset. We also evaluate the approach on an image

dataset to show that it can be applicable to other domains. The evaluation shows that our

representation results in a statistically significant open set recognition performance improvement

when compared to a state of the art approach on the three datasets.

Finally, we extend our neural-network-based representation by combining it with Adversarial

Autoencoders (AAE) to address unsupervised open set recognition problem. Our evaluations on

three datasets (two malware, and one image dataset) show that our proposed approach gives

improved open set recognition performance.
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Chapter 1

Introduction

Anti-malware vendors regularly receive a large number of suspected malware files to be examined.

For instance, Microsoft’s real-time anti-malware detection products generate tens of millions of

files that need to be analyzed on a daily basis [1]. The reason behind this huge influx of malware,

as Microsoft explains, is that to avoid detection, malware authors modify and/or obfuscate

malware binaries. This modification attempts to make what would have been otherwise similar

malware samples appear different. We refer to these similar samples as belonging to a single

malware class or “family”.

A large number of malware released daily makes it very difficult for human experts to analyze

all of the files. As a result, anti-malware vendors respond slowly to new malware. In some

instances, as Giovanni Vigna [2] shows, even after two months of being released, new malware

go undetected by one-third of anti-virus scanners. Therefore, there is a need for automated

techniques to aid human analysts by grouping similar malware samples into one malware families.

Doing so enable human analysts to focus their attention and analyze fewer representative samples

per family. It also facilitates taking common defensive measures against an entire family rather

than individual samples.

Categorizing similar instances into groups is a classic machine learning task. In the presence

of labeled training data classification techniques can be used is for classifying malware samples

into families. The challenge in using these classification techniques mostly arises from extracting
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meaningful features from malware samples. Since there are a large number of malware binaries

to extract features from, the feature extraction also needs to be scalable.

Most research works in malware classification operate under a “closed set” assumption (i.e.,

assuming that the instances seen during testing are from the same set classes as the instances

seen in training). However, it is not possible to collect training samples representing all malware

families. Besides, because of the adversarial nature of this problem domain, new malware families

are released each day by the malware authors. As a result, malware classifiers are forced to operate

in an “open set scenario” where they face instances during testing from unknown classes (i.e.,

classes that are not in training set). Hence, it is essential for these classifiers to identify when

instances come from unknown classes in addition to discriminating between the known classes.

In cases where the availability of labeled malware data is limited, unsupervised machine

learning techniques such as clustering have been used to identify similar malware and group them

into clusters representing families. Human analysts can then examine representative samples of

each cluster. Similar to malware classification systems, malware clustering systems also operate

in an open set scenario. Hence, the cluster models should be capable of identifying instances that

are not similar to any of the clusters. In other words, these systems should be able to identify

when the test data distribution is different from the training data distribution.

1.1 Problem Statement

Machine learning based malware defense systems that help automate and alleviate the burdens

of human analysts need to fulfill certain requirements. First, the feature extraction process needs

to retain more useful information about the malware. Second, the feature extraction process

should be scalable to cope up with the influx of malware releases. Finally, the classification and

clustering systems should be capable of operating in an open set scenario.

In this dissertation we are interested in addressing three main requirements the above mention

system. These are:

• Improving the closed set classification performance and scalability of malware classification

systems.
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• Identifying instances belonging to unknown classes/families of malware in supervised

manner.

• Identifying instances belonging to unknown classes/families of malware in unsupervised

manner.

1.2 Approach

We start by first exploring effective and efficient malware feature extraction. We propose a new

malware feature extraction approaches based on vector representation of a function call graph

(FCG) that is scalable and retain structural information about the malware code. Although

we start features extraction with a closed set assumption, we move on to further propose both

supervised and unsupervised approaches for handling open set scenarios. We first propose an

approach that extends a closed set classifier by extracting features from the classifier output

to make it work in an open set scenarios. We also propose a neural network based open set

recognition methods (both supervise and unsupervised) that are not limited to the malware

domain. We showcase the applicability of our proposed approach to other domains by evaluating

them on open set image recognition task.

1.3 Key Contributions

The following are some of our key contributions:

• Our FCG vector representation based feature extraction has a linear time complexity both

in the number of malware samples and in the number of function call graph vertices. Our

feature compares very favorably to previous FCG-based features which had quadratic time

complexity both in the number of samples and the number of vertices.

• Our FCG vector representation results in improved classification accuracy compared to

previous approaches.

• Our supervised open set recognition system that extends closed set classifier gives improved

performance over earlier research works in the area.
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• Our neural-network-based supervised open set recognition approach gives a statistically

significant improvement over state of the art neural-network-based open set recognition

system.

• We propose neural-network-based unsupervised open set recognition approach that has

a statistically significant improvement in recognition performance compared to other

methods.

• We show the applicability of our a neural network based open set recognition methods

(both supervise and unsupervised) to other domains outside malware by evaluating on an

image dataset.

1.4 Dissertation Structure

In Chapter 2 we provide a broad literature review in the application of machine learning for

malware defense. We categorize existing works in this area based on the type of features they

use and the type of machine learning approach they employ.

In Chapter 3, we explore malware features used for closed set malware classification in previous

research works and give a baseline performance on the evaluation dataset. We also propose a

new way of extracting opcode n-gram features based on control statement shingling that reduces

the dimensionality of opcode n-gram features.

In Chapter 4, we present a scalable and effective function call graph (FCG) vector

representation to be used as malware feature. Our proposed feature has a linear time complexity

both in the number of malware samples and in the number of function call graph vertices.

Additionally, our approach also gives improved classification performance when compared earlier

FCG features.

In Chapter 5, we propose a supervised open set recognition system for malware. This approach

builds on the output of existing malware classifier and extracts features from the output of the

classifier to perform open set recognition. We evaluate our proposed approach on two malware

datasets. Our proposed solution achieves improved open set recognition compared to earlier

approaches.
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In Chapter 6, we present a supervised neural-network-based representation for addressing

the open set recognition problem. In this representation instances from the same class are

close to each other while instances from different classes are further apart. We show that our

representation results in open set recognition performance improvement when compared to state

of the art approach on three datasets; Windows malware dataset, and Android malware dataset,

and an image dataset to show how the proposed approach can be applied to other domains.

In Chapter 7, we present an unsupervised open set recognition approach by combining

Adversarial Autoencoders (AAE) with our work presented in chapter 6 to learn a representation

that facilitates open set recognition. We evaluate our approach on three datasets; two malware

datasets and one image dataset to show how the proposed approach can be applied to other

domains. According to the evaluation results, our approach gives improved unsupervised open

set recognition performance compared to other methods.

Finally, we conclude this dissertation by presenting a summary of our approaches and

contributions in Chapter 8.
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Chapter 2

Literature Review

In this chapter we summarize the various research efforts that use machine learning for malware

defense. We start, in section2.1, by giving an overview of the machine learning based malware

defense process and give a brief descriptions of its components. Section 2.2 deals with the different

types of machine learning features used in past research work. Finally, we survey the different

machine leaning techniques that have been employed by research works in this area.

2.1 Malware Defense

A malware defense system can be logically viewed as consisting of two parts. The malware

analysis part and the defense mechanism. This holds true for many systems that will look at

through the length of this chapter.

In this section we will look at an overview of these two parts and the sub categories that

exist within them. We will start by discussing malware analysis techniques and move on to the

different defense mechanism that use these techniques.

2.1.1 Malware Analysis

In the context of machine learning based malware defense, malware analysis techniques are used

for extracting information that will be directly used as features or to extract information that
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will be used to derive features. Broadly speaking, malware analysis can be categorized into static

analysis and dynamic analysis techniques.

Static Analysis

In static analysis features are extracted from a program without running the binary. These

features ranging from simple ones such as binary byte sequence [3, 4] to more complex features

such as function-call graph [5, 6].

There are many aspects of static analysis that make it an attractive technique for malware

analysis. Firstly, the amount of resource and time required for static analysis are much smaller

compared to dynamic analysis. Secondly, they provide a more complete view of the malware

binaries when compared to dynamic analysis. The later will be evident when we discuss dynamic

analysis in the next section.

Static analysis, however, is not without its weaknesses. Since many of these techniques work

by analyzing disassembled code they are susceptible to obfuscation by packing utilities as well

as to malware obfuscation such as polymorphism and metamorphism. For instance, A Moser

et al. present a code obfuscation technique, based on opaque constants, for obscuring program

control flow, disguising access to local and global variables, and interrupt tracking of values held

in processor registers [7].

Dynamic Analysis

Dynamic analysis, on the contrary, treats a malware sample as a black box and executes it in a

sandbox, controlled environment, while tracing and monitoring its behavior. Behavior tracking

can be performed at different levels. Some frameworks such as CWSandbox [8] provide tracking

windows API function call level while others such as Anubis [9,10] can support much fine grained

tracking at instruction level.

CWSandbox [8] uses a virtual machine environment as its sandbox and uses API hooking

for intercepting calls to windows API functions of the monitored program. Using this technique

it is able to monitor file system changes, mutex creation, process management operations, and

registry modifications performed by the malware being analyzed. In addition to windows API

functions, CWSandbox also monitors the malware’s network communication activities.
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Anubis analysis environment [9,10] works by instrumenting the virtual machine monitor used

for running the malware analysis sandbox environment. This instrumentation allows it to track

windows API calls and native API calls in addition to the call arguments. It can also perform

dynamic taint analysis and monitor network communication activities.

Dynamic analysis can be further fine grained by using dynamic taint analysis. It is a technique

for tracking the propagation of input data from untrusted sources during a program execution.

Tracking input data allows the analyst to observe when tainted data is used in dangerous

ways [11]. Additionally, it allows the identification of data flow dependencies between different

components of a program.

Higher performance overhead is one of the drawbacks of dynamic analysis when compared

to static analysis. In addition to these overheads, the observed behavior of a malware is not

complete due to many factors. Firstly, malware samples can only be observed for a limited time

hence only the behavior that is observed within this time frame is available for analysis. Secondly,

malware authors can use various techniques to detect whether the execution is being monitored

and can alter their behavior accordingly.

2.1.2 Malware Classification

We now shift our discussion to the second part of malware defense systems. We will start with

malware classification systems and then discuss malware detection systems in the next section.

Nearly one millions malware samples are submitted for analysis to anti-virus vendors. As can

be seen in [12], more than half of these are variants of an existing malware. Malware variants are

obtained as a result making an incremental change to an existing malware or automated changes

using techniques such as polymorphism, metamorphism, and using binary packing software.

Malware samples that exhibit similar functionality while having small differences are grouped

together and are referred to as belonging to the sample malware family. Because of this

similarity malware defense efforts can be facilitated by having an automated system capable

identifying similarities and grouping(classifying) malware samples into their respective families.

Such systems can be referred to as malware classification systems.
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In different literatures, malware classification could mean classification into different malware

families or classification between benign and malicious samples. In this dissertation, unless

explicitly mentioned, malware classification is used to refer to classification into families. We will

use malware detection to refer classification between benign and malicious files.

2.1.3 Malware Detection

Malware detection is the process of discriminating malicious programs from benign ones. Machine

learning based malware detection systems can be categorized into:

Misuse Based Detection Malware detection is performed by modeling the behavior of

malicious programs and benign programs separately and classifying a new sample into

which of the two behaviors it belong to.

Anomaly Based Detection In contrast to misuse based detection, anomaly detection works

by modeling a normal behavior of programs and flag any activity that falls outside this as

malicious.

2.2 Features for Classification and Detection

Using static and dynamic analysis techniques, discussed in Section 2.1.1, different types of

features can be extracted from malware binaries. We categorize these features into content

based, reputation based and other types of features that do not belong in either of the two,

shown in figure 2.1.

2.2.1 Content Based Features

The first set of features we will look are extracted from the content of the malware binaries, i.e.

code, header and data.

Simple Features

In this section we will look at simple features that can be extract from a malware sample with

minimum amount of preprocessing.
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Malware Features

Content Based

Graph Features

Reputation Based Other features

Simple Features

Figure 2.1: Taxonomy of Malware Features

One such feature is function length, measured in bytes, from disassembled malware sample

as used in [13]. The function lengths are represented as a histogram with predefined number

of bins. Then these function length frequency values are used used as features for a malware

classification.

Another set of features are based on printable strings extracted from malware binaries through

static or dynamic analysis. String features used in [3, 13] are extracted using static analysis.

Where as in [14], null-terminated strings are extracted as they are observed in process memory,

when the malware is executed under analysis environment.

A program import table, which is one of the section of a PE file, contains information about

external libraries and the function in those libraries that are imported by a program. In [3, 4]

they use this information to build a binary feature vector used for malware detection.

Instruction n-grams [4, 15, 16] are extracted from a disassembled program binary where

n-grams are constructed from instruction sequences. The instructions in this case can be

represented in terms of their mnemonics or in terms of instruction opcode, excluding the operands.

In [15] they highlight one of the challenges of using these features, which is the high dimensionality

of the features. Even for a bi-gram feature, the number possible bi-grams is in the tens of

thousands. They use a hashing trick for dimensionality reduction, where the large feature space

is hashed in a smaller dimension using a uniformly distributed hash function.
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In [3, 4], they use binary file byte sequence n-gram as feature for malware detection. Unlike

Instruction mnemonic or opcode n-gram sequence, these feature do not require disassembling the

binary. The sequence n-gram extracted here includes contents of all sections of a binary, unlike

the opcode sequence which only looks at the code segment of the binary.

In contrast to the features seen so far which are extracted mainly through static analysis,

system-call sequence based features, such as [17], are extracted through dynamic analysis. Rieck

et al. [18] go a step further and propose what they call Malware Instruction Set, a new layered

representation of system-call and their arguments. In this representation, the system call names,

which constitute the first layer, are encoded using hex values. The following layers contain the

arguments to the system-calls reorganized based on their importance. This layered representation

allows them to extract features at different levels of granularity and gives them control over how

descriptiveness of the representation. Finally, they extract n-grams of these instructions and

represent them as binary feature vectors and use is them for malware classification and clustering.

Dahl et al. [14] also use system-call trigram and system-call and distinct parameter

combination features. To reduce the high dimensionality of the initial features, they use random

projection using a sparse projection matrix R, whose elements are iid from a distribution over

{0, 1,−1}.

A hight level abstraction is built on top of system-call dependencies in [19] to make the

representation more resilient to code obfuscation. In this abstraction, a program is described

in terms of OS objects(such as file, registry, etc.) and operations on these objects(such as

read, write, open, etc.). In addition to operations, dependencies between system calls are

abstracted as dependencies between OS objects. Finally, control flow dependencies are captured

into comparison between OS objects. This abstract representation is then converted into a

sequence of short texts which can then be given as features to the clustering algorithm.

Graph Features

There are tree main types graph information that can be extracted from malware samples;

function-call graphs, control flow graphs and system-call dependency graphs. A function-

call graph is directed graph representation of code where the graph vertices correspond

to functions(procedures) and the edges represent the caller callee relation between the
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functions(vertice) [20]. A control flow graph is defined by Frances E Allen [21] as a “directed

graph in which the nodes represent basic code blocks and the edges represent control flow paths”.

A basic control block is in turn defined as “a linear sequence of program instructions having one

entry point (the first instruction executed) and one exit point (the last instruction executed)”.

A system call dependency graph, Figure 2.2, is a directed graph where the vertices represent a

system call and the edges represent a data dependency between system calls, usually determined

by dynamic taint analysis discussed in section 2.1.1.

Function-call graphs(FCGs) are usually constructed from disassembled binary code using

static analysis. Various works [5, 6, 22–24] have used call graphs to extract features for malware

classification, indexing and clustering. After malware binaries are represented as FCGs, an

approximate graph edit distance(GED) is used by some to measure the similarity between pair

of FCGs. In [6, 23] they use Simulated annealing [25] to approximate GED. Hu et al. [5] on the

other hand use the Hungarian Algorithm to approximate GED.

However, there are other works that do not use GED for measuring graph similarity. For

example [22] uses the normalized number of common edges, between two graphs, as a measure of

similarity. Dullien and Rolles [26] approximate graph similarity via fixed points and propagations.

A fixed point between two graphs is defined as a two nodes(one each from graph) that can be

easily determined to represent the same item in both executables. Their algorithm starts from

an initial fixed point and propagates to mode fixed points by considering the neighboring nodes.

Kong and Yan [24] use function-call graphs to extract new features and use these features to

compute the similarity between two graphs.

Nikolopoulos and Polenakis [27] extract system call dependency graph from a malware sample

using dynamic taint analysis and then convert it into a smaller graph where the vertice represent a

group of system-calls that serve similar purpose and the edges represent the dependency between

these groups based on the dependency between individual system calls. Once this representation

is extracted they define different similarity metrics for detection and classification.
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NtQuerySystemInformation

NtOpenProcess

NtWriteVirtualMemory NtAllocateVirtualMemory

NtCreateThread

NtDuplicateObject

NtImpersonateThread

Figure 2.2: Sample system-call dependency graph

2.2.2 Reputation Based Features

Unlike content based features discusses so far, reputation based features focus on the association

among files and association between files and machines. This is based on the intuition that good

application are used by many users and come from known publishers. On the contrary bad

application appear on fewer machines and come from unknown publishers.

Nachenberg et al. [28] infer a file’s reputation, or it’s goodness, based on its associated

machine reputations. To achieve they transform the problem of calculating file reputation into

a probabilistic graph model and they construct an undirected machine-file bipartite graph. The

nodes in this graph correspond to individual machines and files. The edges, undirected and

unweighted, connect the files with the machines that reported them. They also incorporate prior

knowledge about the machine, the files and the machine-file relationship. Machine prior is based

on machine reputation, which is calculated based on their proprietary formula. The file prior

for labeled files is calculated based on the ground truth about the file’s goodness or badness.

Finally, the machine-file relationship is used to model the intuition that good files appear on

good machines and good machines contain good files. They use belief propagation to iteratively

infers the labels from the node and its neighbors.

Tamersoy et al. [29] work is based on the intuition that good files are expected to strongly

co-occur with other good files and bad files are expected to strongly co-occur with other bad
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files. Each sample file is represented as set of machines it appears in. They use locality sensitive

hashing , MinHash [30] a technique for approximating jaccard index, to cluster the document

into buckets. Then an unweighted bipartite graph is built between the files and the buckets.

The prior probability for labeled files “goodness” is set to 0.99 and 0.01 for benign and malicious

labels, respectively. On the other hand the prior of unlabeled files and buckets is set to 0.5.

Then belief propagation is used to compute the probability that an unlabeled file is malicious or

benign through massage passing between the files and the buckets.

2.2.3 Other Features

In [31] meta-data is collected about programs running on a computer and these features are used

for malware classification. The motivation for using these types of features, as pointed out in the

paper, is that collection and in-depth analysis of all suspicious files is not scalable, there for they

propose working with meta-data features. These include features such as file name, type of file,

digital signer name, signer authority, signature type description in the PE header, organization,

version and locality sensitive hashing fingerprint of the file content.

A very different approach is taken in [32–34] which works by visualizing malware binaries

as images and using the texture information in this image to classify malware. To visualize, a

malware sample is read as 8 bit unsigned integer, where each byte represents a pixel in the gray

scale image. These pixels are organized in 2D array with a fixed width and variable height(which

depends on the size of the malware binary). In the papers, they show that images of different

malware in the same family appear similar. Once converted in to this representation, the problem

of malware classification is reduced into one of image texture classification.

2.3 Machine Learning Algorithms

2.3.1 Malware Detection

In this section we will present the machine learning algorithms that have been use in past research

works in the area of malware detection.

14



In reputation based features [28,29], as discussed section 2.2.2, a bipartite graph is constructed

and then belief propagation is used to assign class labels to unlabeled files for malware detection.

The purpose of belief propagation is to approximate the marginal class distribution of each file.

The algorithm works in two phases. In the first phase(the message passing phase), messages

are exchanged along each edge in the bipartite graph. These messages symbolize a node’s belief

about its neighbors based on the current nodes neighbor. Message passing is repeated until

the messages converge or maximum iteration is reached. In the second phase, the beliefs of each

unlabeled node are computed based on the prior probability of that file and the messages received

from its neighboring nodes.

RIPPER algorithm is used in [3] with import table, string and byte sequence features for

malware detection. RIPPER [35] a rule learning algorithm consisting of two training phases

the rule learning phase and rule set optimization phase. In the rule learning phase RIPPER

iteratively adds rules to the rule set until a stop condition is satisfied. Each rule in the rule set is

grown by repeatedly adding a conjunction, consisting of an attribute value pair, that maximizes

FOIL’s information gain until the rule covers no negative example. After the rule adding stop

condition is satisfied, the entire rule set will be optimized by considering either keeping the current

rule, adding more conditions to the rule, or replacing the rule with a new rule all together to

minimizing error on the entire data set. In addition to classifying RIPPER, Schultz et al. [3] also

experimented with Naive Bayes algorithm. Naive Bayes uses Bayes’ theorem for computing the

likelihood that a given binary is malicious give features. Where the features are assumed to be

independent given the class label.

2.3.2 Malware Family Classification

Another area where machine learning has been applied in malware defense is for automatically

identifying malware families. Dahl et al. [14] use a logistic regression model for classifying malware

samples into their respective families. Logistic regression models the posterior probability of K

malware families via linear function in input features, while ensuring that they sum to one [36].

The model parameters(weights) can be trained by maximum likelihood using the conditional

probability of the data given the model parameters.
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In addition to using logistic regression, Dahl et al. also experiment with using neural networks.

The neural network architecture in this case consists of 4000 input units, followed by hidden layer

of sigmoid units and finally a softmax output layer.

In a slightly different approach, [24] uses an ensemble of classifiers. They first extract different

types of features based on the malware function-call graphs. They then train different base

classifiers, such as k-Nearest Neighbor , for each feature type. Finally, during classification take

an ensemble of these classifier where the importance of each classifier is determined based on the

confidence level associated with each. They use Adaboost algorithm to learn the confidence level

associated with each classifier.

Techniques seen so far require hand crafted features to be extracted from the malware binaries.

However in recently, deep learning has emerged as a very powerful machine learning technique in

various fields such as image recognition [37], voice recognition [38]. One of the attractive aspects

of deep leaning based approach is their ability to work with raw data and automatically learning

high level features [39]. Researchers at Microsoft have demonstrated this possibility in [40] using

Recurrent Neural Networks(RNN) [41] for malware classification. The RNN is used as a means of

automatically learning malware features, or as the paper puts it “to learn the malware language”,

to be given as an input to another classifier such as logistic regression. The training input to

the RNN are the API call sequence made by malicious program. RNN is trained to predict the

next API call, and the weights of the trained hidden units are used as input to another classifier

which is used to classify the malware samples.

2.3.3 Malware Clustering

Kinable et al. [6] use k-medoids and DBSCAN clustering algorithms for clustering malware

samples into families. The k-medoids algorithm is a modified version of the famous k-means

algorithm. In k-means the cluster centroids represent the average of cluster members. However,

in this cases the cluster members are the malware function-call graphs and calculating the average

is not trivial. So they instead use k-medoids which allows for selecting one of the cluster members

to be specified as the cluster center, called cluster medoid. The medoid is going to be the call

graph that has the highest similarity with all other members of a cluster. The algorithm starts
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from selecting the initial cluster medoids and then repeatedly updates cluster membership and

recomputing the cluster medoid until a stop criterion is met.

Kinable et al. further evaluate grouping malware in to families using Density-Based Spatial

Clustering(DBSCAN) clustering algorithm. The intuition behind their choice of DBSCAN is that

instead of assuming that all malware samples in a family are mutually similar to a single parent

sample, one can assume malware evolves. DBSCAN [42] is a density based clusting algorithm

where instead of requiring all cluster members to be similar to the cluster centroid, it has what

are called core points. A core point is a cluster member that has more MinPts number of

points, within a specific radius Rad. Core point can be thought of as multiple centroids for

a single cluster, and this allows DBSCAN clusters to have arbitrary shapes and in this case

accommodate the assumption of the evolutionary nature of malware. The cluster members that

are with in Rad distance from any core point but are not them selves core points are called

boarder points. Any remaining data points that are not a core points or boarder points are

discarded as noise.

Because of the large amount of data that associated with this domain, Xin Hu et al. [15]

point out performing clustering on such data is computationally very expensive. Therefore they

resort to clustering prototype data points instead of all data points. Starting from a random

data point as the first prototype, they iteratively select the next prototype data point. In each

iteration, the data point with the largest distance to existent prototypes is selected as the next

prototype. This is repeated until the distance from all the data points to their nearest prototype

than a predefined threshold. After identifying the prototype points they carry out agglomerative

hierarchical clustering on the prototypes. The non-prototype points will be assigned to the cluster

of the closest prototype.

Rieck et al. [18] also perform prototype based clustering to make their algorithm scalable.

Once the clusters are created they then use these prototypes to classification of new samples,

where a new sample is classified as belonging to the family of the prototype it is most similar

to, given the similarity is greater than a predetermined threshold. However, in cases where the

similarity is less than this threshold they hold that sample as evidence. After enough such samples

are collected the same clustering procedure is performed on them in an attempt to incrementally

identify new malware families.
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A different approach is taken Bayer et al. [19] to make clustering more scalable. After

representing malware samples in terms of an abstract behavioral representation and extracting

features from this representation, Minhash is used to approximate a set of all near similar pairs

with similarity above a given threshold. Minhash is locality sensitive hashing(LSH) technique

based on the idea that a hash of a set is the index of the first element under a random permutation.

Then the probability that two sets will have the same index value of the first element is

equal to the jaccard similarity between the two sets. However generating the permutation is

computationally expensive. Hence, in practice the random permutations are approximated by

computing the Minhash of a set s as h(s) = min(c1 ∗ x + c2 mod P ) for ∀x ∈ s where x is the

index of an element in s, c1 and c2 are constants and chosen at random for each hash function

and P is a prime much larger than the size of the universal set of all sets [43]. To improve

the precision of the Minhash signature multiple hash functions are used together to generate a

Minhash signature. It is still possible to have actually similar sets not to be present in all near

similar pairs, to minimize this the previously discussed procedure is run multiple times.

The approximate set of all near similar pairs is obtained using Minhash, however, might

contain pairs that are not similar. To handle this, Bayer et al. [19] calculate the exact jaccard

similarity of all near similar pairs and those pairs with jaccard index less than a specific threshold

are discarded. Afterwards single-linkage hierarchical clustering is applied using all near similar

pairs, up to the threshold value. Single-linkage hierarchical clustering is a bottom up clustering

technique which starts with each sample forming a cluster of one element, and then repeatedly

combining two clusters that are most similar [44]. When choosing which clusters to merge, the

similarity between two clusters is calculated as the similarity between pair of elements in the two

clusters that are most similar, hence the name single-linkage. In this case, the near similar pairs

list is sorted based on similarity and the clustering algorithm runs until there are no pairs left in

the list.

Similarly Jang et al. [45] use hash functions to create a compact malware fingerprint which

can be used to efficiently compare the similarity between malware samples. They proceed to

using using hierarchical clustering on the fingerprint similarities. An interesting aspect of there

work is that in addition to clustering the also do feature co-clustering to identify the correlated

features among malware samples.
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2.3.4 Anomaly Detection

Anomaly detection works by modeling a normal behavior of programs and flag any activity that

falls outside this as malicious. In practice, anomaly detection is useful in detecting application

vulnerability exploits. In [46] the authors describes their host based anomaly detection technique

that models a normal behavior based on the analysis of system call arguments. For each system

call used by an application, a distinct profile is created which models the notion of a ’normal’

sys-call invocation in terms of what is considered to be ’normal’ values for one or more of its

arguments. This profile models the system calls string arguments by looking at characteristics

such as the string length, string character distribution and regular grammar. During the learning

step the mean and variance of the string argument value for a system call are computed. In

addition to that, for each observed string argument its character distribution is stored and a

Markov model is used to achieve a reasonable generalization of the grammar.

In addition to using the system call argument unary relation as in the previous case, Bhatkar

et al. [47] model binary relations between system calls as well. They presents an algorithm to

learn the data-flow properties of a program. In the context of their work data-flow property refers

to the values of system call arguments and their flow from one system call to a subsequent one.

They capture data flow dependencies through binary relations between system-calls in terms of

their arguments, where the system calls are ordered in terms of their temporal relationships(time-

stamp of a system call). The unary relations between a single system-call and its arguments is

modeled in this work include relations such as equal, subsetOf , elementOf , etc. When learning

unary relations the type of relation between a system-call and an argument value are identified,

the value is stored and when the stored values become larger in number, they are approximated

based on the type of relation and the type of value. During detection any unary or binary

relations identified that are not observed during training are flagged as anomalous.

Li et al. [48] argue that data-flow relations can not be learned properly with out using

information from control-flow to give context to the data-flow. So the main idea of the paper is to

put system calls made by a program being monitored into different context and then learn rules

that can capture data-flow relationships among system calls within a context and across different

contexts. In their case a context of a system call is defined as a fixed sequence of system calls
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that are made before and after it. They then define three types of rule sets first type covering

relations among system calls in the same context, the second type defining relations in repeated

contexts and the third type defining relations between system calls in different context. They use

minimum support and confidence to filter out weaker rules. The learned rules are finally used to

perform on-line monitoring and flag anomalous behavior.

Maggi et al. [49] improves on the work of [46] based on the intuition that some system calls

might have many normal behaviors in different portions of a program. To find these subsets of

normal behavior for a system call, they perform hierarchical clustering on the invocations of each

system call based on their arguments. Once the clustering is done and subsets of each system

call invocations are identified they train a Markov model where the states are represent a single

subset of a system call and the state transitions represent the system calls sequence.

2.4 Challenges and Conclusion

In this chapter we surveyed various research efforts that use machine learning for malware defense.

We started off by explored the different types of features extracted from malware binaries and

then showed how previous research works used these features to train machine learning models

for tackling various problems in the malware defense domain.

We will conclude our discussion by highlighting the challenges that exist in this domain. Some

of these are common in other domains where machine learning is applied while others are more

specific to malware.

Malware features such as instruction n-grams have high dimensionality. This presents

a challenge for many machine learning algorithms. The papers surveyed here used various

techniques such as feature selection, random projection and hashing trick to reduced feature

dimensionality.

Scalability is another major issue for malware defense systems, where close to a million

malware samples are registered per day. Some researchers have used locality sensitive hashing

techniques to improve performance, others have used techniques such as prototype based

clustering to allow these systems to scale with requirements of the problem.
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Finally, the adversarial nature of this domain presents another challenge. This is evident in

the use of code obfuscation and binary packing techniques by malware authors. Malware analysis

techniques such as dynamic analysis coupled with unpacking techniques are one way to address

these problems. Malware authors are not limited to only using these techniques. Hence malware

defense systems need to be able to quickly evolve while at the same time be scalable and effective.
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Chapter 3

Malware Classification Using

Static Analysis Based Features

3.1 Introduction

According to AV-Test [12] over 300,000,000 malware were registered in 2014 alone, more than half

of which were variations of already existing malware. The sheer volume of the problem makes

it impossible for a human expert to analyze each malware. Hence, automated classification of

malware samples is needed.

In recent years various research projects [5,15,50] have focused on developing classification or

clustering techniques to automatically categorize malware into malware families. However, there

are many challenges, such as scalability and resilience to code obfuscation techniques, faced by

these systems.

In our work we explore the use of different features, extracted using static analysis, for

classifying malware into different families. We also propose a new feature based on control

statement shingling which has comparable classification accuracy with ordinary opcode n-gram

based features. These new features also result in shorter training time.
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Before presenting our work, we review past researches in this area in Section 3.2. Background

about the machine learning algorithm used in this work is presented in Section 3.3. In Sections

3.4 and 3.5 we discuss our solution, and we present our experimental results in Section 3.6.

3.2 Related Work

Malware Classification can refer either to classification of binaries as malicious or benign, or

classification of malware samples into different known malware families. Our work deals with the

later one. However, for the sake of completeness we will look at past research in both.

In [3], the authors evaluate the effectiveness of different data mining techniques in classifying

new unseen binaries as malicious or benign. They extract features based on DLL imports,

printable strings and program byte sequence. Then they use Naive Bayes and RIPPER, a rule

learning algorithm, to learn models that can be used for classification of new samples. Other

works, such as [13], also use program printable string feature in addition to function length

features to training machine learning models.

The problem with using program byte sequence feature, as done in [3], is that it is easy to

obfuscate program byte sequence using various binary packing techniques such as UPX [51]. One

way to address this is to examine the opcode or instruction sequence after disassembling the

binary program. X. Hu et.al. [15] use opcode sequence, n-gram, features for clustering malware

samples.

To get a better understanding of the semantics of a program, other works such as [5,6,22,52]

investigate function call graphs. A call graph provides an abstract representation of a program

in the form a directed graph. In this graph, the vertices correspond to functions, and the edges

correspond to one or more calls made from one function to another [20].

Hu et. al. [5] implement a database management system, SMIT, to support malware lookups.

In SMIT, a malware sample is represented using a call graph. SMIT builds a two-level indexing

scheme. The first level uses a B+ tree where the keys are the total number of instructions, total

number of control instructions, total number of functions, and the median number of instructions

per function. The second level index is an Optimistic Vantage Point Tree(VPT), which takes the

similarity of the malware call graphs into account when placing malware into storage buckets.
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The similarity measure used here is an approximate graph edit distance on the malware sample

call graphs.

In SMIT, each function, vertex of the call graph, is represented in terms of the function name,

assembly instruction mnemonics sequence, and a CRC of the instruction sequence to speed up

exact matching between functions. Local, statically linked and dynamically linked functions are

considered. When matching two vertices from two call graphs, a match based on function name

is used if the functions are statically linked or dynamically linked. In case of local function, CRC

is first used for exact matching; if that fails, then sequence edit distance is used as a measure of

the similarity between the two functions’ instruction sequences.

Similar to SMIT, [6] also uses graph edit distance as a measure of similarity between

two malware call graphs. Vertex insertion/deletion, unpreserved edge and vertex relabelling

cost are considered when calculating approximate edit distance. Unlike SMIT, where vertices

corresponding to local functions are matched based on their instruction sequence when

considering relabelling cost, they consider matching of external functions only when calculating

vertex relabeling cost. They then apply Kmeans and DBSCAN clustering algorithms to cluster

similar malware samples together.

An alternative call graph similarity metric, that is based on the number of matching edges, is

proposed in [22] for discovering similar malware variants. Vertices of a call graph, which represent

functions, are first matched. Similar to the previous two works, vertices representing external

functions are matched based on name; however, local functions are matched based on the external

functions they call, the cosine similarity of their instruction frequency, or neighboring matching

functions. Once the vertices are matched then matching edges are identified and a similarity

metric of two call graphs is computed.

3.3 Background

Random Forest is an ensemble learning technique which uses decision trees as the base classifiers.

In general, ensemble learning techniques improve prediction accuracy by combining predictions

from multiple classifiers. The individual classifiers can be built by [44]:

• Manipulating the training set. For example, bagging, boosting, random forest.
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• Manipulating the input feature. For example, random forest.

• Manipulating class labels.

• Manipulating the learning algorithm. For example, varying the initial weights in neural

networks.

Random Forest algorithm manipulates both the training set and input features. The general

algorithm for random forest is shown in Algorithm 3.1. The algorithm builds T decision trees. For

each tree, training samples are randomly selected, based on some distribution, from the original

training dataset. The new training set Dt is equal in size to the original D. An unpruned decision

tree is then trained on Dt. When building the individual trees, instead of considering all available

features for splitting at each tree node, only F randomly selected features are considered. Finally,

during classification, a majority vote is taken among all the trees.

There are various advantages to using Random Forests for the dataset and features explored

here.

1. Random Forest tend to perform better when the set of feature to select from is large.

This allows the construction of de-correlated individual trees, which in turn, improves the

prediction performance of random forests. In our case for instance, opcode 4-gram feature

after hash trick with 14-bit hash has a feature vector size of 214 = 16384.

2. Speed of training is fast because at any given tree node, random forest only considers

a randomly selected subset of features that are much smaller in number than our entire

feature space. Hence, reducing the training time.

3. Prediction accuracy was better than or comparable to other techniques we looked

at for Microsoft Malware Classification Challenge Dataset, such as logistic regression,

backpropagation artificial neural networks, and decision tree.
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Algorithm 3.1: General Random Forest Algorithm
Input : D: Training data,

T : Number of decision trees in the random forest,
F : Number of randomly selected features considered at each tree node.

Output: Random Forest with T decision trees base classifiers.
1 for t = 1 to T do
2 - Create bootstrap sample Dt data from original training data D by randomly

selecting elements from D where |Dt| = |D|.
3 - Train an unpruned decision tree on Dt. At each tree node consider only F

randomly selected features for splitting.
4 end

3.4 System Overview

Our malware classification pipeline consists of three components:

• Feature extraction

• Learning Classification Model

• Classification of Unseen Binaries

Feature extraction, discussed in detail in Section 3.5, is the first component in the pipeline. Here,

static analysis of a disassembled malicious binary is performed to extract different features that

will be used by the machine learning algorithm to learn models to be used for classification of

malicious binaries.

In our experiments, Weka’s implementation of Random Forest is used both to learn the

classification models and classifying samples. Weka [53] is an open source implementation of a

collection of machine learning algorithms. The algorithms can be accessed from the command

line tool, GUI interface, or from a Java code.

When classifying new samples into the known malware families, we first extract features.

Then, we use Weka by giving the trained model and feature vectors of the new samples as input.

3.5 Feature Extraction

The features discussed here are all extracted using static analysis of the disassembled malicious

binaries. Static analysis is not the only way to perform analysis of malicious binaries. In dynamic
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analysis, a malicious binary is run in a sandbox environment while monitoring different aspects of

its execution, such as system call, file, network, and registry activities. Despite all the advantages

of dynamic analysis, its main shortcoming is its performance overhead. When considering large

datasets with thousands of binaries, dynamic analysis does not scale well. Since scalability is

one of the requirements of the current work, static analysis is used to extract features from

disassembled files of malicious binaries.

To extract features discussed in the next sections, malware binaries need to be unpacked, if

packing tools were used to obfuscate the binaries, and then disassembled using unpacking tools.

In the next subsections, we will discuss features that have been used in the past, such as

Instruction frequency, opcode n-grams, DLL features, as well as a new control statement shingling

based feature proposed in this work.

3.5.1 Assembly Instruction Mnemonics Frequency

The first feature considered is instruction mnemonics frequency. Each malware sample is

represented as a vector, where the elements of the vector represent frequency of occurrence

of an assembly instruction in that specific malware. The frequency values are then normalized

by the total number of instructions in that malware.

3.5.2 Instruction Opcode N-Grams

The second set of features extracted from disassembled files of malicious binaries consider

instruction opcode n-gram frequencies. We decided to use opcode n-grams instead of instruction

mnemonic n-grams because opcodes are more specific, hence, providing more discriminating

features. For example, there are several opcode values that represent an instruction mnemonic

mov based the operand’s location and type.

When extracting opcode n-grams, first a malware file is represented as a sequence of

instruction opcodes. Then, n-grams of the instruction opcode sequence are created, and their

frequencies are counted and normalized by the total number of opcode n-grams in the malware

binary.
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Ideally, we would want to represent the occurrence frequency of each possible opcode n-gram

as a value in the feature vector. However, there are two challenges associated with that:

• The number of unique n-grams grows exponentially in the number of distinct instructions

and the length of n-grams. This impacts both on the learning speed and prediction

performance of the machine learning model.

• Sparseness of observed n-grams. In practice, not all of the possible opcode n-grams are

observed in a given malware. This results in many opcode n-gram frequencies having zero

values.

One way, to address the these problems is to use feature reduction techniques to reduce the

feature space into lower dimensions. One such technique is using hashing. Previous works, both

in the malware classification domain [15] and other domains [54], have used feature hashing

for dimensionality reduction and have shown that it does not result in loss of classification

performance, given a sufficiently long hashing bit. In fact, dimensionality reduction tends to

reduce overfitting [55].

2B 35 14 85 67 00 sub     esi, dword_678514
8B 0D 10 86 67 00 mov     ecx, dword_678610
B8 28 0A 00 00 mov     eax, 0A28h
2B 15 58 86 67 00 sub     edx, dword_678658
8B 0D 5C 87 67 00 mov     ecx, dword_67875C
33 F6                       xor     esi, esi
.
.

Disassembled Binary Opcode Sequence

2B ,  8B,  B8,  2B,  8B,  33, … 

h(.)
h(.)

h(.)

h(.)

h(.)

… 1 2 1 1 … 

N-gram Frequency Vector

N-grams

Hashing

Figure 3.1: Extracting opcode n-grams and hashing to reduce dimensionality
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The hashing used here works as follows: Opcode sequences are extracted from a disassembled

malware binary, and a sliding window, of size n, is moved over the sequence to get the n-grams.

In the example shown in Figure 3.1, a sliding window of size 2 to get 2-grams, such as 2B-8B, 8B-

B8, B8-2B, etc., are extracted. Then a non-crypto hashing function, which uniformly distributes

the keys, is used to hash the opcode n-grams into buckets. The feature vector has one feature for

each bucket, where each feature value corresponds to the observed frequency of opcode n-grams

hashed to that bucket. In our example, for instance, the 2-gram 2B-8B is observed twice so

the frequency vector cell that corresponds to the bucket it hashes to has a count of two. This

frequency vector is further normalized by scaling its values to have the same range, say [−1, 1]

or [0, 1]. In the experimental results section the effect of different number of buckets, which is

the result of the bit length of hashing, is discussed in more detail.

3.5.3 Proposed Opcode N-Grams with Control Statement Shingling

Naturally, code is structured into functions, control blocks, and so on. However, the opcode

n-gram feature discussed in the previous subsection does not take the structure of code into

account. In an attempt to address this, we borrow the idea of word shingling from text document

classification, where stop-words are considered as delimiters in the document ,and n-grams of

characters, words, or phrases are constructed starting at the delimiter. In the case of disassembled

malware code, we consider the opcode of control statements, such as JMP, LOOP, CALL, as stop-

words. These control statements delimit the different control blocks in the opcode sequence.

Properly representing control blocks in the extracted feature presents a new challenge, such

as how many n-grams to consider to represent each block and whether or not to include the stop-

words(control statements) when constructing n-grams. Both of these impact the classification

accuracy and feature dimensionality, which in turn affects model training speed. Considering

stop-words as part of the n-gram, for instance, results in fewer numbers of unique n-grams, and

hence smaller numbers of features. Similarly the smaller number of n-grams considered in each

control block also results in fewer unique n-grams.

Giving dimensionality reduction more consideration, we decided to consider only one n-gram,

including the stop-words, from each control block. We start by extracting opcode sequences from
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8D 8B D7 90 FE FF    lea     ecx, [ebx-16F29h]
3B F9     cmp   edi, ecx
75 11    jnz     short loc_4014BB
B9 39 78 00 00    mov   ecx, 7839h
2B 0D 8C 84 67 00     sub    ecx, dword_67848C
81 C3 2A 43 FF FF    add    ebx, 0FFFF432Ah
3B FB    cmp   edi, ebx
75 0A    jnz     short loc_4014D9
C7 05 44 84 67 00 64 D3 00 00 mov    dword_678444, 0D364h
29 05 98 84 67 00    sub     dword_678498, eax
.
.

Disassembled Binary Opcode Sequence

h(.) h(.)

… 1 1 … 

N-gram Frequency Vector

N-grams
with control 
statement
shingling

Hashing

8D, 3B, 75, B9, 2B, 81, 3B, 75, C7, 29, … 

Figure 3.2: Extracting opcode n-grams and hashing to reduce dimensionality

the disassembled binary. The shingles are then constructed as opcode n-grams starting with a

stop-word. For example, in Figure 3.2 JNZ is a stop-word and n-gram is extracted including

JNZ. We then use feature hashing to reduce dimensionality of our feature vector. The feature

vector after hashing presents the frequency of n-gram shingles in the corresponding bucket.

Besides taking the structure of the code into account, these features have the added advantage

of resulting in a fewer number of unique opcode n-grams. This translates to a smaller number

of hashing collisions and hence, requires fewer hash bits, resulting in a lower dimensional feature

vector, as shown in Section 3.6.2.

3.5.4 Import Address Table(DLL) Feature

Features discussed so far depend on a successful disassembling of the malware binaries. However,

this is not always the case, as some advanced malware packers out there make it very difficult to

unpack and disassemble the malware binaries. In such cases, we need to look for other features

that can be obtained without the need for disassembling. On such feature is the import table
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information. The import address table is one of the sections of a PE file. It contains information

about external libraries and the function in those libraries that are imported by a program [56].

As a machine learning feature, first all the imported libraries(DLLs) in all of the malware

samples in the training set are listed. Once this is done, then a binary vector is constructed

for them. A cell in this vector is 1 if that library is imported by the malware sample under

consideration; it is 0 otherwise. Each malware sample will be represented by this binary vector.

3.6 Experiments and Results

3.6.1 Dataset

The dataset used in this chapter was obtained from the the Microsoft Malware Classification

Challenge [1]. It has 10,867 labelled malware samples, which belong to 9 malware families. Table

3.1 shows the class distribution for the nine malware families. For each malware sample, the

disassembled file, generated using IDA pro [57], and its binary file, without a PE header, are

given.

3.6.2 Hash bit length when using feature hashing with n-gram features

The number of bits used to represent the hash values determines the total number of buckets to

which the keys get hashed. The hash bits greatly affect the performance of the machine learning

algorithm. If too small, there will be a lot of collisions and many n-gram features will be hashed

into the same bucket, hindering descriptiveness of the reduced feature vector. Large values, on

Table 3.1: Dataset class distribution

Malware Family Name Number of Samples
Ramnit 1541
Lollipop 2478
Kelihos ver3 2942
Vundo 474
Simda 42
Tracur 751
Kelihos˙ver1 398
Obfuscator.ACY 1228
Gatak 1013
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the other hand, fail to reduce the dimension of our original opcode n-gram feature which results in

the machine learning algorithm taking longer training time, and being susceptible to overfitting.

Therefore, it is important to determine the appropriate hash bit length.

To determine the hash bit length that is appropriate for both the opcode n-gram and opcode

n-gram with control statement shingling, we conducted experiments by varying both the length

of the n-gram and the hash bit length. For these experiments we used Random Forest with 100

base classifier trees (i.e. the T in Algorithm 1). These experiments were conducted on a smaller

subset of the original data, with 946 samples and 10 fold cross validation. The results of these

experiments are shown in Figure 3.3.
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Figure 3.3: Effect of hash bit length on prediction accuracy using Random Forest

For a fixed value of n in n-gram, we expect the prediction accuracy to increase with an increase

in the number of bits used to represent the hash value. This is because the larger number of

hash bits results in smaller hash collisions. On the other hand, for a fixed hash bit length, we

expect the prediction accuracy to decrease as the length of the n-gram increases. This is because

the number of possible n-grams increase as n increases, and this will result in higher number of

collisions.
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The results in Figure 3.3 agree, for the most parts, with our expectation. For the opcode

n-gram features, Figure 3.3a, 3-gram and 4-gram accuracy increases as the number of hash bits

increase. In the case of 2-grams, however, accuracy for the 14-bit hash is less than accuracy at the

12-bit. For 2-gram opcode sequence there are I2 distinct 2-gram opcode sequences, where I is the

number of distinct x86 opcodes. And a 14-bit hash results in a feature vector of size 214=16384,

resulting in I2/16384 collision on average, if the hashing function uniformly distributes the keys

across the 214 buckets. However, the original 2-gram features are very sparse, so even though we

expected I2/16384 collisions per bucket, most of the 2-gram frequencies have zero values, thus

resulting in the hash buckets also having zero values. This is exactly what we found out when

we looked at the feature vector for 14-bit hashed 2-grams. When this sparse feature vector is

given as input to our algorithm, Random Forest, it is possible that many of the F features that

are considered by the algorithm at each tree node are zero and do not help in distinguishing

the malware class. Hence, we see that in the case of 2-gram with 14-bit hashing, the prediction

accuracy does not improve. One of the results that we haven’t been able to explain has to do

with the slight decrease in accuracy in case 4-gram when hash bits are increased from 8-bit to

10-bit in Figure 3.3a. In spite of this decrease, the over all trend of increasing in accuracy with

increase in hash-bits is still evident in 4-grams for 12-bit and 14-bit hash.

Opcode n-gram with control statement shingling feature, Figure 3.3b, also exhibits similar

behavior. In this case, the optimal hash length for 2-gram is at 10-bit. It is mainly due to

the fact that our proposed features resulted in a smaller number of distinct n-grams. This, in

turn, results in a fewer number of hash collisions, achieving good classification accuracy even at

a smaller hash bit length.

We also conducted experiments to justify our decision to include stop-words (control

statements), such as JMP,CALL, etc., when representing each control block in terms of n-grams.

The classification accuracy including the stop words using 10-bit feature hashing is 97.89%,

whereas, classification accuracy when excluding stop-words using 10-bit feature hashing is lower

at 97.04%. The optimal hash bit length when excluding stop-words occurs at 12-bits due to the

larger number of unique n-grams. Therefore, not only does including stop-words in the n-grams

improve accuracy, it also reduces the number of unique n-grams which, in turn, reduces the

feature dimensionality as well as improving model training speed.
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3.6.3 Evaluating Features

We now compare the prediction accuracy of the features discussed in Section 3.5. In addition

to the individual features, we also look at some of their combinations. Table 3.2 shows the

prediction accuracy on the training set using 10 fold cross validation.

The last column in the Table shows the number of data instances considered for each feature.

One of the problems we faced when applying n-gram based features to this data set was that not

all of the malware samples were properly parsable by our feature extractor. Hence, we see that

when using only instruction mnemonics or opcode based features, we are only able to classify

10,260 instances. To take advantage of the high prediction accuracy of n-gram based features and

all inclusiveness of DLL boolean features, we combined the two features. Results are shown in

the last two rows with prediction accuracy of 98.25% and 97.98% for opcode 2-gram features with

12-bit hashing and opcode 2-gram feature with 10-bit hashing and control statement shingling,

respectively.

The new control statement shingling feature proposed in this chapter, opcode n-gram using

control statement shingling, performs very well at 99.11% almost equivalent to normal opcode

n-gram feature which has accuracy 99.21%. Since this new feature encounters a smaller number

of unique n-grams, it has the added advantage that it needs a fewer number of hash bits to

represent, hence having a smaller space requirement. In the results shown here, opcode n-gram

using control statement shingling is represented using 10-bit hash, compared to the normal opcode

n-gram feature which requires 12-bits, hence resulting in almost 4 times as many features.

The proposed control statement shingling feature also gives an insight into malware code. The

good classification accuracy of 99.11% attained show that only considering a few instructions after

a branching statement such as JMP, CALL and others can help discriminate malware families.

Table 3.2: Prediction accuracy using Random Forest

Features Accuracy Instances
Asm instruction frequency 97.71 10260
Opcode 2-gram 99.21 10260
Opcode 2-gram using control stmt shingling 99.11 10260
DLL boolean feature 83.41 10867
DLL with Opcode 2-gram 98.25 10867
DLL with Opcode 2-gram using control stmt shingling 97.98 10867
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This implies that a considerable number discriminative operations are performed following a

branching statement.

3.6.4 Training Time

The smaller number of features that result from our new feature also translates to a faster

training time. As shown in Table 3.3, this is less evident with Random Forest because it works

on a random subset of features when evaluating the the features for each tree node. The average

training time for Random Forest using the control statement shingling features with 10-bit hash

is 1.28 seconds, whereas using n-gram frequency features with 12-bit hash it was 1.52 seconds.

The training time difference becomes very significant when using machine learning algorithms

that consider all features for model training. For example, using Logistic Regression, the average

training time with our new feature which only needs 10-bit hash is 67.03 seconds, whereas when

using normal n-gram features with 12-bit hash is 2169.72 seconds.

These experiments were carried out on a smaller subset of the original dataset consisting of

946 samples. We used Weka’s implementation Random Forest and Logistic Regression ran on a

machine with 2.6GHz 8-core cpu and 100GB main memory.

Table 3.3: Training time

Feature Training Time (sec)
Random Forest Logistic Regression

12-bit opcode n-gram 1.52 2169.72
10-bit control stmt shingling 1.28 67.03

3.7 Limitations

The machine learning features used in this chapter rely on the correct disassembly of the malware

binary. The use of more advanced binary packers by malware authors can make disassembling

difficult. One way to handle this is to use dynamic analysis to run the packed program and

dump process memory image once the malware has unpacked itself. This is then given to the

disassembler.
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The proposed classification technique is for identifying the malware family of a given malware.

This requires the malware to belong to, or to be a variation of, one of the already known malware

families. Identifying new malware families is beyond the scope of of this work.

3.8 Conclusion

In this work we investigated the problem of classifying malware samples into known malware

families. This is an important problem because more than half of the malware released each year

are variations of existing malware. By classifying malware samples into families, representative

samples of a given family can be analysed by human experts and defensive measures can be

taken.

We evaluated various static analysis based features for malware classification. We also

proposed a new feature which performs n-gram shingling with control statements as stop-words.

We showed that the new feature performs comparably with opcode n-gram feature while requiring

smaller feature vector and shorter training time.

36



Chapter 4

Scalable Function Call

Graph-based Malware

Classification

4.1 Introduction

In an attempt to preserve the malware codes structural information during machine learning

feature extraction, function call graph-based features have been used in various research works

[5, 6, 23] in malware classification. However, these approaches are usually based on computing

graph similarity using computationally intensive techniques. Due to this, much of the previous

work in this area incurred large performance overhead and does not scale well.

In this chapter, we propose a linear time approach for extracting function call graph (FCG)

features. We overcome the performance overhead associated with FCG based features by using

a novel technique to convert FCG representation into a vector representation based on function

clustering. Our proposed approach has the following advantages:

• It is faster compared to previous works for FCG based malware classification.

• It has a higher classification accuracy compared to previous works.
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• The graph feature vector, extracted from FCGs, can be combined with other non-graph

features.

We will start by first reviewing related research works in Section 4.2. In Section 4.3, we

will describe the details of our approach and implementation. And finally, we will evaluate our

approach and compare its efficiency and effectiveness with previous research works in Section

4.4.

4.2 Related Works

Graph-based features have been used in many research works for malware clustering and

classification. The main attraction of graph-based features is that they preserve information

on how different parts of the malware code interact.

There are many types of graph information that can be extracted from malware samples:

FCGs, control flow graphs and system-call dependency graphs. FCG is a directed graph

representation of code where the vertices of the graph correspond to functions (procedures),

and the edges represent the caller-callee relation between the functions (vertices) [20]. FCGs

are usually constructed from disassembled binary code using static analysis. Various research

works [5, 6, 22–24] have used FCGs to extract features for malware classification, indexing and

clustering.

When representing malware as FCGs, be it for classification, indexing or clustering, the

fundamental question that needs to be addressed is that of measuring graph similarity. Graph

edit distance (GED) is one such metric that is used in various domains for measuring the

dissimilarity between two graphs by providing a measure which quantifies the minimum amount

of edit operations that need to be performed to transform one graph into the other. The appealing

aspects of this metric is its customizability (flexibility), which it provides in the form of vertex

and edge related edit distance costs that can be defined to incorporate domain knowledge [58].

However, exact computation of GED has exponential time complexity in the number of vertices.

Hence, approximations of the metric are used.

As mentioned earlier, one needs to define cost functions to be used for calculating GED.

In [6,23], the authors define GED in terms of three cost function: vertex insertion/deletion cost,

38



edge cost, and vertex relabeling cost. In their approach, before computing GED, a filtering step

is applied to remove most similar function pairs from the two graphs, based on the Jaccard

Index of the function instruction frequency vector. Then a random bipartite graph mapping of

the remaining vertices between the two graphs is constructed. Simulated annealing [25] is then

applied to find a bipartite mapping to approximate graph edit distance. Finally, the approximated

GED is used in [6] to perform malware clustering.

In [5], a malware database management system is implemented that indexes malware samples

based on their FCG similarity using an approximate GED. Similar to previously discussed works,

they also approximate GED by finding minimum cost bipartite graph mapping between the

vertices of the two graphs. In their case, however, they used the Hungarian Algorithm to find

this mapping. The Hungarian algorithm finds the minimum cost of a bipartite mapping based

on an input cost matrix. This matrix specifies the cost of mapping a vertex (function) in one

graph to a vertex in a second graph. In their implementation this cost is composed of Relabeling

Cost, which accounts for the cost of matching functions, and Neighborhood Cost, which takes

into consideration matches between the neighboring vertices. Because of the time complexity of

the Hungarian algorithm, they filter out highly similar functions based on names for external

functions, and based on the similarity of instruction mnemonic sequences for local functions.

There are other research works that do not use GED for measuring graph similarity. For

example, [22] uses the normalized number of common edges between two graphs as a measure of

similarity. The authors begin by first matching external functions based on their function names.

Local functions are first matched based on their external function calls, and matching functions

(vertices) are removed. The remaining functions are next matched based on their instruction

opcode. Then, they match the still remaining functions based on whether the neighboring vertices

are matched. Finally, the similarity metric is calculated as the number of common edges between

the two graphs and normalized by the sum of the number of edges in both graphs divided by

two.

A work by Dullien et al. [26] is another example that uses a different metric than GED to

measure graph similarity. They approximate graph similarity via fixed point propagation. A fixed

point between two graphs is defined as a two nodes (one in each graph) that can be determined
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to represent the same item in both graphs. Their algorithm starts from an initial fixed point and

propagates to more fixed points by considering the neighboring nodes.

In [24], the authors use FCGs to extract new features to compute the similarity between two

graphs. They start by extracting FCGs, where each function is represented in terms of size types

of initial features. They proceed to learning a distance metric for each attribute type and an

optimal vertex matching matrix that maximizes between-class distance while minimizing within-

class distance. Finally, they train classifiers for each feature type and combine the results in an

ensemble classifier.

In [59], the authors propose a way to map function call graphs (FCGs) to vector form, inspired

by linear-time graph kernel [60]. First, FGSs are extracted from android APK files. To label

the graph vertices, instructions are grouped into 15 categories. A 15-bit vector is used to label

the vertices, which indicates the presence or absence of these instructions. This label is further

changed to the neighborhood hash [60], which is computed as bit-wise XOR of the vertices 15-bit

vector and all of it’s successors vertices. Finally, the neighborhood hash of the complete graph is

obtained by calculating hashes for each node individually and replacing the original labels with

the calculated hash values. The graphs are represented as multiset of these hash values. This

work presents a way of representing these graphs as feature vectors such that the inner product

between the two feature vectors is equal to the multi-set intersection of the two graphs.

The difference between [59] and our work arises primarily from the way we label the FCG.

In our case, we label vertices by cluster-id of the function clusters. This allows us to represent

functions in more detail because all instructions, as well as the sequence of the instructions, are

encoded. It also allows us to control the granularity of this labeling by controlling the number

of clusters. Secondly, our vector representation explicitly encodes graph edges, hence preserving

more information.

System-call dependency is another type graph representation of a malware. A system-call

graph is a graph representation where the vertices correspond to system calls made during

the execution of the malware, and edges represent data-flow dependency between system calls,

usually determined by dynamic taint analysis. In [27], the authors extract this graph from a

malware sample using dynamic taint analysis and then convert it into a smaller graph where the

vertices represent a group of system-calls that serve a similar purpose and the edges represent
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the dependency between these groups based on the dependency between individual system calls.

Once this representation is extracted, they define different similarity metrics for detection and

classification.

4.3 Approach

FCG Extraction 

Function 
Clustering 1 

Function 
Clustering 2

Function 
Clustering K
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Vector 
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Figure 4.1: System overview with K pipelines

There are various ways to extract features through static analysis, for the purpose of

classifying malware using machine learning. Previous research works have extracted features

from printable strings in malware binaries [3,13], from the length of the functions in disassembled

file [13], from instruction n-grams [4, 15, 16], FCGs [5, 6, 22–24], or a combination of different

features [61].

In this chapter we chose to focus on features generated from function call graphs (FCGs).

The main reason for this is that FCGs better preserve structural information in binaries, for

instance, compared to n-gram features. In addition to containing information about the malware

code in the form of functions and their code, they also contain information about the interaction

between the functions. The details of FCG extraction are discussed in Subsection 4.3.1.

One of the challenges with using FCG is that the names of the local functions (the functions

written by the program author) are lost during compilation; hence, the vertices of FCG

corresponding to these functions are unlabeled. This makes it difficult to compare two functions

in different FCGs. Our solution to this problem is to cluster functions based on their instruction

sequence and use these cluster-ids as labels for the functions. One of the concern we had about
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clustering functions was that we would lose some information as multiple functions get hashed

to same cluster. Even thought this is true, our results show that classification accuracy is still

very high. Function clustering is discussed in Subsection 4.3.2.

There are multiple ways of comparing the labeled FCGs, such as graph edit distance [5, 6],

fixed point propagation [26], etc. In our approach, in addition to being able to efficiently compare

FCGs, we also wanted to be able to have the capability for integrating non-graph features when

needed. So unlike many past research efforts that classify FCGs, our approach first converts a

FCG into a feature vector and then applies machine learning algorithms on these vectors, as

discussed Subsection 4.3.3.

A high level view of our approach is shown in Figure 4.1. Our system starts by first extracting

FCG representations from disassembled malware binaries. Once a FCG is extracted, the functions

(which are the graph vertices) are clustered using Locality Sensitive Hashing(LSH) based on the

function’s instruction opcode sequence. The FCG vertices are then labeled using the cluster-ids.

After labeling the FCG, our system extracts a vector representation from the call graph, which

will serve as the feature vector of the malware sample.

During function clustering, some functions that are similar might be grouped into different

clusters due to the randomized nature of LSH functions. To address this shortcoming, during

function clustering, graph labeling and extraction of vector representation is done K times. Each

of these vector representations, extracted in parallel, are given as input to a separate classifier,

which we refer to in Figure 4.1 as a base classifier. This is done both during training and test.

The predictions of the base classifier are further used as input features for the meta-classifier.

We will describe the functionality of each module in the following subsections.

4.3.1 FCG Extraction

There is much structural information that gets lost when features are extracted from a malware

binary. For example, when extracting features, such as instruction n-gram, the organization

of malware code into different functions, and the interactions between these functions is not

captured in the extracted feature. So in an attempt to preserve the structural information, we

use FCGs to represent malware binaries.
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A FCG is a directed graph representation of code where the vertices of the graph correspond

to functions and the directed edges represent the caller-callee relation between the functions

(vertices) [20]. The vertices in this graph can represent local functions defined in the malware

code or external functions imported from libraries.

As shown in Figure 4.1, the first module of our system takes disassembled malware binaries

and extracts FCG representations. When extracting FCG, we label vertices of external functions

with the function names. The original names of local functions are not preserved during

compilation and eventually disassembly. Even if they were, these names may not represent

well the instruction sequences that the function implements. Therefore, we leave the vertices

corresponding to local functions unlabeled for now. Vertices representing local function also

contain the instruction opcode sequence of that function. We represent the caller-callee relation

between functions as directed, unweighted edges. After extracting FCG we pass this graph to the

next module for clustering the local functions (vertices) and relabeling them with their cluster-id.

To help explain the different modules, we will use a toy example shown in Figure 4.2. In this

example, we assume we have two disassembled binary files. These files are given as an input to

the FCG Extraction module, which converts the two samples into a FCG representation. The

first sample has FCG consisting of 4 functions: UF11, UF12, UF13 and UF14. The second

sample has 3 functions UF21, UF23 and UF24. The function names, for the local function, at

this point are arbitrary names. Hence, it is difficult to compare the two graphs. We will discuss

our solution to make the comparison easier in the next section.

4.3.2 Function Clustering

As discussed in the previous section, local functions in FCG are unlabeled. This makes comparing

two FCGs very difficult. Our solution to this problem is to cluster the functions (vertices) of FCG

and label them with a cluster-id. To perform clustering, we need to have a way of identifying

similar functions. Hu et al. [5], for instance, use the instruction mnemonic sequence edit distance

to calculate the similarity between functions which do not have similar names or CRC values of

their mnemonic sequence. Even though edit distance might be a good measure of similarity, it

has O(n2) time complexity in the number of instructions. In our work, we try to alleviate this
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Figure 4.2: Example

bottleneck using Locality Sensitive Hashing(LSH) for computing an approximate edit distance

between the instruction sequences of two functions.

The challenge here is that there are no locally sensitive family of hashes, that we know

of, for approximating the edit distance. To address this, we explored the possibility of

approximating edit distance with Jaccard Index. We evaluated the effectiveness of Jaccard Index

in approximating edit distance by carrying out experiments where we computed the similarity

between opcode sequences of functions using edit distance as well as Jaccard Index and computed

the Pearson’s correlation coefficient between the two. For Jaccard Index, we represent the

functions as a set of uni-gram, bi-gram, or trig-ram opcode. Out of the three, Jaccard Index of

uni-gram opcodes had the highest Pearson’s correlation coefficient with edit distance at 0.957.

Using Jaccard Index to approximate edit distance, however, is still not fast enough.

Fortunately, there is a family of locality sensitive hash functions, commonly known as Minhash

[30], that can be used to approximate Jaccard Index, allowing us to efficiently approximate the

similarity between functions.

Minhash is a LSH technique based on the idea that a hash of a set is the index of the first

element under a random permutation. Then the probability that two sets will have the same

index value of the first element is equal to the Jaccard similarity between the two sets. However,

generating these permutations is computationally expensive. Hence, in practice, the random
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permutations are approximated by computing the Minhash of a set S as:

h(S) = min
∀x∈S

((c1 ∗ x+ c2) mod P ) (4.1)

where

• x is the index of an element in set S w.r.t. the super set of S;

• c1 and c2 are constants and chosen at random for each hash function;

• P is a prime much larger than the size of the universal set of all sets [43].

To improve the precision of the Minhash signature, L hash functions in Equation 4.1 are used

together to generate a single Minhash signature by concatenating the values from the different

hash functions. However, it is still possible to have false negatives (i.e. sets that are highly

similar but declared to be not similar by Minhash). Multiple runs of Minhash can be used to

address this [62].

Algorithm 4.1: Function Clustering
Input : G: Function call graph. Where functions are represented in terms of their

instruction opcode sequence.
[h1, . . . , hL]: L hash functions, in Equation 4.1, for generating Minhash

signature.
Output: Function call graph labeled with function cluster ids

1 foreach internal function v in G.vertices do
2 signature ← minhashSignature(v.ngramOpcodeSequence, [h1, . . . , hL]);
3 clusterId ← hash(signature);
4 v.label ← clusterId;
5 end
6 return G;

In our systems case, instead of using Minhash to directly calculate the similarity between

functions, we use it to cluster functions (vertices) of the given graph. Unlike normal clustering

where we would have needed to calculate the similarity between each pair of functions, using

LSH we can simply hash the functions into buckets which represent clusters. Logically, we can

consider this process as if we are clustering all functions from all FCGs. In reality, however, our

use of LSH allows us to cluster the vertices in one FCG without the need to look at other FCGs

in an efficient way.
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The pseudo-code for our implementation is shown in Algorithm 4.1 and the full source code is

available on github 1. For each vertex, we compute the cluster-id by first generating a Minhash

signature for the n-gram opcode sequence. The function minhashSignature, in line 2, takes

the n-gram opcode sequence and a list of hash functions, defined in Equation 4.1, as input and

generates the Minhash signature. We represent this signature as an array of L hash values for the

n-gram opcode sequence computed using the given L hash functions. Note that Minhash operates

on set inputs rather than a sequence, as is the case in line 2, where the input to Minhash is an

opcode n-gram sequence. One way to convert the n-gram sequence into a set representation

is to have a universal set that contains all the n-grams observed in our training samples, and

then the individual functions represented as subsets of this universal set. However, to speed up

computation in our implementation we take the hash of an opcode n-gram and use this value

as the index of the opcode n-gram when calculating the Minhash. The hash function used to

compute the index value can be any hashing function with uniform value distribution and a large

range of hash values to minimize collisions. In our case, we use murmurhash [63].

Next, these Minhash signatures are further hashed using an ordinary hash function to compute

the cluster-id for that vertex (function) and this cluster-id value is used to label the vertex, as

shown in lines 3-4. This secondary hashing also allows us to control the number of clusters.

During our implementations, we also experimented with the use of different hash functions

for the secondary hash. As mentioned earlier, a hash function that uniformly distributes its

keys across buckets is used. However, we thought it might make better sense to have hash

collisions when the Minhash hash signatures closely match. So we experimented with using

Simhash [64] as the secondary hash function. Our experiments, however, revealed that although

using Simhash did improve the classification accuracy of a single base classifier, the hash function

which uniformly distributes its keys achieves better accuracy on the overall meta-classifier.

Therefore, we decided to use an ordinary hash function for the secondary hash.

At this point the FCGs, labeled by the cluster-ids, can be logically viewed as a graph where

the vertices are clusters and the edges are calls made from functions in one cluster to a function

in another cluster, or even in the same cluster. This logical representation is shown in Figure
1https://github.com/shrtCKT/FCG-to-Vector
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4.2. However, in actual implementation we simply label the the vertices of input FCG with the

cluster-ids.

In our running example in Figure 4.2, the FCGs extracted by the FCG Extraction module

are given as input to the current module. In this module a Minhash signature is generated for

each function in the input FCG, a cluster-id is determined using this signature and the function

(vertex) is labeled by this id. In case of sample 1, we assume, functions UF11 and UF12 are

hashed to cluster C1, UF13 is hashed to cluster C3, and UF14 is hashed to cluster C2. In the

case of sample 2, we assume functions UF21, UF23 and UF24 are hashed to clusters C1, C3

and C2, respectively.

The resulting graphs shown in Figure 4.2 are logical view of FCG after labeling. This view

shows a graph where the vertices are clusters and the edges are calls made from functions in one

cluster to a function in another cluster, or even the same cluster. Now the labeled graphs of

sample 1 and 2 are much easier to compare.

4.3.3 Vector Extraction

In past research works, techniques used for computing graph similarity have been a source of

performance bottleneck on FCG based malware classification. Not only were these a performance

bottlenecks, but they also made it difficult to integrate non-graph features with graph features.

Motivated by these two aspects, we proposed a vector representation of FCGs. We would like

our vector representation to have two properties: (Property 1) the representation should preserve

information about the instructions of malware functions and (Property 2) the representation

should preserve the structural information of the FCG.

We extract vector representation from a FCG labeled using the cluster-ids. This

representation consists of two parts, vertex weight and edge weight. The vertex weight specifies

the number of times a vertex with a given label (cluster-id) is found in a FCG, or in other

words the number of vertices in each cluster for that FCG. the vertex weight indirectly preserves

information about the function instructions. The edge weight specifies the number of times an

edge is found from a vertex in one cluster to a vertex of another cluster or a vertex within the

same cluster. The edge weights help preserve the structural information of the FCG.
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Algorithm 4.2: Creating Vector Representation
Input : G: Function call graph labeled with function cluster ids;
Output: Graph vector representation

1 Initialize vertexWeight with zero vector;
2 Initialize edgeWeight with zero vector;
3 foreach v in G.vertices do
4 vertexWeight [v.label ] += 1;
5 end
6 foreach e in G.edges do
7 index ← EdgeIndex(e.source.label, e.target.label);
8 edgeWeight [index] += 1;
9 end

10 graphVector ← concatenate vertexWeight with edgeWeight;
11 return graphVector;

As shown in Algorithm 4.2, we start by initializing vertexWeight and edgeWeight vectors

to zero vectors. In lines 3-4, we iterate over all the vertices in the input graph and count the

number of vertices labeled with each cluster-id. Next, in lines 6-8 we compute edge weights for

the edges between cluster-ids (i.e., an edge from a vertex labeled with one cluster-id to a vertex

labeled with another cluster-id) or within a cluster (i.e. an edge between two vertices labeled

with the same cluster-id). To do so we iterate over each edge in the input graph and update the

frequency of occurrence edges. In our implementation, we use the EdgeIndex function to perform

a simple lookup for the index representing the edge type. Finally, we concatenate vertexweight

and edgeWeight vectors to form one vector representing the input FCG.

As mentioned in the Section 4.3.1, vertices of the FCG corresponding to external functions are

already labeled by the name of the external functions. While computing the vertex weight we can

use a lookup table to map the external function names to index values in the vertex weight vector

that correspond to that external function. This requires first identifying all external functions

observed in training dataset samples and adds an additional processing. To avoid this, we simply

use an arbitrary hash which uniformly distributes its keys to relabel the external functions with

this value and use this to as the labels refereed in lines 4 and 7 in Algorithm 4.2. The same

applies for the edge weights. Through our experiment we didn’t notice significant decrease in

classification accuracy as a result of this hashing. Therefore, we decided to use this approach to

avoid processing overhead.
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We acknowledge that our vector representation does not preserve every detail of a graph

structure. For instance, it is possible to have slightly different graphs with the same vector

representation. However, we believe that this can have its own advantage in the field of malware

classification by making this representation less susceptible to obfuscation techniques that might

change function calling patterns. That is because small variations in the graph structure might

not get expressed in the vector representation as long as the edge and vertex frequencies are

not changed. Hence, this representation becomes more resilient to changes such as reordering of

function calls.

In our running example, in the case of sample 1 for instance, the labeled FCG contains two

functions that are labeled C1, one C2, and one C3. The vector representation of the vertex

weight part will be 2, 1, 1. The second part represents edge weights. In sample 1, we have one

edge C1 − C1, two C1 − C2 and one C1 − C3. The vector representation of the edge weight

part will be 1, 2, 1, 0, 0, 0, 0, 0, 0. The zeros in the edge weight show that there are no edges, for

example, C2− C2. The final vector representation will be a concatenation of these two vectors.

Once the vector representation of all instances is created, the next step is to train models for

classification of the malware samples.

4.3.4 Base Classifiers

The function clusters generated as discussed in Section 4.3.2 has high precision but lower recall.

That is, each cluster has similar functions, but some similar functions may be hashed into

different clusters. Recall can be improved by repeating this clustering step. In our system,

K repeated clustering steps are run independently and in parallel. For each run, a separate

vector representation is computed. Then separate base classifiers are trained using the output of

each run.

Each of our base classifier is a Random Forest classifier [65]. The inputs to a base classifier

are the vector representations for the malware FCGs. As shown in Algorithm 4.3, the input

dataset, which is a list of vector representations for the malware FCGs, is segmented into T parts

(line 2). Then for each data segment, a classifier is trained on the remaining data segments and

used to predict, in the form of a probability distribution of over all classes, for each sample in
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Algorithm 4.3: Training base classifier and creating training data for meta-classifier
Input : D: Training set containing FCGs vector representation
Output: Dnew: The training set represented in terms of class distributions.

1 Initialize Dnew to empty list;
2 Segment D into T parts;
3 for t = 1 to T do
4 Train classifier C on D −Dt;
5 foreach Sample d in Dt do
6 distributiond ← C.predict(d);
7 Add distributiond to Dnew;
8 end
9 end

10 return Dnew;

the segment (lines 3-7). This is used to reconstruct the data set in terms of the predictions of

the based classifier.

4.3.5 Meta-Classifier

The meta-classifier combines the predictions of the individual base classifiers to output a final

prediction. It first receives the predictions for each data instance from the based classifiers.

These predictions are in the form of probability distribution over the class labels. Then for each

instance, these probability distributions are concatenated to form a single feature vector. In other

words, the prediction from the base classifiers serve as an input feature to the meta-classifier.

The meta-classifier is then trained on this vector. The output of the meta-classifier is a predicted

class label for each data instance as illustrated in Figure 4.3.

4.3.6 Enhancements

For a meta-classifier to be effective, we need the base classifiers to be sufficiently different from

each other [66]. In the case of our original design presented so far, the difference between the base

classifiers comes as a result of the false negatives introduced by function clustering with LSH.

Through our experiments, we were able to determine that the different runs of the Function

clustering using a same number of Minhash functions(L) were not producing enough variation to

take full advantage of ensembling. So to introduce more variation, we used different values for L

in Function clustering for the K different runs.
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Figure 4.3: The meta-classifier

4.4 Experimental Evaluation

4.4.1 Dataset

For the purpose of evaluating our proposed approach for classifying malware into families, we

will be using the Microsoft Malware Classification Challenge (BIG 2015) dataset [1]. The original

dataset consists of 10,867 labeled malware samples. Our disassembled file parser were able to

properly parse 10,260 of the samples. Hence, we will be using these in the following evaluations.

The class distribution of these samples are shown in Table 4.1.

To compare our work with Adagoi [59], we will use a secondary dataset consisting of 1,113

benign android apps and 1,200 malicious android apps. The malicious samples are from the

Android Malware Genome Project [67]. A colleague at our university provided us with the

benign samples, downloaded from the Google Play Store.

4.4.2 Parameter Selection

The first two parameters of our algorithm that need to be configured experimentally are the length

of instruction opcode n-grams, and the number of function (vertex) clusters. N-gram length

determines how many instructions are used in each n-gram when representing local functions as
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Table 4.1: Microsoft malware dataset class distribution

Malware Family Name Number of Samples
Ramnit 1513
Lollipop 2470
Kelihos ver3 2936
Vundo 446
Simda 34
Tracur 294
Kelihos˙ver1 387
Obfuscator.ACY 1168
Gatak 1012

sets of n-grams; in other words it determines the n in n-gram. Cluster number determines the

number of buckets functions are hashed into.

Figure 4.4 shows the classification accuracy results when using uni-gram, bi-gram, and tri-

gram. In both the n-gram length and cluster number experiments, only a single base classifier

was used. In the Figure 4.4, using uni-grams results in better accuracy than both bi-grams and

trig-rams and that using bi-grams results in better accuracy than tri-gram. This result can be

explained by going back to the distance function (we are trying approximate function similarity

in our approach.) As discussed in Section 4.3.2, we are trying to approximate edit distance using

Jaccard Index, which we in turn approximate using Minhash. When computing edit distance,

the insertion and deletion operations work on uni-grams. So the longer the n-gram we use when

approximating edit distance with Minhash, the less accurate our approximation.

When it comes to the number of function clusters, we expect the classification accuracy to

increase as the number of function clusters increases. This expectation can be understood by

considering the fact that by hashing function into smaller number of clusters, we increase the

likelihood of dissimilar functions being hashed into the same cluster. Obviously, this in turn

results in lower classification accuracy. The results in Figure 4.5 agree with our expectations.

The experiments to determine the number of function clusters were carried out using uni-gram

opcode sets to represent functions and clustering the functions (vertices) into the specified number

of clusters before converting to vector representation.

The other parameters that need to be tuned experimentally are the number of base

classifiers(K), and the number of Minhash functions used for computing the Minhash Signature
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Figure 4.4: Effect of n-gram length on classification accuracy

(L). In our experiments, we evaluated various values of K. We observed that in the case the

current evaluation dataset increasing the value of K above 6 didn’t result in much improvement.

As discussed in Section 4.3.6, using different values for L for the K different runs, results in more

variation among the K base classifiers and results in better meta-classifier performance. In our

experiments we evaluated a couple of L value combinations and picked the one that resulted in

better performance.

4.4.3 Classification Accuracy Comparison

We evaluate our approaches accuracy by comparing it with our implementation of Kinable

et.al. [6, 23] work on FCG classification. In [6], they use an approximate GED to measure

the similarity between FCGs. GED distance is approximated using Simulated Annealing (SA) to

find a bipartite graph mapping between the vertices of the two graphs that minimizes the GED.

Since this is a computationally intensive task, functions in the two graphs that have instruction

edit distance greater than some threshold τ are filtered out before creating the bipartite graph

mapping. Then the FCGs are clustered based on GED.

Since using SA to approximate GED was computationally intensive, we evaluated both our

proposed method and our implementation of Kinable et.al. work on a smaller sub set of the

dataset consisting of 1000 malware samples. In our implementation of Kinable et.al. research,
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we filtered out most similar functions between pairs of graphs by setting the filter threshold τ

to 0.9 and then created bipartite mapping on the remaining functions (vertices). We cluster the

malware samples using k-medoids and then assigned a class label to each cluster based on the

majority class. Hence, we determined every element of a cluster whose class label is different from

the majority class as being misclassified. Figure 4.6 shows the confusion matrix of classifying the

thousand samples in this way.

Next we evaluated our approach on the same 1000-malware sample with 10-fold cross

validation to predict the labels on the thousand samples. Our system is set-up using six base

classifiers(i.e. K = 6), which means that there are six parallel pipelines consisting of the

Function clustering, Call graph vector extraction, and Base classifier modules. In all the of

Function clustering modules, we represented functions (vertices) with uni-gram opcode sequence

and clustered them into 64 clusters. To make the base classifiers more decorrelated, the Minhash

signatures are generated using varying number of hash functions (i.e. value of L in Algorithm

4.1). In first two of the six pipelines L = 1, in the next two L = 3 and in the last two L = 5.

As can be seen from the results in Figures 4.6 and 4.7, our approach clearly out performs the

SA based method with an overall accuracy of 0.979 versus the 0.840 of the previous works on

the smaller dataset. Our system has high accuracy for almost all of the malware families, apart

from the malware family Simda. The reason behind the poor accuracy in the case of Simda is
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the very small number of training samples. In the entire evaluation dataset there are only 34

instances, and in the case of the sampled 1000 instance dataset used in this section there were

only 4 samples.

Figure 4.8 shows the classification accuracy of our approach when applied on the entire dataset

using a 10-fold cross validation. Again we see that our system gets near perfect classification

accuracy for all families except Simda. Which is again due to the smaller number of training

samples.

4.4.4 Speed Comparison

We will now empirically compare the speed of our approach with that of SA based approach. For

our approach, we timed the execution in the components starting with Call Graph Extraction

to Call graph Vector representation (inclusive). We excluded the time taken by the learning

algorithm. For the SA based approach we timed the process starting with Call Graph Extraction

up to the GED computation between all pairs of malware samples, using SA. Similarly here, we

excluded the time taken by the learning algorithm.

Table 4.2: Speed comparison

Approach Average Time (min)
All pair similarity SA and GED 2006
Graph Vector Representation 7

The results in Table 4.2 show these time measurements, averaged over three runs, on a smaller

subset of the evaluation data set consisting of 1000 samples. As we expected, our approach is

significantly faster than the SA based technique making FCG classification scalable. These

experiments were carried out on a machine with 2.3 GHz quad code CPU with 8 GB memory.

Time Complexity Comparison: To compare the training time complexity of these two

approaches we will only consider the feature extraction phase in both methods and exclude the

machine learning algorithms.

For the Simulated Annealing based approach, we consider the time complexity of graph

similarity computation and exclude the clustering part when looking at the time complexity. As

shown in [23], the time complexity of running Simulated Annealing to approximate Graph Edit

Distance between two graphs is O(|Vmax|2 · dmax), where |Vmax| is the number of vertices of the
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Figure 4.8: Confusion matrix using meta-classifier on entire dataset

largest graph, and dmax is the maximum value of degree for any node. For N graphs then O(N2)

distance (similarity) computations are going to be required. Therefore, for N graphs the worst

case time complexity becomes O(N2 · |Vmax|2 · dmax).

In case of our system we consider time complexity of the Function clustering and Vector

extraction modules. When we look at the Function clustering module, it is clear from Algorithm

4.1 that given an input graph G = (V,E), it has time complexity of O(|V |). For N graphs

then the worst case time complexity becomes O(N · |Vmax|), where |Vmax| is the number of

vertices of the largest graph in the training dataset. For the Vector extraction module, we visit

each vertex and each edge only once. Hence, the complexity of the module for a given input

graph G = (V,E) is O(|V | + |E|). For N graphs then, the worst case time complexity becomes

O(N · (|Vmax| + |Emax|)). Finally, the total worst case time complexity of the two modules

together for N graphs is O(N · (|Vmax| + |Emax|)). So it can be clearly seen here that our

approach compares favorably to the one based on Simulated Annealing.

4.4.5 Classifying benign and malware applications

In this section we will compare our approach with another closely related work, Adagoi [59]. We

used the authors implementation of Adagoi [68], which performs classification between benign
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and malicious Android apps. To work with android apk files, we modified the implementation of

the FCG Extraction module, in our system.

The evaluation was performed by randomly splinting the initial dataset to use 80% as training

data and the remaining as test data. This was repeated 10 times, and the resulting average ROC

curve is shown in Figure 4.9. As seen in the figure, our approach performs better than Adagoi.

For instance, at 0.01 false positive rate, the area under the curve for our approach is 0.0099 where

as for Adagoi it is 0.0092.

4.4.6 Combining with Non-graph Features

The former FCG based techniques, which relied solely on graph representation and on measuring

graph similarity, were not easy to use together with other non-graph based features. Our proposed

approach, on the other hand, extracts feature vectors from FCGs that can be easily used with

other features by simply concatenating the feature vectors.

To demonstrate this, we use binary byte bi-gram frequency features. These features are

extracted by computing the frequency of byte bi-grams in malware sample raw binary files. We

take these feature vectors and concatenate a random subset of them with the graph vectors before

passing them to the base classifiers. The reason for taking a random subset of these features is

to help make the base classifiers more decorrelated.

Combining these features with the graph features, our overall classification accuracy slightly

increased to 0.9933 from 0.993. This can be explained by the fact that both the graph and the

n-gram frequency features are have overlaps in that they both are extracted based on the content

of malware binary. As a future work we would like to examine combining our FCG features with

the various features used in [61].
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4.5 Conclusion

In this chapter we presented a fast and effective malware classification system based on extracting

feature vector from FCG representation. Our approach was able to address two bottlenecks

in previous malware classification systems that were based on FCG features. First, we were

able to speed up the process of measuring similarity between functions using Minhash, an

Locality Sensitive Hashing technique. Second, we avoided the major bottleneck of computing

graph similarity by converting the graph representation into vector representation using function

clustering based on the Minhash signatures of the functions.
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Chapter 5

Learning to Identify Known and

Unknown Classes: A Case Study

in Open Set Malware

Classification

5.1 Introduction

In a classification problem, we are given a set of classes between which the model has to learn to

discriminate. There are many cases in which we know the possible classes in the problem domain

beforehand and simply learning to distinguish between these classes is sufficient. This can be

thought of as the “closed set” scenario. In other problem domains, however, we are aware of only

some number of classes during training and instances that belong to classes not present in the

training set can be present in a test set. In this chapter we will refer to this as the “open set”

scenario.

This is especially true in the domain of malware family classification, in which we want to

identify the family of a malware sample. There are a variety of reasons why this is the case. One
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reason is that it’s not possible to collect all samples from every existing malware class/family

for training. Even if we were able to do so, because of the adversarial nature of this problem

domain, malware authors constantly release new malware families. Therefore, it is important

to have a classifier that is not only capable of discriminating between instances from known

malware families but one that is also able to determine if samples do not belong to any of the

known families and label them as unknown. In this chapter we present a classifier system that

achieves this goal. Our proposed approaches combine a classifier and an outlier detector to build

a system where the outlier detector is trained on new features extracted from the output of the

classifier. The following points summarize our main contributions:

• We present a different look from the majority of the research in the malware classification

domain by addressing classification in an open set.

• We propose the extraction of new features from classifier output which transforms the

problem of identifying unknown class instances into a new feature space.

• We provide an approach that is more accurate and scales better than previous open set

classification approaches on the evaluation datasets.

5.2 Related Works

To the best of our knowledge there are very few works in the malware classification domain that

focus on having the capability to operate in an open set scenario. One such work in the malware

domain comes from K. Rieck et al. [18] in which malware samples are clustered into families and

then the distance of a test instance to the closest cluster centroids is used as an outlier score. The

limitation of this approach comes from the use of unsupervised methods for identifying between

the known families which does not take advantage of label information that might be present for

the known classes.

Open set classification has aspects similar to anomaly detection problems. Anomaly detection

is a well researched area and has found application in the security realm such as intrusion

detection. For example to mention a few, Ramaswamy et al. [69] propose a distance based

approach which looks at the distance of an instance from its kth nearest neighbor to identify

61



outliers. Breunig et al. [70] propose a density based approach that looks at the local density

of a point to determine its anomaly score. Many more approaches have been proposed for this

problem; we direct the reader to [44, 71, 72] for a more detailed survey of the different anomaly

detection techniques. The similarity of anomaly detection to open set problem is that in both

cases there is an interest in identifying outlier samples. However, there are two main differences.

First, the learning task in anomaly detection is in only detecting anomalous samples and not

learning to discriminate the normal samples into different classes. Second, the assumption which

is taken in anomaly detection is that outlier instances are rare [44]. This assumption, however,

does not hold in the case of the open set problem.

Scheirer et al. [73] propose a modification to one-class SVM, called 1-vs-set SVM, to handle

a one class open set problem for image recognition. Multi-class anomaly detection without

classification called Kernel Null Foley-Sammon Transform (KNFST) proposed in [74] shares one

of the objectives of the open set problem, which is to identify instances that do not belong to

any of the known classes. Bodesheim et al. [75] build on this idea by taking a local approach

where they only considering k closest elements to an instance when deciding the novelty on a

test instances. In [76], Jain et al. present a multi-class open set classifier framework PI SVM for

fitting a single-class probability model over the known class scores from a discriminative binary

classifiers.

5.3 Approach

The prediction of a classifier can be obtained in the form of predicted class probabilities

Pr(yi = c | ~xi), where c ∈ Ck is a class label among the known classes in a training set, ~xi is the

feature vector of instance i, and yi is the class label of instance i. Each of these probabilities can

be interpreted as the confidence of the classifier labeling an instance as belonging to that class.

Our approaches are based on the intuition that class probabilities predicted by a classifier can

help distinguish unknown class instances from known class instances. We expect the classifier to

be less confident when making a prediction about instances from an unknown class as compared

to instances from the known class.
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5.3.1 New Derived Features

We propose extracting features from the output of a multi-class classifier to help identify

known class instances from unknown class instances. The first feature we extract is Pmax =

maxc∈Ck Pr(yi = c | ~xi). We aim to capture the confidence of the classifier by extracting the

Pmax.

In addition to Pmax we also want to capture another perspective on the prediction confidence

by observing how spread out the predicted class probabilities are. For example assume a

classifier trained to classify between 3 classes makes prediction for instance A with probabilities

of 0.8, 0.1 and 0.1 for classes c1, c2 and c3 respectively. Also assume that for instance B

it makes prediction with probabilities 0.8, 0.2 and 0.0. Although their maximum prediction

probabilities for both example instances are the same at 0.8, the fact that the classifier predicts

A as possibly belonging to all three classes, albeit with low probabilities for class c2 and c3,

gives more insight about the classifiers confidence on its prediction. We try to capture this by

measuring the entropy of the predicted class probabilities. Entropy quantifies the diversity in

the predicted class probabilities(in other words it tells us how unevenly distributed the predicted

class probabilities are.) The entropy for probability distribution p over |Ck| classes is defined as

entropy(p) = −
∑|Ck|
j pj log pj .

Algorithm 5.1 outlines the procedure used to extract new features from predicted class

probabilities. The algorithm starts by splits the training set into T segments (line 1). For

each segment, first a classifier is trained on data D excluding the instances in Dt (line 4). Then,

predictions are made on the instances in Dt. Afterwards, two features are extracted from the

predicted class probabilities: the maximum predicted class probability Pmax and the entropy of

the predicted class probabilities. Finally, the extracted features Xtmp for each instance in Dt are

added to Xinlier, which holds the representation of the training set in terms of the new features.

5.3.2 Classification in an Open Set (COW)

By considering different aspects of a classifiers output, such as Pmax and entropy, we should

be able to distinguish between instance belonging to known classes Ck from those belonging to

unknown classes Cu. One of the challenges of trying to recognize instances from classes in Cu
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Algorithm 5.1: Use T-fold cross validation to generate an outlier detector training set
with the new features.

Input :
D: Training set consisting of feature matrix X and class labels Y. The class

labels are from the known class Ck.
Output:

Xinlier: Training data represented in terms of new prediction probability based
features.

1 Split D into T segments;
2 Initialize Xinlier as empty;
3 for t = 1 to T do
4 Train multi-class classifier model Mtmp on D without Dt;
5 Pinlier ← Predict class probabilities for Dt using Mtmp;
6 Xtmp ← extract features from Pinlier;
7 Xinlier ← Xinlier ∪ Xtmp;
8 end
9 return Xinlier;

comes from the fact that we can only get training data representing classes in Ck. In our case

this means that during training we can get only the predicted class probabilities for instances

from classes in Ck. To address this, we use an outlier detection method trained on predictions

of the instances from Ck.

Algorithm 5.2: Training COW
Input :

D: Training set consisting of feature matrix X and class labels Y. The class
labels are from the known classes Ck.
Output:

Mmulti: Multi-class classifier model
Moutlier: Outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Train outlier detector model Moutlier on Xinlier;
3 Train multi-class classifier model Mmulti on D;
4 return Mmulti and Moutlier;

Our proposed approach uses a classifier and an outlier detector to build an open set

classification system (COW). Algorithm 5.2 outlines the procedure for training COW. The

algorithm starts by calling Algorithm 5.1 to extract the new features which will be used to

train the outlier detector in COW. An outlier detector Moutlier is then trained using Xinlier

(line 2). Finally, a multi-class classifier is trained on the original dataset D, and the two models
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are returned (lines 3-4). During testing, the multi-class classifier Mmulti is first used to make

predictions about a test instance. Then the outlier detector Moutlier is used to determine if

the instance is an inlier in which case the predicted class label is used. Otherwise it is labeled

unknown.

Per Class Classification in an Open Set (COW PC)

COW trains one global outlier detection model for all the known classes. This, however, might

face challenges in scenarios in which a classifier is not equally good in identifying all the known

classes. In such a case the classifier might make predictions about certain classes with ease while

struggling for other classes. So predictions made about the difficult classes might be confused for

predictions of instances from an unknown class. In trying to address such a scenario we present

a modified version of COW which we call COW PC. COW PC trains separate outlier detection

models per each class in Ck. By doing so we aim to address the aforementioned challenges.

The training procedure for COW PC, Algorithm 5.3, is a modified version of Algorithm 5.2.

Similar to COW, new features are extracted (line 1) and a classifier Mmulti is trained using the

original dataset (line 8). The difference between the two approaches lies in training of the outlier

detector (lines 2-6). In case of COW PC separate outlier detection models, one for each class in

Ck, are trained and then added to the list of outlier detectors.

During testing, similar to COW, the multi-class classifier Mmulti is first used to make a

prediction. In the case of COW PC, if the instance is predicted as class c ∈ Ck then the outlier

detector for class c (Moutlierc) is then used to determine if the instance is an inlier in which case

the predicted class label is used. Otherwise it is labeled unknown.
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Algorithm 5.3: Training COW PC
Input :

D: Training set consisting of feature matrix X and class labels Y. The class
labels are from the known class Ck.
Output:

Mmulti: Multi-class classifier model
ListMoutlier: List of outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Initialize ListMoutlier as empty;
3 foreach class c in Ck do
4 Xinlier c ← Xinlier rows corresponding to instances correctly predicted as c;
5 Train outlier detector model Moutlier c using Xinlier c;
6 Add Moutlier c to ListMoutlier;
7 end
8 Train multi-class classifier model Mmulti on D;
9 return Mmulti and ListMoutlier;

5.4 Experimental Evaluation

5.4.1 Evaluation Datasets

We used two datasets for evaluating the proposed approaches. The first is the Microsoft Malware

Classification Challenge (MS-Challenge) dataset [1]. This dataset contains 10,867 disassembled

and labeled windows malware binaries from 9 malware families/classes. Our disassembled file

parser was able to properly parse 10,260 of the samples used in the following experiments.

We also evaluate on the Android Malware Genome Project [67] dataset which contains

different families of malicious Android apps. The original dataset contained some classes with

very few samples. This presented a challenge when during the evaluation because of the way we

set up the open set experiments results in too few training samples. For this reason, we use only

those classes which have at least 40 samples. After removing the infrequent classes the Android

dataset that consisted of 986 samples from 9 classes.

5.4.2 Simulating Open Set Scenario

To simulate an open set scenario we first take a dataset and randomly designate |Cu| number

of classes to constitute Cu and the remaining classes constitute Ck. We add all the instances
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belonging to classes in Cu to the test set. We randomly added 75% of instances belonging to

classes in Ck to the training set and the remaining 25% to the test set.

5.4.3 Malware Features and Learning Algorithms

The malware features used to train our classifier models in these experiments are based the

proposed features in Chapter 4. These are features extracted from the function call graph (FCG)

of Windows and Android samples. During the extraction of these features, the functions in the

FCG are first clustered using Locality Sensitive Hashing (LSH) and the resulting cluster ids are

used to label the functions. Then a vector representation of the FCG is created. Even though

in Chapter 4 we use a two-level classifier system with these features, we use a single classifier in

our experiments here.

All the experiments involving COW and COW PC were preformed with Random Forest

(RF) [65] as the classifier model and KD-Tree based Kernel Density Estimation as the outlier

detector.

5.4.4 Discriminating Known Class Instances from Unknown Class

Instances

To evaluate the ability of our approach to discriminate known class instances from unknown class

instances, we use Area Under Curve of the ROC as a measurement metric. We use the outlier

score and compute the True Positive Rate and False Positive Rate. When generating these ROC

figures, we treat identifying the known classes as positive class and identifying the unknown class

as the negative class. We chose to present the results in this manner because the main objective

of the system is in classifying malware. Therefore, doing so in an open set scenario involves first

identifying if an instance is indeed from a known class.

We compare our approaches with two other previous approaches on open set recognition:

PI SVM [76,77] and KNSFT [74,78]. For the sake of completeness we also report the performance

of using an outlier detector, trained on the original data input space rather than on the prediction

probability features we recommend in this chapter, to identify unknown class instances. The
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results for this outlier detector are reported under the name “Original Input” in figures 5.1a and

5.1b. For PI SVM and KNFST we use the original authors implementation.

We performed 10 experiments for each approach. In each experiment the training and test

sets are created to simulate an open set scenario by setting the number of unknown classes |Cu| to

be 3. We then use the learned model to generate an outlier score for each test instance to indicate

the degree to which the model believes the instance does not belong to any of the classes in Ck.

Figure 5.1a shows the result of these experiments carried out on the MS-Challenge dataset in the

form of the average ROC. Figure 5.1b, on the other hand, shows the result of similar experiments

on the Android Malware Genome Project dataset.

We would like to highlight two observations from the results in Figures 5.1a and 5.1b. First,

our proposed approaches perform better compared to PI SVM and KNFST. For example on the

MS-Challenge dataset, at a 10% false positive rate (i.e. where 10% of instances from unknown

classes get predicted as belonging to one of the known classes) our two approaches COW and

COW PC achieve a true positive rate (i.e. percentage of instances from known classes that

are detected as known) of 95.36% and 95.61% respectively. This results in an area under the

curve(AUC) up to 10% FPR of 0.0917 and 0.0923. At the same point the PI SVM and KNFST

achieve TPR of 82.76% 81.89%, respectively.

Second, our approach achieves a relatively high TPR even at 0% FPR. Table 5.1 shows,

for instance, in case of MS-Challenge dataset our approach COW PC achieves 69.81% TPR

compared to PI SVM’s 23.97%. Similarly, for the Android dataset COW achieves 81.21% TPR

compared to 77.25% TPR of KNFST.

Table 5.1: TPR at a very low FPR of 0% for all four methods on both datasets.

TPR at 0% FPR
MS-Challenge Dataset Android dataset

COW 42.41% 81.21%
COW PC 69.81% 76.90%
PI SVM 23.97% 72.11%
KNFST 9.94% 77.25%
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Figure 5.1: Average ROC from 10 runs for distinguishing between instances from known and
unknown classes.

5.4.5 Discriminating Among Known Classes

The results presented so far show how well the different approaches perform on the task of

distinguishing between known class instances and unknown class instances. In addition to this,

an open set classifier also needs to be able to discriminate between the known classes.

To evaluate this we run experiments on training and test sets created to simulate an open set

scenario. In each experiment we set the number of unknown classes |Cu| to be 3, which means

|Ck| will be 6 for both datasets. To make sure that all possible
(|Ck|+|Cu|
|Cu|

)
=
(9

3
)

combinations of

classes are used in Cu, 84 such experiments are performed. Hence, each class in the two datasets

gets to be in the known class set exactly 56 times. In each experiment we recorded the weighted

average precision, recall and f-score values of each class in the known class. This is obtained by

first calculating the average of these three metrics for each known class. Then further calculating

the average across all the known classes while weighting the values of these metrics by the fraction

of the size of each known class in the test sets.

Since KNFST does not have the capability to discriminate between the known classes, we

report results for COW, COW PC, and PI SVM Table 5.2. All three algorithms have one

hyperparameter that specifies the threshold for discriminating between known and unknown class

instances. We propose using a validation set to perform binary search over the hyperparameter

space using f-score as the search metrics.
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Table 5.2: Weighted average precision, recall and f-score.

MS-Challenge Dataset
Precision Recall F-score

COW 0.94 0.90 0.91
COW PC 0.92 0.90 0.90
PI SVM 0.94 0.80 0.85

Android Dataset
Precision Recall F-score

COW 0.95 0.86 0.89
COW PC 0.93 0.84 0.87
PI SVM 1 0.66 0.78

5.4.6 Efficiency Comparison with other Approaches

To compare the time efficiency of our approaches with PI SVM and KNFST, we record the

training and test times when running the experiments. Table 5.3 presents the average training

and test time of 10 runs on MS and android datasets. These experiments were carried out

on a machine with an Intel-i7 2.60GHz processor and 20GB RAM. As the results in Table 5.3

show, our two approaches, COW and COW PC, seem to scale better compared to the other two

algorithms.

5.4.7 Effect of Number of Known Classes

Another interesting phenomenon to study is how our approaches perform as the number of

known classes varies while keeping the number of unknown classes constant. The purpose of

these experiments is to try to understand whether gathering more malware families for training

can help improve performance of the open set classifiers.

We set up the experiment in the following manner for both of the evaluation datasets. First,

we select the original test and training data to simulate an open set scenario. Afterwards, we

chose t number of classes at random from the known classes Ck in the training set, and create

a new training set from the previously created training set that contains instances from the t

selected classes. As for the test dataset we select all the instances from the unknown class that are

in the previously created test set together with the instances from the t selected known classes.

We then train a model on the new training set and evaluate it on the new test set. We record

the performance of the model in terms of the AUC up to a FPR of 10%.
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Table 5.3: Comparing the training and test times. The MS dataset has average training and test
size of 5151 and 5110, respectively. The android dataset has training size of 480 and test size of
506 on average.

Algorithm
MS Dataset Android Dataset

Average Time (sec) Average Time (sec)
Training Test Training Test

COW 9.15 2.11 4.11 0.24
COW PC 7.42 1.42 4.06 0.41
PI SVM 79.06 34.87 3.41 1.90
KNFST 577.50 202.10 3.96 2.21
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Figure 5.2: The relationship between the performance of openset classifier and number of known
classes.

Another way to understand these experiments is in terms of the percentage of opennes defined

by [73], Equation 5.1. For a closed set scenario where the same classes are seen both during

training and testing, we get an openness value of 0. On the other hand a higher openness value

indicates a more open problem. In the context of these experiments, increasing the number of

known classes during training while keeping the number of unknown classes seen during testing

constant will result in decreasing openness. We expect that this decrease in openness should in

turn result in improved performance. This expectation aligns with what Jain et al. [76] show in

their experiments.

openness = 1−

√
2 × | training classes |

| test classes | + | target classes | (5.1)

The result for MS-Challenge dataset indeed agrees with the expectation that as the openness

decreases (i.e. number of known classes increases) the performance of our approach improves,
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Figure 5.2a. The more surprising result comes in the case of the Android dataset, Figure 5.2b.

In this case we see that performance actually degrades as openness decreases (i.e. as number of

known classes increases).

We hypothesize that the unexpected results have to do with the number of instances in each

class. When we compare the class distributions of the MS-challenge dataset with the Android

dataset, we see that the number of instances per class in the android dataset is considerably

smaller. Generally, the classification task becomes more difficult as the number of classes to

classify increases and also as the number of training instances gets smaller. Since our approach

depends on the predicted class probabilities generated by the classifier, we believe the smaller size

of the Android dataset has resulted in decreased performance as the number of classes increases

(openness decreases). This hypothesis also helps explain why our approach records lower AUC

in case of the android dataset as presented in previous Sections.

We evaluated this hypothesis by down-sampling the MS-Challenge dataset to have a

comparable number of instances for each class with the Android dataset. The results in Figure 5.3

show the average AUC up to a 10% FPR of 10 runs. We observe that the AUC generally decreases

as the number of known class increase (i.e. as openness decreases).This result is consistent with

our hypothesis that smaller number of instances in each class can degrade performance. This

phenomenon needs to be studied further with more datasets. The implications of this result is

that knowing more classes is not enough but sufficient amount of data samples for each class is

also needed.
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Figure 5.3: Experiment carried out on an down-sampled MS-Challenge dataset so as to have a
comparable number of per class instances with the android dataset.

5.5 Conclusion

In this chapter we presented an open set classification approach used for malware family

classification. The approach uses features extracted from the predicted class probabilities received

from a classifier to train an outlier detector. The classifier and the outlier detector together

form a system that is not only capable of distinguishing between known classes but is also

capable of identifying instances arising from unknown (never before seen) classes. The evaluation

results show that our approach compares favorably in accuracy with previous works on open set

classification and multi-class outlier detection techniques. The evaluation also shows that our

approach takes less time for both training and test.
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Chapter 6

Learning a Neural-network-based

Representation for Open Set

Recognition

6.1 Introduction

To build robust AI systems, Dietterich [79] reasons that one of the main challenges is handling

the “unknown unknowns.” One idea for handling the unknown unknowns is to detect model

failures; that is, the system understands that its model about the world/domain has limitations

and may fail. For example, assume you trained a binary classifier model to discriminate between

pictures of cats and dogs. You deploy this model and observe that it does a very good job at

recognizing images of cats and dogs. What would this model do if it is faced with a picture of

a fox or a caracal (mid sized African wild cat)? The model being a binary classifier will predict

these pictures to be either a dog or a cat, which is not desirable and can be considered as a

failure of the model. In machine learning, one direction of research for detecting model failure

is “open category learning”, where not all categories are known during training and the system

needs to appropriately handle instances from novel/unknown categories that may appear during

testing. Besides “open category learning”, terms such as “open world recognition” [80] and “open
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set recognition” [73, 81] have been used in past literatures. In this chapter we will use the term

“open set recognition”.

Where does open set recognition appear in real world problems? There are various real world

applications that operate in an open set scenario. For example, Ortiz and Becker [82] point

to the problem of face recognition. One such use case is automatic labeling of friends in social

media posts, “where the system must determine if the query face exists in the known gallery, and,

if so, the most probable identity.” Another domain is in malware classification, where training

data usually is incomplete because of novel malware families/classes that emerge regularly. As a

result, malware classification systems operate in an open set scenario.

In this chapter we propose a neural network based representation and a mechanism that

utilizes this representation for performing open set recognition. Since our main motivation when

developing this approach was the malware classification domain, we evaluate our work on two

malware datasets. To show the applicability of our approach to domains outside malware, we

also evaluate our approach on images.

Our contributions include: (1) we propose an approach for learning a representation that

facilitates open set recognition, (2) we propose a loss function that enables us to use the same

distance function both when training and when computing an outlier score, (3) our proposed

approaches achieve statistically significant improvement compare to previous research work on

three datasets.

The remainder of this chapter is organized in the following manner. In Section 6.2, we give

an overview of related works and present our approach in Section 6.3. We present our evaluation

methodology, results, and provide further discussions in Section 6.4.

6.2 Related Work

We can broadly categorize existing open set recognition systems into two types. The first type

provides mechanisms to discriminate known class instances from unknown class instances. These

systems, however, cannot discriminate between the known classes, where there is more than one.

Research works such as [73–75] fall in this category. Scheirer et al. [73] formalized the concept

of open set recognition and proposed a 1-vs-set binary SVM based approach. Bodesheim et
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al. [74] propose KNFST for performing open set recognition for multiple known classes at the

same time. The idea of KNFST is further extended in [75] by considering the locality of a sample

when calculating its outlier score.

The second type of open set recognition system, provides the ability to discriminate between

known classes in addition to identifying unknown class instances. Research works such as

[80, 81, 83–85] fall in this category. PI-SVM [83], for instance, uses a collection of binary SVM

classifiers, one for each class, and fits a Weibull distribution over the score each classifier. This

approach allows PI-SVM to be able to both perform recognition of unknown class instances and

classification between the known class instances. Bendale and Boult [80] propose an approach

to extend Nearest Class Mean (NCM) to perform openset recognition with the added benefit of

being able to do incremental learning.

Neural Net based methods for open set recognition have been proposed in [81, 85, 86].

Openmax [81] (a state-of-art algorithm) modifies the normal Softmax layer of a neural network

by redistributing the activation vector (i.e. the values of the final layer of a neural network that

are given as input to the Softmax function) to account for unknown classes. A Neural Net is first

trained with the normal Softmax layer to minimize cross entropy loss. The activation vector of

each training instance is then computed; and using these activation vectors the per-class mean of

the activation vector (MAV) is calculated. Then each training instance’s distance from its class

MAV is computed and a separate Weibull distribution for each class is fit on certain number of

the largest such distances. Finally, the activation vector’s values are redistributed based on the

probabilities from the Weibull distribution and the redistributed value is summed to represent

the unknown class activation value. The class probabilities (now including the unknown class)

are then calculated using Softmax on the new redistributed activation vector.

The challenge of using the distance from MAV is that the normal loss functions, such as

cross entropy, do not directly incentivize projecting class instances around the MAV. In addition

to that, because the distance function used during testing is not used during training it might

not necessarily be the right distance function for that space. We address this limitation in our

proposed approach.

Ge et al. [85] combine Openmax and GANs [87] for open set recognition. The network used

for their approach is trained on the known class instances plus synthetic instances generated
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using the DCGAN [88]. In the malware classification domain, K. Rieck et al. [18] proposed

a malware clustering approach and an associated outlier score. Although the authors did not

propose their work for open set recognition, their outlier score can be used for unsupervised open

set recognition. Rudd et al. [89] outline ways to extend existing closed set intrusion detection

approaches for open set scenarios.

6.3 Approach

For open set recognition, given a set of instances belonging to known classes, we would like to

learn a function that can accurately classify an unseen instance to one of the known classes or an

unknown class. Let D be a set of instances X and their respective class labels Y (ie, D = (X,Y )),

and K be the number of unique known class labels. Given D for training, the problem of open

set recognition is to learn a function f that can accurately classify an unseen instance (not in

X) to one of the K classes or an unknown class (or the “none of the above” class).

The problem of open set recognition differs from the problem of closed set (“regular”)

classification because the learned function f needs to handle unseen instances that might belong

to classes that are not known during training. That is, the learner is robust in handling instances

of classes that are not known. This difference is the main challenge for open set recognition.

Another challenge is how to learn a more effective instance representation that facilitates open

set recognition than the original instance representation used in X.

6.3.1 Overview

Consider ~x is an instance and y = f(~x) is the class label predicted using f(~x). In case of a

closed set, y is one of the known class labels. In the case of open set, y could be one of the

known classes or an unknown class. The hidden layers in a neural network, ~z = g(~x), can be

considered as different representations of ~x. Note, we can rewrite y in terms of the hidden layer

as y = f(~z) = f(g(~x)).

The objective of our approach is to learn a representation that facilitates open set recognition.

We would like this new representation to have two properties: (P1) instances of the same class

are closer together and (P2) instances of different classes are further apart. The two properties
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can lead to larger spaces among known classes for instances of unknown classes to occupy.

Consequently, instances of unknown classes could be more effectively detected.

This representation is similar in spirit to a Fisher Discriminant. A Fisher discriminant aims

to find a linear projection that maximizes between class (inter class) separation while minimizing

within class (intra class) spread. Such a projection is obtained by maximizing the Fisher criteria.

However, in the case of this work, we use a neural network with a non-linear projection to learn

this representation.

For closed set classification, the hidden layer representations are learned to minimize

classification loss of the output y using loss functions such as cross entropy. However, the

representations might not have the two desirable properties we presented earlier, useful in open

set recognition. In this chapter we present an approach in Section 6.3.2 for learning the hidden

layer ~z = g(~x) using a loss function, that directly tries to achieve the two properties.

Once such representation is learned, we can use the distance of ~z from a class center as an

outlier score (i.e. further away ~z is from the closest class center the more likely it is to be from

unknown class/outlier.) This is discussed in more detail in Section 6.3.3. By observing how close

training instances are to the class center, we estimate a threshold value for the outlier score for

identifying unknown class instances (Section 6.3.3). We can further use the distance of ~z from all

the known class centers to predict a probability distribution over all the known classes (Section

6.3.4).

To make the final open set prediction, we use the threshold on the outlier score to first identify

known class instances from unknown class instances. Then, for the instances that are predicted

as known, we use the predicted probability distribution over the known classes to identify the

most likely known class label (Section 6.3.5).

6.3.2 Learning representations

Recall that to learn a new representation ~z for an original instance ~x, we learn a function g that

projects ~x to ~z (ie, ~z = g(~x)). The learning process is guided by a loss function that satisfies

properties P1 and P2 in Section 6.3.1.
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II-Loss Function

In a typical neural network classifier, the activation vector that comes from the final linear layer

are given as input to a Softmax function. Then the network is trained to minimize a loss function

such as cross entropy on the outputs of the Softmax layer. In our case the output vector ~zi of the

final linear layer (i.e activation vector that serves as input to a softmax in a typical neural net)

are considered as the projection of the input vector ~xi, of instance i, to a different space in which

we aim to maximize the distance between different classes (inter class separation) and minimize

distance of an instance from its class mean (intra class spread). We measure intra class spread

as the average distance of instances from their class means:

intra spread = 1
N

K∑
j=1

|Cj |∑
i=1
‖ ~µj − ~zi‖2

2 (6.1)

where |Cj | is the number of training instances in class Cj , N is the number of training instances,

and µj is the mean of class Cj :

~µj = 1
|Cj |

|Cj |∑
i=1

~zi (6.2)

We measure the inter class separation in terms of the distance between the closest two class

means among all the K known classes:

inter sparation = min
1≤m≤K

m+1≤n≤K

‖ ~µm − ~µn‖2
2 (6.3)

An alternative for measuring inter class separation would have been to take the average distances

between all class means. Doing so, however, allows the largest distance between two classes to

dominate inter class separation, hence does not result in a good separation.

The network is then trained using mini-batch stochastic gradient descent with

backpropagation as outlined in Algorithm 6.1 to minimize the loss function in Equation 6.4,

which we will refer to ii-loss for the remainder of this chapter. This loss function minimizes the

intra class spread and maximizes inter class separation.

ii-loss = intra spread− inter sparation (6.4)
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After the network finishes training, the class means are calculated for each class using all the

training instances of that class and stored as part of the model.
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(a) Convolutional network with ii-loss
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(b) Fully connected network with ii-loss
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(c) Combining ii-loss with Cross Entropy Loss

Figure 6.1: Network architecture with ii-loss.

The neural network g used to learn the representation can be either a combination of

convolution and fully connected layers, as shown in Figure 6.1a, or it can be all fully connected

layers, Figure 6.1b. Both types are used in our experimental evaluation.

Combining ii-loss with Cross Entropy Loss

While the two desirable properties P1 and P2 discussed in Section 6.3.1 aim to have a

representation that separates instances from different classes, lower classification error is not

explicitly stated. Hence, a third desirable property (P3) is a low classification error in the

training data. To achieve this, alternatively a network can be trained on both cross entropy loss

and ii-loss (Eq 6.4) simultaneously. The network architecture in Figure 6.1c can be used. In this

configuration, an additional linear layer is added after the z-layer. The output of this linear layer

is passed through a Softmax function to produce a distribution over the known classes. Although
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Algorithm 6.1: Training to minimize ii-loss.
Input :

(X, Y ): Training data and labels
1 for number of training iterations do
2 Sample a mini-batch (Xbatch, Ybatch) from (X, Y )
3 Zbatch ← g(Xbatch)
4 {~µ1 · · · ~µK} ← class means(Zbatch, Ybatch)
5 intra spread ← intra spread(Zbatch, {~µ1 · · · ~µK})
6 inter separation ← inter separation({~µ1 · · · ~µK})
7 ii-loss ← intra spread- inter separation
8 update parameters of g using stochastic gradient descent to minimize ii-loss
9 end

10 {~µ1 · · · ~µK} ← class means(g(X), Y )
11 return {~µ1 · · · ~µK} and parameters of g as the model.

Figure 6.1c shows a network with a convolutional and fully connected layers, combining ii-loss

with cross entropy can also work with a network of fully connected layers only.

The network is trained using mini-batch stochastic gradient descent with backpropagation.

During each training iterations the network weights are first updated to minimize ii-loss and then

updated to minimize cross entropy loss. Other researchers have trained neural networks using

more than one loss function. For example, the encoder network of an Adversarial autoencoders

[90] is updated both to minimize the reconstruction loss and the generators loss.

6.3.3 Outlier Score for Open Set Recognition

During testing we use an outlier score to indicate the degree to which the network predicts an

instance ~x to be an outlier. This outlier score is calculated as the distance of an instance to the

closest class mean from among K known classes.

outlier score(~x) = min
1≤j≤K

‖~µj − ~z‖2
2 (6.5)

where ~z = g(~x).

Because the network is trained to project the members of a class as close to the mean of the

class as possible the further away the projection ~z of instance ~x is from the closest class mean,

the more likely the instance is an outlier for that class.
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Threshold Estimation

Once an outlier score is identified, the next step is to determine a threshold value for the outlier

score. The threshold will indicate how far the projection of an instance needs to be from the

closest class mean for it to be deemed an outlier. For this work, we propose a simple threshold

estimation. To pick an outlier threshold, we assume that a certain percent of the training set

to be noise/outliers. We refer to this percentage as the contamination ratio. For example, if

we set the contamination ratio to be 0.01 it will be like assuming 1% of the training data to be

noise/outliers. Then, we calculate the outlier score on the training set instances, sort the scores

in ascending order, and pick the 99 percentile outlier score value as the outlier threshold value.

The reader might notice that the threshold proposed in this section is a global threshold.

This means that the same outlier threshold value is used for all classes. An alternative to this

approach is to estimate the outlier threshold per-class. However, in our evaluation we observe

that global threshold consistently gives more accurate results than per-class threshold.

6.3.4 Prediction on Known Classes

Once a test instance is predicted as known, the next step is to identify to which of the known

class it belongs. An instance is classified as belonging to the class whose class mean its projection

is nearest to. If we want the predicted class probability over the known classes, we can take the

softmax of the negative distance of a projection ~z, of the test instance ~x (i.e. ~z = g(~x)), from all

the known class means. Hence the predicted class probability for class j is given by:

P (y = j | ~x) = e−‖~µj−~z‖2
2∑K

m=1 e
−‖~µm−~z‖2

2
(6.6)

6.3.5 Performing Open Set Recognition

Open set recognition is a classification over K + 1 class labels, where the first K labels are from

the known classes the classifier is trained on. The K+1st label represents the unknown class that

signifies that an instance does not belong to any of the known classes. This is performed using

the outlier score in Equation 6.5 and the threshold estimated in Section 6.3.3. The outlier score

of a test instance is first calculated. If the score is greater than threshold, the test instance is
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labeled as K + 1, which in our case corresponds to the unknown class, otherwise the appropriate

class label is assigned to the instance from among the known classes:

y =


K + 1, if outlier score > threshold

argmax
1≤j≤K

P (y = j | ~x), otherwise
(6.7)

When a network is trained on ii-loss alone, P (y = k | ~x) in the above equation comes from

Equation 6.6; whereas in case of a network trained on both ii-loss and cross entropy loss, discussed

in Section 11, P (y = k | ~x) is from the Softmax layer in Figure 6.1c.

6.4 Evaluation

6.4.1 Datasets

We evaluate our approach using three datasets. Two malware datasets Microsoft Malware

Challenge Dataset [1] and Android Genome Project Dataset [67]. The Microsoft Dataset consists

of disassembled windows malware samples from 9 malware families/classes. For our evaluations,

we use 10260 samples which our disassembled file parser was able to correctly process. The

Android dataset consists of malicious android apps from many families/classes. In our evaluation,

however, we use only classes that have at least 40 samples so as to be able to split the dataset

in to training, validation and test and have enough samples. After removing the smaller classes

the dataset has 986 samples. To show that our approach can be applied in other domains we

evaluate our work on the MNIST Dataset [91], which is a dataset consisting of images of hand

written digits from 0 to 9.

We extract function call graph (FCG) from the malware samples as proposed in Chapter 4.

In case of the Android dataset we first use [68] to extract functions and the function instructions

from the APK files. We then extract the FCG features. For MS Challenge dataset, we reformat

the FCG features as a graph adjacency matrix by taking the edge frequency features in Chapter

4 and rearranging them to form an adjacency matrix. Formating the features this way allowed

us to use convolutional layers on the MS Challenge dataset.
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6.4.2 Simulating Open Set Dataset

To simulate an open world dataset for our evaluation datasets, we randomly choose K number

of classes from the dataset, which we will refer to as known classes in the remainder of this

evaluation section, and keep only training instances from these classes in the training set. We

will refer to the other classes as unknown classes. We use the open datasets created here in

Sections 6.4.4 and 6.4.5.

In case of the MS Dataset and Android Dataset, first we randomly chose 6 known classes and

treat set the remaining 3 as unknown classes. We then randomly select 75% of the instances from

the known classes for the training set and the remaining for the test set. We further withhold

one third of the test set to serve as a validation set for hyper parameter tuning. We use only

the known class instances for tuning. In these two datasets all the unknown class instances are

placed into the test set. In case of the MNIST dataset, first we randomly chose 6 known classes

and the remaining 4 as unknown classes. We then remove the unknown class instances from the

training set. We leave the test set, which has both known and unknown class instances, as it is.

For each of our evaluation datasets we create 3 open set datasets. We will refer to these

open set datasets as OpenMNIST1, OpenMNIST2 and OpenMNIST3 for the three open set

evaluation datasets created from MNIST. Similarly, we also create OpenMS1, OpenMS2, and

OpenMS3 for MS Challenge dataset and OPenAndroid1, OpenAndroid2, and OpenAndroid3 for

Android Genom Project dataset.

6.4.3 Evaluated Approaches

We evaluate four approaches, all implemented using Tensorflow. The first (ii) is a network setup

to be trained using ii-loss. The second (ii+ce) is a network setup to be simultaneously trained

using ii-loss and cross entropy (Section 11). The third (ce) is a network which we use to represent

the baseline, is trained using cross entropy only (network setup in Figure 6.1c without the ii-

loss.) The final approach is Openmax [81] (a state-of-art algorithm), which was reimplemented

based the original paper and the authors’ source code to fit our evaluation framework. The

authors of Openmax state that the choice of distance function Euclidean or combined Euclidean

and cosine distance give similar performance in the case of their evaluation datasets [81]. In
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our experiments, however, we observed that the combined Euclidean and cosine distance gives a

much better performance. So we report the better result from combined Euclidean and cosine

distance.

The networks used for MS and MNIST datasets have convolution layers at the beginning

followed by fully connected layers, whereas for the android dataset we use only fully connected

layers. The architecture is detailed in Appendix A. Our source code is available on github 1. The

evaluation datasets are available online on their respective websites.

6.4.4 Detecting Unknown Class Instances

We start our evaluation by showing how well outlier score (Section 6.3.3) is able to identify

unknown class instances. We evaluate it using 3 random open set datasets created from MS,

Android and MNIST datasets as discussed in Section 6.4.2. For example, in the case of MNIST

dataset, we run 10 experiments on OpenMNIST1, 10 experiments on OpenMNIST2, and 10

experiments on OpenMNIST3. We then report the average of the 30 runs. We do the same for

the other two datasets.

Table 6.1 shows the results of this evaluation. To report the results in such a way that is

independent of outlier threshold, we report the area under ROC curve. This area is calculated

using the outlier score and computing the true positive rate (TPR) and the false positive rate

(FPR) at different thresholds. We use t-test to measure statistical significance of the difference in

AUC values. Looking at the AUC up to 100% FPR in all tree datasets, our approach ii and ii+ce

perform significantly better(with p-value of 0.04 or less) in identifying unknown class instances

than the baseline approach ce (using only cross entropy loss.) Although AUC up to 100% FPR

gives as a full picture, in practice it is desirable to have good performance at lower false positive

rates. That is why we report AUC up to 10% FPR. Our two approaches report a significantly

better AUC than the baseline network trained to only minimize cross entropy loss. We didn’t

include Openmax in this section’s evaluation because it doesn’t have a specific outlier score.
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Table 6.1: Average AUC of 30 runs up to 100% FPR and 10% FPR (the positive label represented
instances from unknown classes and the negative label represented instances from the known
classes when calculating the AUC). The underlined average AUC values are higher with statistical
significance (p-value ¡ 0.05 with a t-test) compared to the values that are not underlined on the
same row. The average AUC values in bold are the largest average AUC values in each row.

FPR ce ii ii+ce

MNIST 100% 0.9282 (±0.0179) 0.9588 (±0.0140) 0.9475 (±0.0151)
10% 0.0775 (±0.0044) 0.0830 (±0.0045) 0.0801 (±0.0044)

MS Challenge 100% 0.9143 (±0.0433) 0.9387 (±0.0083) 0.9407 (±0.0135)
10% 0.0526 (±0.0091) 0.0623 (±0.0030) 0.0596 (±0.0035)

Android Genom 100% 0.7755 (±0.1114) 0.8563 (±0.0941) 0.9007 (±0.0426)
10% 0.0066 (±0.0052) 0.0300 (±0.0193) 0.0326 (±0.0182)

6.4.5 Open Set Recognition

When the proposed approach is used for open set recognition, the final prediction is a class label,

which can be one of the K known class labels if the a test instances has an outlier score less

than a threshold value (Section 6.3.3) or it can be an “unknown” label if the instance has an

outlier score greater than the threshold. In addition to the three approaches evaluated in the

previous section, we also include Openmax [81] in these evaluations because it gives final class

label predictions.

We use average precision, recall and f-score metrics to evaluate open set recognition

performance and t-test for statistical significance. Precision, recall and f-score are first calculated

for each of the K known classes labels and the one “unknown” label. Then the average overall

the K + 1 classes is calculated. Using the same experimental setup as Section 6.4.4 (i.e. using 3

random open set datasets created from MS, Android and MNIST datasets as discussed in Section

6.4.2.), we report the result of the average precision, recall and f-score, averaged across all class

labels and 30 experiment runs in Figure 6.2.

On all three datasets the ii and ii+ce networks gives significantly better f-score compared

to the other two configurations (with p-value of 0.0002 or less). In case of the Android dataset,

all networks perform lower compared to the other two datasets. We attribute this to the small

number of samples in the Android datasets. The dataset is also imbalanced with a number of

classes only having less than 60 samples.
1https://github.com/shrtCKT/opennet
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(a) MNIST Dataset with 6 known and 4 unknown classes.
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(b) MS Challenge Dataset with 6 known and 3 unknown classes.
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(c) Android Genom Dataset with 6 known and 3 unknown classes.

Figure 6.2: Average Precision, Recall and F-Score of 30 Runs. The metric calculations included
the average of K known class labels and the one unknown class label further averaged over 30
experiment runs. The results are from Openmax, a baseline network trained on cross entropy
loss only (ce), a network trained on ii-loss only (ii), and a network trained on combination of
ii-loss and cross entropy (ii+ce).

6.4.6 Closed Set Classification

In this section we would like to show that on a closed dataset, a network trained using ii-

loss performs comparably to the same network trained using cross entropy loss. For closed set

classification, all the classes in the dataset are used for both training and test. For MS and

Android datasets we randomly divide the datasets into training, validation, and test and report

the results on the test set. The MNIST dataset is already divided into training, validation and

test.
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On closed MNIST dataset, a network trained with cross entropy achieved, a 10-run average

classification accuracy of 99.42%. The same network trained using ii-loss achieved an average

accuracy of 99.31%. The network trained only on cross entropy gives better performance than

the network trained on ii-loss. We acknowledge that both results are not state-of-art as we are

using simple network architectures. The main goal of these experiments is to show that the ii-loss

trained network can give comparable results to a cross entropy trained network. On the Android

dataset the network trained on a cross entropy gets an average classification accuracy of 93.10%

while ii-loss records 92.68%, but the difference is not significant (with p-value at 0.43).

In Section 11, we proposed training a network on both ii-loss cross entropy loss in an effort to

get lower classification error. The results from our experiments using such a network for closed

MNIST dataset give an average classification accuracy of 99.40%. This result makes it comparable

to the performance of the same network trained using cross entropy only (with p-value of 0.22).

6.4.7 Discussions

As discussed in Section 6.2 the limitations of openmax are 1) it does not use a loss function

that directly incentivizes projecting class instances around the mean class activation vector and

2) the distance function used by openmax is not necessarily the right distance function for final

activation vector space. We addressed these limitations by training a neural network with a loss

function that explicitly encourages the two properties in Section 6.3.1. In addition, we use the

same distance function during training and test. As a result, we observe in Section 6.4.5 that

our two proposed approaches perform better in open set recognition.

Figure 6.3 provides evidence on how our network projects unknown class instances in the space

between the known classes. In the figure, the z-layer projection of 2000 random test instances

of an open set dataset created from MNIST with 6 known and 4 unknown classes. The class

labels 0, 2, 3, 4, 6, and 9 in the figure represent the 6 known classes while the “unknown” label

represents all the unknown classes. The network with ii-loss is setup to have a z-layer dimension

of 6, and the figure shows a 2D plot of dimension (z0,z1), (z0,z2). The Openmax network also has

a similar network architecture and last layer dimension of 6. In case of ii-loss based projection,

the instances from the known classes (Figures 6.3a) are projected close to their respective class
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Figure 6.3: The z-layer projection of (a, c) known and (b, d) unknown class instances from
test set of MNIST dataset. The labels 0,2,3,4,6,9 represent the known classes while the label
“unknown” represents the unknown classes.
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while the unknown class instances (Figures 6.3b) are projected, for the most part, in the region

between the classes. It is this property that allows us to use the distance from the class mean

as an outlier score to perform open set recognition. In case of openmax, Figures 6.3c and 6.3d,

the unknown class instances do not fully occupy the open space between the known classes. In

openmax, most instances are projected along the axis, this is because of the one-hot encoding

induced by cross entropy loss. So compared to openmax, ii-loss appears to better utilize space

“among” the classes.
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Figure 6.4: Projections of Android dataset known class test instances from final activation layer
of Openmax.
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Figure 6.5: Projections of Android dataset (a) known class and (b) unknown class test instances
from z-layer of a network trained with only cross entropy.

Performance of Openmax is especially low in case of the Android dataset because of low

recall on known classes with small number training instances. The low recall was caused by test

instances from the smaller classes being projected further away from the class’s mean activation

90



vector (MAV). For example, in Figure 6.4a we see that test instances of class 2 are further away

from the MAV of class 2 (marked by ’?’). As a result, these test instances are predicted as

unknown. Similarly, in Figure 6.4b instances of class 3 are far away from the MAV of class

3(marked by ’X’). Performance of ce is also low for Android dataset. This was because unknown

class instances were projected close to the known classes (Figure 6.5) resulting them being labeled

as known classes. In turn resulting in lower precision score for the known classes.
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Figure 6.6: Inter class separation for networks trained (a) with batch normalization used in all
layers and (b) without batch normalization at the z-layer.

On the topic of the z-layer, one question the reader might have is how to decide on the

dimension of this layer. Our suggestion is to chose this experimentally as is the case for other

neural network hyper-parameters. In our case, we tuned the z-layer dimension together with other

hyper-parameters for experiments in Sections 6.4.4 and 6.4.5 based on the closed set performance

on the known class instances in validation set. Based on the results we decided to keep z-layer

dimension equal to the number of classes as we didn’t see significant improvement from increasing

it.

In our experiments, we have observed batch normalization [92] to be extremely important

when using ii-loss. Because batch normalization fixes the mean and variance of a layer, it bounds

the output of our z-layer in a certain hypercube, in turn preventing the inter separation term

in ii-loss from increasing indefinitely. This is evident in Figures 6.6a and 6.6b. Figure 6.6a shows

the inter separation of the network where batch normalization used in all layers including the

z-layer where inter separation increases in the beginning but levels off. Whereas when batch

normalization is not used in the z-layer the inter separation term keeps on increasing as seen in

Figure 6.6b.
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Autoencoders can also be considered as another way to learn a representation. However,

autoencoders do not try to achieve properties P1 and P2 in Section 6.3.1. One of the reasons is

auto encoder training is unsupervised. Another reason is because non-regularized autoencoders

fracture the manifold into different domains resulting in the representation of instances from

the same class being further apart [90]. Therefore, the representation learned does not help in

discriminating known class instances from unknown class instances. Figure 6.7 shows the output

of an encoder in an autoencoder trained on known class instances and then used to project both

known and unknown class instances. For the projection in autoencoder, the known classes are

not well separated and outliers get projected to roughly the same area as the known classes.
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Figure 6.7: Projections of (a) known and (b) unknown class instances using the hidden layer of
an Autoencoder. The labels 0,2,3,4,6,9 represent the known classes while the label “unknown”
represents the unknown classes.

In Section 6.4.1 we mentioned that we used function call graph (FCG) feature for the malware

dataset. We also mentioned that in case of the MS Challenge dataset we reformatted the FCG

features proposed in [52] to form a (63, 63) adjacency matrix representation of the graph. We

feed this matrix as an input to the convolutional network with a (4,4) kernel. Such kernel shape

makes sense when it comes to image input because in images proximity of pixels hold important
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information. However, it is not obvious to us how nearby cells in a graph adjacency matrix hold

meaning full information. We tried different kernel shapes, for example taking an entire row of

the matrix at once (because a row of the matrix represent a single nodes outgoing edge weights).

However the simple (4,4) giving better close set performance.

6.5 Conclusion

We presented an approach for learning a neural network based representation that projects

instances of the same class closer together while projecting instances of the different classes

further apart. Our empirical evaluation shows that the two properties lead to larger spaces

among classes for instances of unknown classes to occupy, hence facilitating open set recognition.

We compared our proposed approach with a baseline network trained to minimize a cross entropy

loss and with Openmax (a state-of-art neural network based open set recognition approach). We

evaluated the approaches on datasets of malware samples and images and observed that our

proposed approach achieves statistically significant improvement.

We proposed a simple threshold estimation technique, Section 6.3.3. However, there is room

to explore a more robust way to estimate the threshold. We leave this for future work.
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Chapter 7

Unsupervised Open Set

Recognition using Adversarial

Autoencoders

7.1 Introduction

Scheirer et al. [73] define an open set recognition scenario as one where an “incomplete knowledge

of the world is present at training time, and unknown classes can be submitted to an algorithm

during testing”. in other words, the classes seen during testing may not have been seen in training;

unlike closed set recognition where the assumption is that the same set of classes are seen both

during training and test.

Many research works on open set recognition, such as [81, 93, 94], all propose solutions for a

supervised open set recognition task where the training data is labeled. However, there are

scenarios where open set recognition is needed in an unsupervised setting. That is, in the

unsupervised setting, the training data are not labeled with classes and the test data could

belong to classes beyond those “latent” classes in the training data.

Consider a scenario where the training set is comprised of instances from multiple data

generating distributions (we will refer to these as known or training data distributions).
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Furthermore, test data can contain instances from unknown data generating distribution never

seen in the training set. Unsupervised open set recognition is the task of identifying whether

an instance is from unknown data distributions or the known data distributions in the absence

of labeled training data. Wang et al. [95] highlight one such scenario for the task of person

re-identification from surveillance camera footages in public space.

Another case where unsupervised open set arises is in malware defense. Malware clustering

has been proposed in [6, 15, 18, 19] for automatically identifying similar malware. Since a large

number of malware instances are regularly released, malware clustering is used as part of malware

analysis workflow where analysts look at representative samples from each cluster instead of

analyzing each sample. As new samples come in, it is important to identify if they belong to

one of the already created clusters or if they are different from them. Hence, it is important to

have the capability to perform unsupervised open set recognition. K. Rieck et al. [18] identified

the necessity of having such capability and proposed a malware clustering approach and an

associated outlier score for recognizing instances that did not belong to the already identified

clusters. Although the authors did not specify that their work was for open set recognition, their

outlier score can be used for unsupervised open set recognition.

Unsupervised open set recognition is very similar to anomaly detection. However, there

are certain aspects of typical anomaly detection approaches that make them a poor fit for

open set recognition tasks. For example, statistical anomaly detection explicitly models the

data probability distribution; however, these approaches can have a poor performance on high

dimensional data [44]. Proximity-based and density-based approaches determine if an instance is

anomalous based on its distance from normal data or based on the number of instances around

it; however, both approaches rely on the use of the appropriate distance function which can be

difficult to find for the original feature space. As a result, typical anomaly detection methods do

not perform well on open set recognition as we show in our evaluations.

We make the following contributions in this chapter: (1) we propose an unsupervised open

set recognition approach that uses an Adversarial Autoencoder (AAE) [90] for clustering and

combine it with ii-loss, proposed in Chapter 6, to learn a representation that facilitates open set

recognition. (2) Our proposed approach gives statistically significant improvement over other

approaches on three evaluation datasets; two malware datasets (as the primary focus of this
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work is the security domain) and one image dataset. (3) We show anomaly or outlier detection

algorithms, such as Isolation Forest, do not perform well on unsupervised open set scenarios.

(4) We show the applicability of our approach to image recognition domain by evaluating on

handwritten digit dataset (MNIST).

7.2 Related Works

Open set recognition is starting to get considerable attention in recent literature. Dietterich [79]

even presents it as one of the challenges that need to be addressed to build a robust AI system.

Most of the research in this area [73, 81, 83, 93, 94] so far has focused on supervised open set

recognition; a few of these are discussed below. Scheirer et al. [73] formalize open space risk

and propose a one-class open set recognition (they call a 1-vs-set machine) as an SVM where

the positive region is bounded by two parallel planes. Scheirer et al. [94] further develop this

idea to address a multi-class open set recognition and provide a probabilistic decision score for

rejecting instances as unknown. Bendale and Boult [81] present a deep neural network based

multi-class open set recognition approach which redistributes the activation vector of the last

neural network layer to compute the pseudo-activation for the unknown class and provide the

probability of the unknown class. On the unsupervised open set recognition side, Want et al. [95]

present an approach for learning to identify if individuals in surveillance footages that are of the

same individuals in a target list without the need for a labeled data.

Another related area is anomaly or outlier detection. Proximity-based anomaly detection

approaches such as [69], for example, use the distance of an instance to its k-nearest neighbor as

its anomaly/outlier score. Sugiyama and Borgwardt [97] sample a random subset of the dataset,

for improved scalability, and use the distance to the nearest sample in the subset as an outlier

score. Others such as the widely used LOF algorithm [70] use the density of the neighborhood

around an instance relative to the density of other instances in its neighborhood as a measure

of the instances outlier score. Isolation Forest [98], a random forest like anomaly detection

algorithm, can also be thought of as a density-based approach. Although isolation forest does

not directly calculate the density of an instance, it measures how anomalous an instance is by

how difficult it is to isolate that instance from other instances around it through a random
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recursive partitioning. The denser the area around an instance the more difficult it is to separate

it hence the less likely for it to be an anomaly. Clustering based anomaly detection has also been

proposed [99].

7.3 Approach

7.3.1 Background

Adversarial Autoencoder (AAE)

Makhzani et al. [90] propose an approach for turning the decoder network of an autoencoder into

a generative model. In their proposed approach an adversarial autoencoder, shown in Figure 7.1,

is trained on two objectives (1) the traditional reconstruction error criteria and (2) adversarial

training criteria. The reconstruction objective aims to train the encoder network to encode the

original input into latent variables and the decoder network to reconstruct the original input

from the latent variables.

reconstruction loss = 1
2N

N∑
i=1

∥∥∥ ~̂xi − ~xi

∥∥∥2

2
(7.1)

where N is number of instances and ~̂xi is the reconstruction of the input ~xi.

The task of the adversarial criteria is to match the latent variable posterior distribution to an

arbitrary prior, usually a Gaussian distribution N (0, I). An adversarial criteria can be viewed as

min-max game between two networks; a generator network (G) and a discriminator network (D).

Goodfellow et al. [87] express this min-max game as having value function V (G,D), Equation 7.2.

In this game, the discriminator network maximizes the probability of assigning the correct labels

to the real samples from the data distribution pdata and the fake samples from the generator G.

The generator on the other hand, minimizes log(1−D(G(v)) (i.e., tries to fool the discriminator

into labeling the fake samples as real).

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] + Ev∼p(v)[log(1−D(G(v))] (7.2)
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As Goodfellow points out in [100], although the min-max game in the above equation is useful

for theoretical analysis, it does not perform well in practice. In practice, we use two separate

loss functions for the discriminator (D) and the generator (G). The discriminator is trained to

minimize the standard cross-entropy function used in conventional binary classifier with a sigmoid

output, Equation 7.3. The caveat here is that the discriminator is trained on mini-batch data

from pdata and p(v). The generator, on the other hand, is trained to minimize the loss function

in Equation 7.4.

J (D) = −1
2Ex∼pdata

[logD(x)]− 1
2Ev∼p(v)[log(1−D(G(v))] (7.3)

J (G) = −1
2Ev∼p(v)[logD(G(v)] (7.4)

In case of the AAE shown in Figure 7.1, the encoder network and the z-layer together form

the generator G. The discriminator D, on the other hand, is a separate network which we refer

to as “gaussian discriminator” in the Figure 7.1. We use the term “Gaussian Discriminator” to

signify that it is used to discriminate instances sampled from a Gaussian Distributions from those

coming from the z-layer. The real samples are sampled from an arbitrary prior distribution; for

example, pdata in Equation 7.2 and 7.3 is a Gaussian distribution N (0, I). The fake samples are

from the output of the z-layer (i.e., p(v) in Equation 7.2 and 7.4 is the encoder and the z-layer).

Encoder 
q(z|x)

Decoder 
p(x|z)

z
0.23
0.45
.
.
.

Discriminator Inputz’ ~ N(0, I)

Fake
-

Real
+

Figure 7.1: Adversarial autoencoder architecture.

During each training iteration the training alternates between two phases. In the first phase

(called the reconstruction phase), the encoder network, decoder network and the z-layer weights

are updated to minimize the reconstruction error. Then in the second phase (the adversarial
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phase), the discriminator network weights are updated to tell the real samples (sampled from

the Gaussian) from the fake/generated samples (coming from the encoder output). This is done

by minimizing Equation 7.3. Also in the second phase, the encoder and the z-layer, which act

as the generator in the adversarial training, are updated to confuse the discriminator network.

That is, the encoder and the z-layer weights are updated to minimize Equation 7.4.

Variants of Adversarial Autoencoder (AAE)

Makhzani et al. also demonstrate multiple variants of the adversarial autoencoder for clustering

and dimensionality reduction. In the clustering variant, shown in Figure 7.2, the encoder network

is connected to the z-layer and the y-layer. The y-layer, which is a softmax layer, is a probability

distribution over the cluster labels. There is an additional adversarial network (which we will

refer to as “Categorical Discriminator”) for regularizing such that the cluster prediction match

a Categorical distribution (i.e., one-hot encoding).

Each training iteration of the clustering variant of AAE consists of three phases. The first is

the reconstruction phase, similar to the earlier configuration, updates the encoder network, the

z-layer, the y-layer, and decoder network weights to minimize a reconstruction error. The second

phase is the Gaussian adversarial phase which is done in the same way as the original adversarial

autoencoder configuration. The third is the categorical adversarial phase. In the context of this

phase, the Categorical discriminator represents the D network; whereas the encoder and y-layer

constitute the generator G network. In this phase, the weights of the D network are updated to

minimize Equation 7.3. Then the weights of the G network are updated to minimize Equation

7.4. In Equations 7.3 and Equation 7.4, the real samples are now sampled from a Categorical

distribution (i.e., pdata in Equation 7.3). The fake samples come from p(v) which is the encoder

and the z-layer.

In the dimensionality reduction variant shown in Figure 7.3, a lower dimensional

representation is learned. To do this, the cluster architecture is modified by first multiplying

~y by an n×m weight matrix Wc (where n is the number of clusters and m is the dimensionality

of ~z). The result is referred to as a “clusterhead” which has lower dimension than ~y but same

as ~z. In order to combine ~y and ~z, the clusterhead is added to the latent variables ~z to give a

lower dimension representation. This representation is fed to the decoder network. They also
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Figure 7.2: Adversarial autoencoder architecture for clustering.

add a loss function that linearly penalizes the distance between cluster heads if this distance is

less than some threshold η and zero otherwise.

II-Loss

The aim of ii-loss, introduced in Chapter 6, is to learn a neural-network-based representation

that facilitates open set recognition. II-loss achieves this by ensuring the representation fulfills

two properties: (P1) instances from the same class are close to each other; (P2) instances from

different classes are further apart. The intuition is that as the known classes are further apart

from each other, unknown class instances will have more space to occupy between them making

the task of recognizing unknown class instances easier.

Given training data, consisting of set of instance X and labels Y , and a neural network g,

the learned representation of instance ~x is ~z = g(~x). The neural network is trained to minimize

ii-loss which defined as:

ii-loss = intra spread− inter sparation (7.5)
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Figure 7.3: Adversarial autoencoder architecture for dimensionality reduction.

The first component of the ii-loss, intra spread, aims to minimize the distance the projection

~z has from the instance’s class center.

intra spread = 1
N

K∑
j=1

|Cj |∑
i=1
‖ ~µj − ~zi‖2

2 (7.6)

where |Cj | is the number of training instances in class Cj , N is the number of training instances,

K is the number of known classes, and µj is the mean of class Cj :

~µj = 1
|Cj |

|Cj |∑
i=1

~zi (7.7)

The second term of the ii-loss, inter sparation, maximizes the distance between the class

centers.

inter sparation = min
1≤m≤K

m+1≤n≤K

‖ ~µm − ~µn‖2
2 (7.8)

7.3.2 Unsupervised Open Set Recognition

The continuous latent variables ~z learned by an AAE does not directly try to fulfill the two

properties of ii-loss which have shown to be useful for open set recognition. The original ~z
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in AAE is used to learn a representation for reconstruction, and it is regularized to follow a

normal distribution by the adversarial network so that it can be used for the generative model.

For example in Figure 7.5a we see that all instances are projected together into the same region.

Although the dimensionality reduction variant of AAE adds a loss function for separating clusters,

the loss term is set to zero after the distance between clusters gets larger than some threshold

value. Additionally, the dimensionality reduction variant of AAE does not try to make the

clusters compact. As a result, the separation between the clusters is small; leaving a smaller

space for the unknown instances to occupy.
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Figure 7.4: AAE-II: architecture for unsupervised open set recognition.

We propose combining ii-loss with AAE to learn a continuous representation for facilitating

open set recognition. Since the adversarial regularization works in contrary to ii-loss and as

a result, degrades open set recognition performance; we propose to learn a different continuous

representation ~z ii. In ~z ii, instances from the same cluster are closer to each other while instances

from different clusters are further apart, this is shown in Figure 7.5b. We will refer to this new

representation ~z ii, shown in Figure 7.4, as a z ii-layer. The z ii-layer shares the same encoder
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network as the z-layer and the y-layer. However, it is not given as input to the decoder as shown

in Figure 7.4.
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Figure 7.5: Scatter plot of the 15 dimensional z-layer and z ii-layer for 1000 random instances.
The legend indicates the true label of the points.

The original ii-loss, in Chapter 6, was used for supervised open set recognition, where the

training class labels are used for calculating ii-loss. In this case, however, the open set recognition

task at hand is unsupervised. Hence, the objective of ii-loss needs to be changed accordingly.

We propose to use ii-loss to project similar instances from the same cluster closer together while

projecting different clusters further apart. We can use the same ii-loss formulated in Equations

7.5-7.8. However, Cj in Equations 7.6 and 7.7 in this case refers to a cluster label instead of

class labels. A cluster label (or cluster-id) of an instance is computed as cluster id = argmax
1≤j≤K

y[j]

where K is the number of clusters (i.e., the dimension of the y-layer).

The training of the AAE-II is carried out in two stages as shown in Algorithm 7.1. In the first

stage (lines 2-8), we train the AAE network with updates from the reconstruction phase, gaussian

adversarial phase and categorical adversarial phase. During this training, we monitor the percent

of change in cluster membership among the training instances during each training iteration. We
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Algorithm 7.1: Training AAE-II
Input :

X: Training data and labels
1 // Stage One
2 for number of stage one iterations do
3 Sample a mini-batch Xbatch from X
4 Update Encoder, z-layer, y-layer, and Decoder to minimize reconstruction loss,

Equation 7.1.
5 Update Gaussian Discriminator to minimize Equation 7.3 where

p(v) = Lz(Enc(Xbatch)) and pdata = N (0, I)
6 Update Categorical Discriminator to minimize Equation 7.3 where

p(v) = Ly(Enc(Xbatch)) and pdata = Cat()
7 Update Encoder and z-layer to minimize Equation 7.4 where p(v) = Lz(Enc(Xbatch))
8 Update Encoder to y-layer to minimize Equation 7.4 where p(v) = Ly(Enc(Xbatch))
9 end

10 // Stage Two
11 for number of stage two iterations do
12 Sample a mini-batch Xbatch from X
13 Update Encoder, z-layer, y-layer, and Decoder to minimize reconstruction loss,

Equation 7.1.
14 Update Gaussian Discriminator to minimize Equation 7.3 where

p(v) = Lz(Enc(Xbatch)) and pdata = N (0, I)
15 Update Categorical Discriminator to minimize Equation 7.3 where

p(v) = Ly(Enc(Xbatch)) and pdata = Cat()
16 Update Encoder and z-layer to minimize Equation 7.4 where p(v) = Lz(Enc(Xbatch))
17 Update Encoder to y-layer to minimize Equation 7.4 where p(v) = Ly(Enc(Xbatch))
18 Update Encoder and z ii-layer to minimize ii-loss, Equation 7.5
19 end
20 Calculate cluster means and save as part of the model.
Lz denotes the z-layer
Ly denotes the y-layer
Enc() denotes the encoder network
Cat() denotes a categorical distribution

stop the first stage when the change in cluster membership converges to a value less than 1%

or when a pre-set training iteration is reached. In the second stage (lines 11-18), we add the

z ii-layer to the network and start updating the z ii-layer and the encoder network to minimize

ii-loss. We also continue the reconstruction, gaussian adversarial, and categorical adversarial

phases as in the first stage. After the training is completed, the cluster means(centers), at the

z ii-layer, are calculated for each cluster using all the training instances and stored as part of the

model.
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Outlier Score and Threshold Estimation

To measure the degree to which a test instance ~x is an outlier, we get the z ii-layer output ( ~z ii)

for this instance and then measure how far this vector is from each cluster mean. The distance

from the closest cluster center (mean) is then used as an outlier score.

outlier score(~x) = min
1≤j≤K

∥∥∥~µj − ~z ii
∥∥∥2

2
(7.9)

where ~z is the output of the z ii layer for input ~x, and ~µj is the mean of cluster j.

To determine whether a test instance is an outlier, a threshold value on the outlier score is

needed. We estimate this threshold based on the outlier score of the training data. An assumption

is made on how much of the training data to consider as outliers using the contamination ratio.

For example, if the contamination ratio is set to be 2%, then the 98 percentile largest outlier

score of the training data is set as the threshold value. During testing any instance that has an

outlier score higher than the threshold is predicted to be an outlier.

7.4 Evaluation

7.4.1 Dataset

We evaluated our proposed approach on three datasets. The first dataset is the Microsoft Malware

Challenge Dataset [1] which consists of 10868 labeled disassembled windows malware samples

from 9 families. In case of our experiment, we use 10260 samples from this dataset since our

disassemble file parser was not able to properly process the remaining files. The majority class

has 2936 samples whereas the minority class has 34 samples with the median class size of 1012

samples.

The second dataset used in the following evaluation is from the Android Malware Genome

Project [67]. The dataset consists of Android malware apps from many families. However, many

of these families only have few samples. Therefore in our evaluation, we use only families that

have at least 40 samples to be able to split the dataset into training, validation, and test and have

enough samples. After removing the smaller classes, the dataset has 986 samples. The majority
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class in this dataset has 309 samples whereas the minority class has 46 samples with the median

class size being 69. To evaluate the applicability of the proposed approach to domains outside

malware classification, we also evaluate it on the MNIST handwritten digit dataset.

The malware features used in both malware dataset are based on function call graph features

proposed in Chapter 4. In both cases, we use minhash to cluster the functions into 64 clusters

based on the unigram of the function opcodes. The cluster-ids are then used to label the functions,

and the vertex and edge features are extracted.

7.4.2 Simulating Open Set Dataset

For evaluating our proposed approach, we simulate open set datasets from the original evaluation

datasets. All three of the original datasets are labeled; however, we do not use the labels in

training the evaluated approaches. The labels are only used to create the open set datasets and

calculating performance metrics.

We start by randomly selecting K classes whose instances are going to be present in the

training set. In other words, the training set is made up of instances from K data distributions;

we will refer to these as known or training data distributions. In case of the MS and Android

datasets, we choose 75% of instances from the K classes to be part of the open set training set

and add the remaining to the open set test set. All the instances that are not part of the K classes

are added to the open set test set. In case of the MNIST dataset, we select all the instances from

the K classes in the original MNIST training dataset to be part of the open set training set. All

the instances from the original MNIST test set are used in the open set test dataset (i.e., this

contains the K training classes and the other classes that are not part of the training set). In all

cases the classes labels are not used for training, they are only used for calculating unsupervised

open set recognition performance metrics.

7.4.3 Evaluated Approaches

Unsupervised open set recognition has similarities with anomaly/outlier detection if one considers

the instances from an unknown data distributions as being outliers. It is important to show how

an outlier detection technique performs for unsupervised open set recognition. Therefore we
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evaluate the approach proposed in contrast to Isolation Forest [98]. We also evaluate how well

clustering-based outlier detection performs in an unsupervised open set scenario. Similar to what

is proposed by Rieck et al. [18], we use KMeans-based approach where the distance from cluster

centroid is used for detecting unknown data distribution instances.

In case of the Android and MS datasets, both the KMeans-based and Isolation Forest are

given the malware FCG features as input features. However, in case of the MNIST dataset, the

KMeans-based approach and Isolation Forest understandably do not perform well when given

the raw image pixels as input features. So instead we first use an autoencoder to transform the

pixels into an intermediate representation and then feed this intermediate representation to the

two algorithms.

We also evaluate our proposed approach implemented using TensorFlow. The source code

of our implementation is publicly available 1. The hyper-parameters for the neural network are

available in Appendix B. In case the Android and MS dataset the FCG features are given as

input features to our approach. Whereas in case of MNIST dataset we take the raw images as

input.

7.4.4 Detecting Instances from Unknown Data Distributions

We evaluate our proposed approach, and the other two methods mentioned in Section 7.4.3 on

the task of detecting instance from unknown data distributions. For these evaluations, three

open set datasets are randomly created from each the three datasets as discussed in Section

7.4.2. We then run 10 experiments for each of the three open set dataset, which means we have

a total of 30 experiments for each original dataset. The objective of these experiments is to

perform unsupervised open set recognition. In other words, discriminating test instances that

belong to the known data distributions (i.e., the data distributions present in the training set)

from instances that belong to unknown data distributions (i.e., the data distributions not seen

in the training set).

We report the results of these experiments first using Area Under the Curve (AUC), which

measures the unsupervised open set recognition performance independent of the outlier threshold.

We use a t-test to measure the statistical significance of the difference in performance AUC values.
1https://github.com/shrtCKT/unsupervised opennet
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Table 7.1: 30-run average AUC of discriminating instances of unknown data distributions from
instances of known data distributions. When calculating the AUC, the positive label represented
instances from unknown data distributions. The underlined average AUC values are higher with
statistical significance (p-value less than 0.05 with a t-test) compared to the values that are not
underlined on the same row. The average AUC values in bold are the largest average AUC
values in each row.

FPR Isolation Forest KMeans-based AAE-II
MNIST 100% 0.619(±0.085) 0.841(±0.078) 0.898(±0.029)

10% 0.008(±0.003) 0.031(±0.013) 0.058(±0.010)
MS 100% 0.547(±0.167) 0.568(±0.107) 0.829(±0.065)

10% 0.014(±0.017) 0.011(±0.009) 0.027(±0.017)
Android 100% 0.716(±0.050) 0.789(±0.016) 0.817(±0.139)

10% 0.011(±0.002) 0.026(±0.009) 0.029(±0.016)

Table 7.1 shows the 30-run average AUC. As shown in Table 7.1, our proposed approach (AAE-II)

has significantly higher average AUC for MNIST and MS dataset both up to 100% False Positive

Rate (FPR) and up to 10% FPR.

In case of the Android dataset, the KMeans-based approach has higher average AUC up

to 100% FPR over AAE-II although the improvement is not statistically significant. When

considering AUC up to 10% FPR AAE-II has a higher value. Again the improvement is not

statistically significant.

We now present the result of these experiment from a different perspective where a threshold

value is estimated. The threshold is then used to predict whether an instance belongs to known

data distribution or it does not. We present the results of this prediction in Figure 7.6. In all

three datasets, our proposed approach records statistically significant improvement in F-Score

and Accuracy compared to the other approaches.
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Figure 7.6: Average Precision, Recall, F-Score and Accuracy of 30-runs. The metric calculations
for precision recall and f-score included the averaging known and the unknown and further
averaged over 30 experiment runs.
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7.5 Discussion

One of the questions we had when combining ii-loss with the clustering variant of AAE was the

effect of ii-loss on the clustering performance of AAE. To quantify this effect we report here the

clustering performance of the experiments in Section 7.4.4. Additionally, we report clustering

performance of the same networks trained without ii-loss. We report the clustering performance

results in terms of the cluster homogeneity as defined by Rosenberg and Hirschberg [101]. The

homogeneity values have a range of 0.0 to 1.0. A homogeneity of 1.0 indicates that a cluster is

purely made up of instances from a single class, which is a desirable result. For the homogeneity

computation, elements in cluster i are assigned the label of the training instance that maximizes

the probability of belonging to that cluster. As shown in Table 7.2, the clustering performance

with and without ii-loss remain similar. We conducted a t-test to assess whether the difference in

the clustering performances is significant. The results from the t-test showed that the differences

were not statistically significant since the p-values from all three rows in the table were higher

than 0.24. Therefore, the effect of ii-loss on the clustering performance is negligible.

Table 7.2: 30-run average cluster homogeneity. The average Homogeneity values in bold are
the largest average Homogeneity values in each row. We used a t-test to determine whether
the difference in performance were significant and in all three datasets the differences were not
statistically significant.

AAE AAE-II
MNIST 0.834(±0.049) 0.815(±0.076)

MS 0.771(±0.051) 0.779(±0.044)
Android 0.756(±0.040) 0.757(±0.040)

In our implementation the use a separate z ii-layer was driven by the realization that the

original z-layer of AAE was not separating the instances from the different clusters. We showed

this in Figure 7.5 where we plotted the z-layer and z ii-layer projections of 1000 random data

instances. We show these figures again in Figure 7.7, but this time the plots contain both

instances from known data distributions, and instance from unknown data distributions. We

see in Figures 7.7a and 7.7b that the projections from both known and unknown overlap for

the most part. Hence, it is difficult to discriminate them. On the other hand, ii-loss pushes the

projections of different clusters further apart; so when an instance from unknown data distribution
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is encountered, the network projects them in the space between the clusters. This effect can be

seen in Figure 7.7c and 7.7d.

To understand the effect of the number of clusters (the dimension of the y-layer in Figure

7.4) and dimension of the z ii layer (we will refer to as z ii-dim) on the open set performance,

we conducted experiments on the three original datasets. Similar to what we did in Section

7.4.4, we randomly create 3 open set datasets from each original dataset as discussed in Section

7.4.2. We then run 10 experiments for each of the three open set dataset, which means we have

a total of 30 experiments for each original dataset at a given value of z ii-dim and number of

clusters. The results of these experiments are presented using the 30-run average Area Under the

Curve (AUC), which measures the unsupervised open set recognition performance in identifying

instances from unknown data distributions.

The figures on the right in Figure 7.8 show the effect of using different z ii dimension on

the average AUC (each point is the average of 30 experiments). The figures indicate that the

performance of our approach relatively remains the same for different z ii dimension values for

all three datasets. This is good because it shows the open set performance is not sensitive to the

z ii dimension. Hence, it is one less hyper-parameter to we need to tune. As long as one chooses

the dimensions of z ii that is not too small the proposed approach should work well.

The figures on the left in Figure 7.8 show the effect of using a different number of clusters

on the average AUC (each point is the average of 30 experiments). We expected the open set

recognition performance (i.e., average AUC) to increase as the number of clusters increases since

the clusters become more homogeneous(pure) as the number of clusters increase. The results of

MS and Android datasets seem to agree with our expectation as seen in Figures 7.8b and 7.8b.

In case of MNIST dataset, however, average AUC decreases as the number of clusters increase,

which is the opposite of what we expected to happen.

Our first hypothesis in trying to explain the unexpected result (i.e., the decrease in open

set recognition performance with an increase in cluster number for MNIST dataset) was that it

might be because the cluster quality(homogeneity) was not improving with an increase in the

number of clusters. However, we found out that was not the case; cluster homogeneity in the

experiments increases with an increase in the number of clusters. Our second hypothesis was

that ii-loss was not separating the clusters well (hence explaining in poor open set recognition
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performance) when the number of clusters increased. We found out that inter-cluster separation

did decrease as the number of clusters increased, however, this was the case for the MS and

Android datasets as well, but in those two datasets, the open set recognition improved with an

increase in the number of clusters. Therefore this does not explain these results. At this moment

we are not able to find the answer for this unexpected result and leave this off as future work.

The conclusion we can draw from these experiments is that the optimal cluster number (i.e., the

dimension of the y-layer) for a good open set recognition performance differs from dataset to

dataset and need to be tuned more carefully.
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Figure 7.7: Scatter plot of the 15 dimensional z-layer and z ii-layer for 1000 random instances
from known and unknown data distributions. The legend indicates the true label of the points.
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Figure 7.8: Effect of cluster size and z dimension on performance.
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7.6 Conclusion

In this chapter, we presented the problem of unsupervised open set recognition where the task

is to identify instances in the test set that are not from the training data distributions. Our

approach learns a representation for facilitating open set recognition in an unsupervised setting.

In this representation, instances from the same cluster are projected close together while instances

from different clusters are projected further apart.

We compare our approach with closely related outlier detection methods and show that our

approach gives a statistically significant improvement on three publicly available datasets. Two of

the evaluation datasets are from the malware domain. To show the applicability of our approach

to domains different from malware, we evaluate our approach on an image dataset as our third

dataset. Our results also show that typical anomaly or outlier detection methods such as Isolation

Forest do not perform well when used for unsupervised open set recognition tasks.

Although the proposed approaches do perform better than other methods, there is still much

room for improvement. For example, a more robust outlier threshold estimation approach can

be explored.
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Chapter 8

Conclusions

Anti-malware vendors receive a large number of suspected malware files daily. To cope with this

influx of malware files, machine learning techniques, such as classification and clustering, are used

to group similar malware into families. Grouping malware into families allows human analysts to

examine representative samples from each group instead of examining all file. The effectiveness

of the machine learning techniques heavily relies on how much discriminative information the

features extracted from these files carry. Since it is difficult to collect training samples from each

malware family, the classification and clustering systems are forced to operate in an open set

scenario where they are faced with instances from never before seen families. In this dissertation,

we worked on extracting useful malware features and proposed the malware classification and

clustering systems capable of operating in an open set scenario.

In Chapters 3 and 4 we explored malware feature extraction. In Chapter 3 we evaluated

malware features used in past works. In Chapter 4 we proposed a linear time approach for

extracting function call graph (FCG) features. We overcame the performance overhead associated

with FCG based features by using a novel technique to convert FCG representation into a vector

representation. Our approach not only gives better classification accuracy compared past FCG

based approach but also scales better. In both chapters, we evaluate the proposed features under

a closed set assumption.

We shifted our attention to an open set scenario in Chapter 5. We proposed a method for

extracting features from the output of a close set classifier to help identify unknown malware
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families. An outlier detector is trained on the features extracted from the output of the classifier

to determine if an instance is from unknown family. When evaluated on two malware datasets,

our proposed approach is more accurate when compared to other open set recognition algorithms.

In Chapter 6 we presented a neural-network-based representation for addressing the

supervised open set recognition problem. In this representation instances from the same class are

close to each other while instances from different classes are further apart, resulting in statistically

significant performance improvement in open set recognition when compared to other approaches

on three datasets from two different domains.

We extended the ii-loss presented in Chapter 6 by combining it with Adversarial Autoencoders

(AAE) to address the unsupervised open set recognition problem in Chapter 7. Our work

attempts to learn a representation for facilitating open set recognition in an unsupervised

manner. Our evaluations show that the proposed approach gives improved open set recognition

performance compared to other approaches.

8.1 Limitations and Future Work

The malware features used in this work were extracted through static analysis. It has been shown

that the use of more advanced binary packers by malware authors can make disassembling, which

is required for extraction these static analysis features, difficult. One way to handle this is to use

dynamic analysis to run the packed program and dump process memory image once the malware

has unpacked itself. After that, the feature extraction approaches proposed in this work can be

applied the process code segment dump.

In the open set recognition approaches presented in Chapters 6 and 7 we estimate the outlier

threshold based on a contamination ratio hyper-parameter. The contamination ratio specifies

what percent of the training data to consider as outliers, based on that, an outlier threshold

is then estimated. A more robust approach can be explored similar to the way Openmax [81]

computes a probability over K+1 classes (where the K classes represent the known classes, and

the last class represents the unknown class).
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Appendix A

Evaluation Network Architectures

for Chapter 6

We evaluate 4 networks: ii, ce, ii+ce, and Openmax. All four networks have the same architecture

upto the fully connected z-layer. In case of the MNIST dataset, the input images are of size

(28,28) and are padded to get an input layer size (32,32) with 1 channel. Following the input

layer are 2 non-linear convolutional layers with 32 and 64 unites (filters) which have a kernel size

of (4,4) with a (1,1) strides and SAME padding. The network also has max polling layers with

kernel size of (3,3), strides of (2,2), and SAME padding after each convolutional layer. Two fully

connected non-linear layers with 256 and 128 units follow the second max pooling layer. Then a

linear z-layer with dimension of 6 follows the fully connected layers. In the case of ii+ce and ce

networks, the output the z-layer are fed to an additional linear layer of dimension 6 which is then

given to a softmax function. We use Relu activation function for all the non-linear layers. Batch

normalization is used though out all the layers. We also use Dropout with keep probability of

0.2 for the fully connected layers. Adam optimizer with learning rate of 0.001, beta1 of 0.5, and

beta2 of 0.999 is used to train our networks for 5000 iterations. In case of the Openmax network,

the output of the z-layer are directly fed to a softmax layer. Similar to the Openmax paper we

use a distance that is a weighted combination of normalized Euclidean and cosine distances. For

the ce, ii, and ii+ce we use contamination ratio of 0.01 for the threshold selection.
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The open set experiments for MS Challenge dataset also used a similar architectures as the

four networks used for MNIST dataset with the following differences. The input layer size MS

Challenge dataset is (67,67) with 1 channel after padding the original input of (63,63). Instead

of the two fully connected non-linear layers, we use one fully connected layer with 256 units. We

use dropout in the fully connected layer with keep probability of 0.9. Finally the network was

trained using Adam optimizer with 0.001 learning rate, 0.9 beta1 and 0.999 beta2.

We do not use a convolutional network for the Android dataset open set experiments. We

use a network with one fully connected layer of 64 units. This is followed by a z-layer with

dimension of 6. For ii+ce and ce networks we further add a linear layer with dimension of 6

and the output of this layer is fed to a softmax layer. In case of Openmax the output of the

z-layer is directly fed to the softmax layer. For Openmax we use a distance that is a weighted

combination of normalized Euclidean and cosine distances. We use Relu activation function for

all the non linear layers. We used batch normalization for all layers. We also used Dropout with

keep probability of 0.9 for the fully connected layers. We used Adam optimizer with learning

rate of 0.1 and first momentem of 0.9 to train our networks for 10000 iterations. For the ce, ii,

and ii+ce we use contamination ratio of 0.01 for the threshold selection.

The closed set experiments use the same set up as the open set experiments with the only

difference coming from the dimension of the z-layer. For the MNIST dataset we used z dimension

of 10. For the MS and Android datasets we use z dimension of 9.
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Appendix B

Evaluation Network Architectures

for Chapter 7

Microsoft Challenge Dataset

For the Microsoft Malware Challenge Dataset, we used two non-linear layers of 250 hidden units

with ReLU activation function for the encoder, decoder, gaussian discriminator, and categorical

discriminator networks. For the output layer of the decoder, we used Sigmoid activation function.

We used 30 linear units for the z ii-layer and z-layer. The dimensionality of the y-layer was set

to 30 (i.e., 30 clusters). Batch normalization was used in all layers and dropout was not used in

any layer. We used Adam Optimizer for the reconstruction loss, adversarial losses, and ii-loss.

The learning rate of 0.001 and beta1 of 0.9 was used for the first 1000 training iterations of the

first stage after which we change the learning rate to 0.0001. We ran the first training stage for

3000 iterations and the second stage for 2000 iterations. We used a batch size of 512.

For the evaluation of the kmeans-based approach we used the same number of clusters (i.e. 30

clusters). For all the evaluated approaches we used a contamination ratio of 0.05 for the outlier

threshold estimation.
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Android Dataset

For the Android Genome Project Dataset, we used a similar architecture as the Microsoft dataset

with the following differences. We used a single hidden layer with 100 units and a ReLU activation

function for the encoder, decoder, gaussian discriminator, and categorical discriminator networks.

We used 14 clusters and 12 linear units for the z ii-layer and z-layer. We used learning rate of

0.001 for the first 3000 training iterations of the first stage after which we change the learning

rate to 0.0001. The beta1 of the Adam Optimizer for reconstruction loss was fixed at 0.9 while

it was fixed at 0.1 for the other loss functions. We ran the first training stage for 3000 iterations

and the second stage for 1000 more iterations. We used a batch size of 256.

For the evaluation of the kmeans-based approach we used the same number of clusters (i.e., 10

clusters). For all the evaluated approaches we used a contamination ratio of 0.01 for the outlier

threshold estimation.

MNIST

For the MNIST dataset, we used a convolutional network in the encoder. We first pad the input

images of size (28,28) to get an input layer size (32,32) with 1 channel. Following the input are

two convolutional layers with 32 and 64 units, (4,4) kernel size with a stride of (1,1) and SAME

padding. We use max-polling of (3,3) kernel, (2,2) stride size, and SAME padding after each

convolutional layer. The decoder network uses the same architecture with deconvolutional layers

of 64 and 32 units. A linear layer was used for the output layer of the decoder. For the Gaussian

and Categorical discriminator networks, we used two hidden layers with 1000 units. We use

ReLU activation function for all non-linear layer. The dimensionality of the y-layer was set to 6

(i.e., 6 clusters) and 15 linear units were used in the z ii-layer and z-layer. Batch normalization

was used in all layers and dropout was not used.

Adam Optimizer with a learning rate of 0.001 was used for the first 3000 training iterations

of the first stage after which the learning rate is changed to 0.0001. The beta1 of the Adam

Optimizer for the reconstruction loss was fixed at 0.9 while it was fixed at 0.1 for the other

losses. We ran the first training stage for 3000 iterations and the second stage for an additional

7000 iterations. We used a batch size of 512.
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Appendix C

List of Publications

The following are the publications that have been produced during the course of this Ph.D.

research.

Published works

Hassen, Mehadi, and Carvalho, Marco M, and Philip K. Chan, ”Malware Classification Using

Static Analysis Based Features.” In the proceedings of IEEE Symposium Series on Computational

Intelligence (IEEE SSCI 2017), 2017.

Hassen, Mehadi, and Philip K. Chan. ”Scalable Function Call Graph-based Malware

Classification.” Proceedings of the Seventh ACM on Conference on Data and Application Security

and Privacy (CODASPY2017). ACM, 2017.

Hassen, Mehadi, and Philip K. Chan. ”Learning to Identify Known and Unknown Classes: A

Case Study in Open World Malware Classification.” In the proceedings of The 31th International

FLAIRS Conference, 2018.
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Submitted for review

Hassen, Mehadi, and Philip K. Chan. ”Learning a Neural-network-based Representation for

Open Set Recognition.” arXiv preprint arXiv:1802.04365 (2018). Submitted for review.

Work in progress

Hassen, Mehadi, and Philip K. Chan. ”Unsupervised Open Set Recognition using Adversarial

Autoencodes.”
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