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ABSTRACT

Title:

Representation Learning for Open Set Recognition and Novel Category

Discovery

Author:

Jingyun Jia

Major Advisor:

Philip Chan, Ph.D.

As machine learning models have achieved great success in various research

and industry fields, the success of these models heavily relies on the mas-

sive amount of data collection and human annotations. While the real world

is an open set, the daily emerged categories and the lacking of annotations

have become new challenges for machine learning models. The absence of

newly emerged categories in training samples can be captured by Open Set

Recognition (OSR). Then, given the newly emerged samples, the process

of automatically identifying the novel categories is called Novel Category

Discovery (NCD). In this dissertation, we focused on learning the represen-

tations for OSR and NCD. To learn the representations for OSR, we first

introduce an extension called Min Max Feature (MMF) that can be incorpo-

rated into different loss functions to find more discriminative representations.

Our evaluation shows that the proposed extension can significantly improve

the OSR performances of different types of loss functions. Then, we propose

a self-supervision method Detransformation Autoencoder (DTAE), for the

OSR problem in the image dataset. This proposed method engages in learn-

ing representations that are invariant to the transformations of the input

data. Next, to extend DTAE to the graph dataset, we present two transfor-
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mations (FCG-shift and FCG-random) for the Function Call Graph (FCG)

based malware representations to facilitate the pretext task. The experiment

results indicate that our proposed pre-training process can improve different

performances of different downstream loss functions for the OSR problem

in both image and graph datasets. To tackle the problem of NCD under

an open-set scenario, we propose General Intra-Inter (GII) loss to learn a

representation space that clusters the unlabeled samples as novel categories,

meanwhile maintaining sensitivity to the unknown category. Our evaluation

of image and graph datasets shows that GII outperforms other approaches

in NCD and OSR.
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Chapter 1

Introduction

As machine learning techniques have succeeded greatly in various research

and industry fields, most traditional classification problems focus on labeled

samples. They are still facing various challenges in real-world applications.

First, it is less likely to collect the training samples that exhaust all classes.

Second, it is difficult and time-consuming to label all the classes in training

samples. While more and more research topics have risen to meet these

challenges, Geng et al. stated four categories of classes in the recognition

problems as follows [25]:

• known known classes: labeled classes, available in training samples.

• known unknown classes: unlabeled classes, available in training sam-

ples.

• unknown known classes: training samples are not available, but some

side-information, such as semantic/attribute information, is available.

• unknown unknown classes: neither training samples nor side-information

1



is available, completely unseen.

The problem of recognizing the classes that are not available in the train-

ing samples is referred as Open Set Recognition (OSR) [4]. That is, OSR

attempts to handle “unknown unknowns classes” for more robust AI systems

[18]. Hence, for a multinomial classification problem, an OSR task typically

involves two objectives: to classify the known classes and reject the unknown

class. The two objectives of OSR help build a more robust system than a

traditional classifier. Such system defines a more realistic scenario and bene-

fits the applications like face recognition [68], malware classification [41], and

medical diagnoses [79].

After the unknown class is present and identified, the original “unknown

unknown classes” become “known unknown classes”, and we face the prob-

lem of Novel Category Discovery (NCD). As the following step of OSR, NCD

assumes two sets of samples with disjoint classes - the set of labeled samples

from the “known known classes” and the set of unlabeled samples from the

“known unknown classes”. The goal of NCD is to correctly classify the la-

beled samples meanwhile recognize the novel categories from the unlabeled

samples without any annotation. Similar to the transitional classification

problem, most research works in NCD assume a “close set” scenario. How-

ever, an ideal AI system should be able to maintain its robustness against

an “open set” while discovering the novel classes.

Figure 1.1 shows an example of OSR and its following step of NCD. At

stage 1, we labeled “dogs” and “cats” in the training set. In addition to

“dogs” and “cats”, the test set contains “chickens” and “ducks”. An ideal

OSR system should not only correctly classify the “dogs” and cats” but also

recognize “chickens” and “ducks” as the unknown class, as shown in stage

2



2. Then we use the results in stage 2 as the training inputs of the NCD

system. The NCD system should classify “dogs” and “cats”, meanwhile

discovering two novel categories (“cluster 1” and “cluster 2”) as shown in

stage 3. After labeling all four classes, we proceed to the next cycle of

OSR (stage 4). Like stage 2, the ideal OSR system should correctly classify

the four labeled classes while recognizing the unknown samples (“sheep”

and “cows”). The continuous collaboration of the OSR and NCD systems

provides a sustainable solution to the open-world problem. In this work, we

propose several approaches for the OSR in stage 2 and a one-step solution

for the NCD in stage 3 and OSR in stage 4.

1.1 Problem Statement

Representation learning or feature learning has proven to be effective in clas-

sification problems. A good representation can capture the underlying se-

mantic distributions of the input samples and is useful as input to a super-

vised classifier or predictor. While most representation learning approaches

capture the discrimination between classes with class labels, self-supervised

learning extracts the representations of the input samples without the class

labels. Unlike traditional supervised learning tasks, self-supervised learning

uses a pretext task different from the primary task to learn the representa-

tions. A learning objective is set to get supervision from the training samples

themselves.

As there are various ways to learn representations, we focus on neural

network-based methods to extract the representations in this dissertation.

Particularly, we are interested in three problems:
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Figure 1.1: An example of Open Set Recognition (OSR) and Novel Category
Discovery (NCD)
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• Problem 1: enhancing the representation space that leverages intra-

class spread and inter-class separation for OSR.

• Problem 2: initializing a representation space with self-supervised learn-

ing for OSR.

• Problem 3: learning a representation space that clusters the unknown

samples and separates them from the known classes as a following step

of OSR.

1.2 Approach

We propose a Min Max Feature (MMF) loss extension for Problem 1. MMF

loss extension aims to help the existing loss functions handle the open set

scenario better. The MMF loss extension emphasizes the features with the

smallest and largest magnitudes during network training. The samples from

unknown classes, which are not available in training, are not emphasized and

remain small magnitudes. Thus, the known and unknown classes become

more separable in the learned representation space during the inference.

We then follow a two-stage training process for the OSR problems for im-

age data: A pre-training stage and a fine-tuning stage for Problem 2. During

the pre-training stage, we propose a self-supervised learning approach, De-

transformation Autoencoder (DTAE), to learn the low-level representations

of the known classes without class labels. Like most self-supervised learn-

ing approaches, DTAE transforms the input samples into different views to

facilitate the pretext task. It reconstructs the original input samples from

these transformed views so that the learned representations are invariant to

the transformations.
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To extend DTAE to malware data, we analyze the characteristics of

the Function Call Graphs (FCGs) from the malware datasets and propose

two transformation methods: FCG-random and FCG-shift for the malware

datasets. An FCG is a weighted directed graph, where the nodes represent

the function clusters and the edges are the caller-callee relations between the

function clusters. Our proposed transformation methods alter the orders of

the function clusters. At the same time, maintain the caller-callee relations

between the function clusters such that the transformed views are isomorphic

graphs of the original input FCG samples.

The majority of self-supervised learning approaches, including DTAE,

involve transformations. Thus, the learned representations include content

features and transformation features. As the transformation information is

usually ineffective in the downstream tasks, we propose Feature Decoupling

(FD) to separate the content and transformation features. The content fea-

tures are learned by DTAE. In addition, FD uses an auxiliary transformation

classifier to learn the transformation features. In the second stage, the trans-

formation features are discarded. The content features are further fine-tuned

by class labels (supervised scenario) or directly clustered for OSR (unsuper-

vised scenario).

After recognizing the unknown samples, we propose General Inter-Intra

(GII) loss for Problem 3. GII aims to solve the NCD and OSR problems

together. GII is designed to discover the novel classes from the unknown

samples while separating them from the known classes in the representa-

tion space. GII uses K-means to find the representations’ centroids of the

unknown samples and sharpen the probability distribution of cluster assign-

ment by decreasing weighted intra-cluster distances. Moreover, to accurately
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classify the known samples and separate the labeled known samples from

the unknown ones, GII decreases intra-class distances for the labeled known

samples and increases the distances between any two clusters or classes’ cen-

troids.

1.3 Contributions

Our contributions include the following:

• Our proposed MMF loss extension statistically significantly improved

the OSR performance of different loss functions for image and malware

datasets.

• Our proposed DTAE pre-training method can capture the cluster in-

formation for known and unknown samples even without class labels.

Moreover, it boosts the OSR performance for different downstream loss

functions on several image datasets.

• We propose FCG-shift and FCG-random transformations based on the

characteristics of the malware FCGs. These transformation methods fa-

cilitate the self-supervised pre-training process and improve the model

performance for the malware OSR tasks.

• We propose FD to extract the content features in the self-supervised

pre-training process. FD is more effective than other approaches in

supervised and unsupervised OSR tasks.

• We propose GII to discover the novel classes in the unknown samples

while maintaining the open set robustness of the system. GII outper-

forms other approaches in NCD and OSR tasks.
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1.4 Overview

We provide a broad review of related work in Chapter 2. The review covers

three major topics of this dissertation: Open Set Recognition, Self-supervised

Learning, and Novel Category Discovery.

We then present our approaches to OSR and NCD tasks from Chapter

3 to Chapter 7. Specifically, In Chapter 3, we propose MMF loss extension

and incorporate it into different loss functions. In Chapter 4, we introduce

a two-stage training process for the OSR tasks. We also propose DTAE as a

self-supervised pre-training method. In Chapter 5, we summarize the char-

acteristics of the malware FCGs and propose two transformation methods

for the malware FCGs to facilitate the self-supervised pre-training process

for the OSR tasks. In Chapter 6, we propose a feature decoupling approach

to extract the content features and extend our approach to the unsupervised

scenario in OSR. Moreover, we propose an intra-inter ratio (IIR) metric for

OSR performance. In Chapter 7, we propose GII to discover the novel classes

in the unknown samples as the following step of the OSR. We evaluate GII

for both NCD and OSR performances.

Finally, we present a summary of our approaches in Chapter 8. We also

analyze the limitations of our work and discuss future research directions.
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Chapter 2

Related Work

In this chapter, we summarize the related work in four topics: representa-

tion learning, self-supervised learning, open set recognition (OSR) and novel

category discovery (NCD). First, in section 2.1, we give a brief introduction

to neural network-based representation learning methods as well as associ-

ated representation loss functions. Then, we discuss self-supervised learning

methods in images and graphs domains separately in section 2.2. Next, sec-

tion 2.3 divides current OSR techniques into three categories based on the

training set components: training with borrowed additional data, training

with generated additional data, and training without additional data. Fi-

nally, we give brief descriptions of neural network-based NCD methods in

section 2.4.

2.1 Representation Learning

Representation learning, also known as feature learning, is the process of

learning data representations that make it easier to extract useful information
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Table 2.1: Representation loss functions.

Loss functions Utilities

Triplet loss [80] Introduced for supervised face recognition tasks
N-pair loss [86] Solve slow convergence for triplet loss
Center loss [92] Introduced for supervised face recognition tasks
Triplet-center loss [42] Combine triplet loss and center loss
Ii loss [41] Proposed for open set recognition

when building classifiers or other predictors [5]. It allows a machine to be

fed with raw data and to automatically discover the representations needed

for detection or classification [57]. Those raw data could be images, graphs,

texts, etc. An image comes in the form of an array of pixel values, and texts

come in the form of word sequences. Motivated by different objectives, a set

of representative features would be generated through deep neural networks.

We call this type of objectives representation loss.

The objective of representation loss functions is to learn better represen-

tations of training data, and they are normally applied to the representation

layers. Table 2.1 shows some examples of representation loss functions along

with their utilities. They are triplet loss [80], N-pair loss [86], center loss [92],

triplet-center loss [42] and ii loss [41].

Triplet loss [80] was first introduced for face recognition tasks. It intends

to find an embedding space where the distance between an anchor instance

and another instance from the same class (positive example) is smaller by

a user-specified margin than the distance between the anchor instance and

another instance from a different class (negative example).

As triplet loss employs only one negative sample while not interacting

with other negative classes in each update, it suffers from slow convergence.

N-pair loss [86] addresses this problem by generalizing the objective to mul-
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tiple negative samples. To alleviate the computation growth due to the ad-

ditional negative samples, N-pair loss uses an efficient batch construction

method requiring fewer examples to achieve the same objective.

Wen et al. propose center loss [92] for supervised face recognition. In

addition to softmax loss. The center loss learns the representation centers of

each class and penalizes the distances between the representations and their

corresponding class centers. Training with softmax loss jointly, center loss

effectively characterizes the intra-class variation.

Inspired by triplet loss and center loss, He et al.[92] propose triplet-center

loss (TCL) to further enhance the discriminative power of the learned rep-

resentations. TCL leverages the advantages of triplet loss and center loss

to minimize the intra-class distance and maximize the inter-class distances

of the representations. Center loss only considers intra-class variation and

ignores the inter-class separation and triplet loss subjects to the complexity

of the construction of triplets. TCL combines triplet loss and center loss.

Compared to center loss, it also considers inter-class separation. Moreover,

instead of comparing the distances of each two instances in triplet loss, TCL

computes the distances of instance and class center, thus fewer triplets to be

constructed.

Hassen and Chan [41] propose ii loss for open set recognition. The ob-

jective of ii loss is to maximize the distance between different classes (inter-

class separation) and minimize the distance of an instance from its class

mean (intra-class spread). So, in the learned representation, instances from

the same class are close to each other while those from different classes are

further apart.
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2.1.1 Feature disentanglement and decoupling

Many research works focus on feature disentanglement and decoupling to

achieve better generalization in representation learning. Feng et al. [20] pro-

pose rotation classification to extract rotation information. They also pro-

pose rotation irrelevance and image instance classification, which encourage

feature vectors of the rotated images to be similar, but feature vectors repre-

senting different original images to be far apart. The authors point out that

rotation irrelevance can produce degenerate solutions and needs additional

regularization.

Peng et al. [70] propose learning a novel reconstruction-based identity

feature representation invariant to pose. Specifically, they present a fea-

ture disentanglement approach for face recognition, where they introduce a

feature reconstruction metric learning to disentangle identity features and

pose features by demanding alignment between the feature reconstructions

through various combinations of identity and pose features.

Moreover, Tang et al. [88] disentangle place and appearance features

(domain) for place recognition. They propose to use a self-supervised adver-

sarial network to disentangle domain-unrelated (place) and domain-related

(appearance) features. Specifically, they apply adversarial training explicitly

among place features. Moreover, another adversarial loss is used to eliminate

dependency between place features and appearance features.

To estimate head pose from RGB images, Zhang et al. [103] present

a three-branch network architecture named Feature Decoupling Network

(FDN) for landmark-free head pose estimation from an image. They in-

troduce a feature decoupling module to learn the discriminative features for

each pose angle explicitly. Moreover, they propose a cross-category center
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(CCC) loss to obtain more compact and distinct latent variable subspaces.

2.1.2 Learning representation for graphs

Graphs are essential data structures in machine learning tasks, and the chal-

lenge is to find a way to represent graphs. Traditionally, feature extraction

relied on user-defined heuristics. Furthermore, recent research has focused on

using deep learning to learn to encode graph structure into low-dimensional

embedding automatically. Hamilton et al. [33] provided a review of repre-

sentation learning techniques on graphs, including matrix factorization-based

methods, random-walk-based algorithms, and graph networks. The paper in-

troduced methods for node embedding and subgraph embedding. The node

embedding can be viewed as encoding nodes into a latent space from an

encoder-decoder perspective. Subgraph embedding aims to encode a set of

nodes and edges, a continuous vector representation. Many of the methods

build upon the techniques of node embedding.

2.1.2.1 Vertex embedding

Vertex embedding can be organized as an encoder-decoder framework. An

encoder maps each node to a low-dimensional vector or embedding. And

decoder decodes structural information about the graph from the learned

embeddings. Several deep neural network-based approaches have been pro-

posed to address the above issues. They used autoencoders to compress

information about a node’s local neighborhood.

Grover and Leskovec [31] propose node2vec to learn continuous feature

representations for nodes in networks. To learn richer representations of

nodes, they design a random walk procedure, which can efficiently explore
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the diverse neighborhoods of nodes in the networks. Moreover, node2vec

maps the nodes to a low-dimensional representation space, maximizing the

likelihood of preserving the network neighborhood of nodes.

In the work of Graph Convolutional Networks (GCN) [54], Kipf and

Welling encode the graph structure directly using a neural network model

and trained on a supervised target. The adjacency matrix of the graph will

then allow the model to distribute gradient information from the supervised

loss. It will enable it to learn representations of nodes with and without

labels.

Hamilton et al. present GraphSAGE [34] as a general inductive framework

that leverages node feature information to generate node embeddings for

previously unseen data efficiently. GraphSAGE can learn a function that

generates embeddings by sampling and aggregating features from a node’s

local neighborhood. Instead of training individual embedding for each node,

a set of aggregator functions are learned to aggregate feature information

from a node’s local neighborhood from a different number of hops away from

a given node. The learned aggregation functions are then applied to the

entire unseen nodes to generate embeddings during the test phase.

Tang et al. proposed a method for Large-scale Information Network Em-

bedding (LINE) in [87], which is suitable for undirected, directed and/or

weighted networks. The model optimizes an objective that preserves local

and global network structures. LINE explores both first-order and second-

order proximity between the vertices. The functions that preserve first-order

and second-order proximities are trained separately, and the embeddings

trained by two methods are concatenated for each vertex.

To overcome the limitations of neighborhood aggregation schemes, Xu
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et al. proposed Jumping Knowledge (JK) Networks strategy in [95] that

flexibly leverages different neighborhood ranges to enable better structure-

aware representation for each node. This architecture selectively combines

different aggregations at the last layer, i.e., the representations ”jump” to

the last layer. As a more general framework, JK-Net admits general layer-

wise aggregation models and enables better structure-aware representations

on graphs with complex structures.

Cao et al. [10] adopt a random surfing model DNGR to capture struc-

tural graph information directly instead of using a sampling-based method.

DNGR contains three major components: random surfing, calculating the

PPMI matrix, and feature reduction by SDAE. The random surfing model is

motivated by the PageRank model and is used to capture graph structural

information and generate a probabilistic co-occurrence matrix.

2.1.2.2 Subgraph embedding

The goal of embedding subgraphs is to encode a set of nodes and edges into a

low-dimensional vector embedding. Representation learning on subgraphs is

closely related to the design of graph kernels, which define a distance measure

between subgraphs. According to [33], some subgraph embedding techniques

use the convolutional neighborhood aggregation idea to generate embeddings

for nodes then use additional modules to aggregate sets of node embeddings

to subgraph, such as sum-based approaches, graph-coarsening approaches.

Gilmer et al. [28] propose Message Passing Neural Networks (MPNNs) to

reformulate existing message passing algorithms and aggregation procedures

into a single framework for chemical predictions. Mainly, MPNNs operate

on undirected graphs with node features and edge features. The forward
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pass has a message passing phase and a readout phase. During the message

passing phase, the hidden states of each node in the graph are updated based

on the node itself and its neighbors. The readout phase computes a feature

vector for the whole graph using some readout function.

Duvenaud et al. [19] introduce a convolutional neural network that op-

erates directly on graphs for learning molecular fingerprints. In the graphs,

vertices represent individual atoms, and edges represent bonds. The same

local filter is applied to each atom, and its neighborhood in the convolutional

blocks and a global pooling layer combines features from all the atoms in the

molecule. This architecture generalizes molecule feature extraction methods

based on circular fingerprints.

Battaglia et al. [2] introduce an interaction network to perform an analo-

gous form of reasoning about objects and relations in complex systems. Inter-

action networks have three approaches: structured models, simulation, and

deep learning. It takes graphs as input and performs object- and relation-

centric reasoning via deep neural networks. This work considers the case

where there is a node-level target and where there is a graph-level target.

It also considered the case where node-level effects are applied at each time

step.

Kearnes et al. [53] propose graph convolutions for molecular fingerprints

encoding. Graph convolutions use a representation of small molecules as

undirected graphs of atoms. The graph structure presents atom and bond

properties, and the graph distances describe molecule-level representations.

Schütt et al. [83] propose a deep tensor neural network (DTNN) to enable

spatially and chemically resolved insights into quantum-mechanical proper-

ties of molecular systems. In DTNN, the message is computed by matrices
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and bias vectors, and the readout function passes each node independently

through a single hidden layer neural network and sums the outputs.

Moreover, Bruna et al. [8] and Defferrard et al. [16] introduce Laplacian

based methods in learning graphs. These methods generalize the notion of

the convolution operation typically applied to image datasets to an operation

that operates on an arbitrary graph with a real-valued adjacency matrix.

Particularly, in their message functions, the matrices are parameterized by

the eigenvectors of the graph laplacian as well as the learned parameters of the

model. Furthermore, the vertex update function has pointwise non-linearity

(such as ReLU).

2.2 Self-supervised Learning

Unlike the traditional supervised learning approaches, which use human an-

notations to guide the training process for the primary tasks, self-supervised

learning methods learn representations via pretext tasks that are different

from the primary tasks. Recent works have applied self-supervised learning

to various domains. In this section, we focus on self-supervised learning in

image samples and graph samples.

2.2.1 Self-supervised Learning in Images

Autoencoding is a simple example of self-supervised learning. It learns the

representation by reconstructing the original input samples. Denoising au-

toencoder (DAE) [90] corrupts the input samples first. The network is trained

to denoise corrupted versions of their inputs to reconstruct them back to their

original forms. Additionally, more research works introduce these pretext
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tasks by transforming the original inputs into different views.

For example, in the image representation learning, Gidaris et al. [27] pro-

pose RotNet, where the pretext task predicts the rotation degree (e.g., 0, 90,

180 and 270 degrees). To achieve better generalization ability, Feng et al. [20]

decouples the rotation discrimination features from instance discrimination

features. The rotation discrimination features are discovered by predicting

image rotations, and the instance discrimination features are learned by pe-

nalizing the distance difference between features of the same image under

different rotations. Chen et al. [12] propose SimCLR. It first generates posi-

tive and negative pairs between different views and proposes contrastive loss

to increase the similarity between positive pairs meanwhile decrease the sim-

ilarity between negative pairs. Zbontar et al. [102] propose Barlow Twins,

which generates the cross-correlation matrix between the representations of

two views of the same input. Then, it tries to make this matrix close to the

identity to reduce the redundancy in learned features. As the siamese net-

work has become a common structure for self-supervised learning in images,

Chen and He propose SimSiam [13], which does not need negative pairs in

the training process. Moreover, SimSiam uses a stop-gradient operation to

prevent collapsing solutions.

2.2.2 Self-supervised Learning in Graphs

Besides image representation learning, more recent works have extended self-

supervised learning to graph representation learning. You et al. [100] propose

Graph contrastive learning (GraphCL), which extends the contrastive learn-

ing framework in SimCLR to the graph field. Specifically, it designs four types

of transformations for the graph inputs: node dropping, edge perturbation,
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attribute masking, and subgraph sampling. Jin et al. [51] propose Pairwise

Half-graph Discrimination (PHD). PHD first generates two augmented views

based on local and global perspectives from the input graph. Then, the objec-

tive function maximizes the agreement between node representations across

different views and networks. While there are various graph transformation

methods and graph learning tasks, Xu et al. [94] propose InfoGCL to find

the optimal approach for particular graph learning tasks and datasets. They

break down graph contrastive learning approaches into three stages and uti-

lize an Information Bottleneck (IB) information-aware framework to find the

optimal modules in each stage.

2.3 Open Set Recognition (OSR)

Open set recognition (OSR) is the problem of classifying the known classes,

meanwhile identifying the unknown classes when the collected samples cannot

exhaust all the classes. We can divide OSR techniques into three categories

based on the training set compositions. The first category borrows addi-

tional data from other datasets and uses them as the unknown class in the

training set. Thus the N-class classification problem becomes (N+1)-class

classification problem. The second category generates additional data and

uses them as the unknown class in the training set. Instead of converting the

N-class classification problem to the (N+1)-class classification problem, the

third category does not require additional data in the training set.
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2.3.1 Training with borrowed additional data

The first category includes the techniques that borrow additional data in the

training set. Saito et al. [77] propose a method that marks unlabeled target

samples as unknown, then mixes them with labeled source samples to train a

feature generator and a classifier. The classifier attempts to between source

and target samples, whereas the generator attempts to make target samples

far from the boundary. The idea is to extract features that separate known

and unknown samples. According to the feature generator, the test data

either would be aligned to known classes or rejected as an unknown class.

Shu et al. [84] introduce a framework to solve the open set problem, which

involves unlabeled data as an autoencoder network to avoid overfitting. Be-

sides the autoencoder, it contains another two networks in the training pro-

cess - an Open Classification Network (OCN) and a Pairwise Classification

Network (PCN). Only OCN participants are in the testing phase, which

predicts the test dataset, including unlabeled examples from both seen and

unseen classes. Then it follows the clustering phase. Based on the predic-

tion results of PCN, they used hierarchical clustering (bottom-up/ merge) to

cluster rejected examples clusters.

Moreover, Dhamija et al. [17] utilize the differences in feature magni-

tudes between known and borrowed unknown samples as part of the objec-

tive function. Shu et al. [85] indicate that several manual annotations for

unknown classes are required in their workflow. Hendrycks et al. [43] pro-

pose Outlier Exposure(OE) to distinguish between anomalous (unknown)

and in-distribution (known) examples. In general, although borrowing and

annotating additional data turns OSR into a common classification problem,

retrieving and selecting additional datasets remains an issue.
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2.3.2 Training with generated additional data

The research works that generate additional training data fall in the second

category of open-set recognition techniques. Most data generation methods

are based on Generative adversarial networks (GANs).

Ge et al. [24] design a networks based on OpenMax and GANs. Their

approach provided explicit modeling and decision score for novel category

image synthesis. The method proposed has two stages and OpenMax: pre-

Network training and score calibration. The pre-Network training stage,

different from OpenMax, generates some unknown class samples (synthetic

samples) and sends them with known samples into networks for training.

For each generated sample, if the class with the highest value differs from

the pre-trained classifier, it will be marked as ”unknown”. Finally, a final

classifier provides an explicit estimated probability for generated unknown

unknown classes.

Yu et al. [101] propose Adversarial Sample Generation (ASG) as a data

augmentation technique for OSR problem. The idea is to generate some

points close to but different from the training instances as unknown labels,

then straightforward to train an open-category classifier to identify seen from

unseen. Moreover, ASG also generates ”unknown” samples, which are close

to ”known” samples. Unlike GANs min-max strategy, ASG generated sam-

ples based on distances and distributions. The generated unknown samples

are close to the seen class data and scattered around the known/unknown

boundary.

Furthermore, Neal et al. [66] add another encoder network to traditional

GANs to map from images to a latent space. Jo et al. [52] generate un-

known samples by a marginal denoising autoencoder that provides a target
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distribution away from known samples’ distribution. Lee et al. [59] generate

“boundary” samples in the low-density area of in-distribution acting as un-

known samples. While generating unknown samples for the OSR problem has

achieved great performance, it requires more complex network architectures.

2.3.3 Training without additional data

The third category of open set recognition does not require additional data.

Most of the research works require outlier detection for the unknown class.

Bendale and Boult[4] propose OpenMax, which replaces the softmax layer

in DNNs with an OpenMax layer, and the model estimates the probability

of an input being from an unknown class. The model adapts Extreme Value

Theory (EVT) meta-recognition calibration in the penultimate layer of the

networks. For each instance, the activation vector is revised to the sum of

the product of its distance to the mean activation vectors (MAV) of each

class. Further, it redistributes values of activation vector acting as activation

for unknown unknown class. Finally, the new redistributed activation vectors

are used for computing the probabilities of both known and unknown classes.

Schultheiss et al. [81] investigate class-specific activation patterns to

leverage CNNs to novelty detection tasks. They introduced Extreme Value

Signature (EVS), which specifies which dimensions of deep neural activations

have the largest value. They also assumed that a semantic category could be

described by its signature. Thereby, a test example will be considered novel

if it is different from the extreme-value signatures of all known categories.

They applied extreme value signatures on top of existing models, allowing

them to “upgrade” arbitrary classification networks to estimate novelty and

class membership jointly.
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Additionally, Pidhorskyi et al. [72] propose manifold learning based on

training an Adversarial Autoencoder (AAE) to capture the underlying struc-

ture of the distributions of known classes. Hassen and Chan [41] propose ii

loss for open set recognition. It first finds the representations for the known

classes during training and then recognizes an instance as unknown if it does

not belong to any known classes. Wang et al. [91] design a distance-based

loss function with a user-specified margin between classes named pairwise

loss to separate different classes.

2.4 Novel Category Discovery (NCD)

After identifying the unknown samples from the OSR, the next step is to

discover the novel categories from the unknown samples. In the real world,

the unknown samples are usually a mixture of several classes. As we do not

know the labels of the unknown instances, how to separate these unknown

classes becomes an unsupervised clustering problem.

Most current researches focus on transforming the clustering problem

into pairwise similarity prediction. Gupta et al. [32] utilize the Information

Maximization (IM) loss in an ensemble of models to predict the similarity

between two data points. The training objective is to maximize the mutual

information between the input and the model output while imposing some

regularisation penalty on the model parameters. However, the IM loss as-

sumes the dataset is balanced and performs poorly on an imbalanced dataset.

Han et al. [36] assume prior knowledge of related but different unlabeled

image classes. They use such prior knowledge to reduce the ambiguity of

clustering by reducing its KL divergence to a sharper target distribution.
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They also introduce a method to estimate the number of unlabeled data

by transferring the knowledge of labeled ones. They separated the known

classes into three subsets, including one used for pre-training and the other

two subsets combined with the unlabeled data for class number estimation.

Specifically, one subset is used for constrained k means, and the other is used

for evaluating the clustering performance. Finally, they select the k that

achieves the best clustering performance.

Zhong et al. [106] introduce OpenMix to mix the unlabeled examples from

an open set and the labeled examples from known classes. They follow a two-

stage learning stage for the NCD problem. The model initialization stage is

trained on the labeled samples in a supervised way. In the unsupervised clus-

tering stage, they generate mixed training samples by incorporating labeled

samples with unlabeled samples, the pseudo-labels of mixed samples will be

more reliable than their unlabeled counterparts. In addition to pseudo-pair

learning and pseudo-label learning, the loss of OpenMix is applied to the

mixed samples.

Vaze et al. [89] consider a Generalized Category Discovery (GCD) set-

ting for image recognition, where the unlabelled samples may come from

labeled classes or novel ones. They propose using vision transformers with

contrastive representation learning and semi-supervised k-means for such a

setting. Specifically, their approach has three steps. The first step uses a

vision transformer to learn the low-level representations of the input samples

in a self-supervised manner. Then, they assign the labels of unlabelled data

using semi-supervised k-means clustering. In the last step, they estimate the

class numbers by evaluating the clustering accuracy on the labeled samples.

Fini et al. [21] introduce a UNified Objective function (UNO) for discov-
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ering novel classes, they eliminate the self-supervised pre-training step and

combine supervised and supervised learning in a single framework. They

transform the training sample into two views, assign pseudo-labels to the

samples, then the network predicts a probability distribution over all classes

for each view. The cluster assignment of each view is used as the pseudo-label

for the other view. In UNO, the cluster pseudo-labels are treated homoge-

neously with ground truth labels, and a cross-entropy loss is applied on both

labeled and unlabeled samples.

In addition, Chang et al. [11] propose DAC architecture, which uses the

learned label features for clustering tasks via introducing a constraint. The

sample pairs used for training are alternately selected and labeled by the

learned features in each iteration. Likewise, Hsu et al. [44] propose Meta

Classification Learning (MCL), which uses the learned label features to mea-

sure the similarity of a sample pair. They use a multi-class classifier as a

submodule, which generates label features for calculating similarity. Opti-

mizing a binary classifier on top of it allows the learned multi-class classifier

to be learned and used to predict the unknown class in the test phase. Liu

et al. [64] propose ResTune to estimate a new residual feature from the

pre-trained network and add it with a previous basic feature to compute

the clustering objective. ResNet consists of three components: a clustering

objective to cluster the unlabeled images, a knowledge distillation objec-

tive to overcome catastrophic forgetting, and a pairwise labeling objective

to preserve the structure information. Yang et al. [98] propose to divide

and conquer the generalized settings of the NCD problem with two groups of

Compositional Experts (ComEx): batch-wise experts and class-wise experts.

The batch-wise expert is implemented as a linear classifier to handle the
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disjoint part of the dataset. Furthermore, the class-wise experts include the

base-class expert for the labeled samples and the novel-class expert to handle

the novel classes. Jia et al. [50] present an end-to-end framework to discover

categories in unlabelled data. In addition to supervised learning on labeled

samples, they apply contrastive learning on both labeled and unlabeled sam-

ples. Moreover, they employ the Winner-Take-All (WTA) hashing [96] on

the shared representation space to generate pseudo-labels for the unlabeled

samples in the training process. Zhong et al. [105] propose Neighborhood

Contrastive Learning (NCL) framework to address the NCD problem. NCD

uses constructive learning in the training samples. It considers the local

neighborhood of a sample in the representation space as pseudo-positives

and generates hard negatives by mixing labeled and unlabeled samples in

the representation space. Zhao and Han [104] propose to apply dual ranking

statistics to transfer the knowledge learned from labeled samples to unla-

belled samples for pseudo-labeling. In addtion, they present a two-branch

learning framework to tackle the problem of NCD. One branch focuses on

local part-level information, while the other focuses on global characteris-

tics. Meanwhile, a mutual knowledge distillation method is introduced to

encourage agreement on the local and the global branches.

2.5 Malware Classification

Malware classifiers often use sparse binary features, and there can be hun-

dreds of millions of potential features. Dahl et al. [15] first extract three

types of features, including null-terminated patterns observed in the process’

memory, tri-grams of system API calls, and distinct combinations of a single

26



system API call and one input parameter. To reduce the dimensionality of

the features, Dahl et al. use random projections to reduce the dimensional-

ity of the original input space of neural networks, and the lower-dimensional

data serves as input to the neural network.

Hassen and Chan [38] use a linear time function call graphs (FCGs) to

extract malware representations for classification. The proposed malware

classification system starts with an FCG extraction module, which is a di-

rected graph representation of code where the vertices of the graph corre-

spond to functions and the directed edges represent the caller-callee relation

between the function nodes. The FCGs have a good performance in saving

the interaction information between functions. The FCG extraction module

takes disassembled malware binaries and presents the caller-callee relation

between functions as directed, unweighted edges. Then a function clustering

module uses minhash to cluster functions of the given graph. Next, a vec-

tor extraction module extracts vector representation from the FCGs. The

representation consists of two parts, vertex weight and edge weight. The

vertex weight specifies the number of vertices in each cluster for that FCG,

and the edge weight describes the number of times an edge is found from

one cluster to another cluster. Based on this work, Hassen and Chan further

introduce two new features in Classification in an Open World (COW) [40]:

the maximum predicted class probability for one instance and the entropy

for probability distribution over classes for malware classification.
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Chapter 3

MMF: A Loss Extension for

Feature Learning in Open Set

Recognition

3.1 Introduction

The OSR problem aims to classify the multiple known classes for a multino-

mial classification problem while identifying the unknown classes. The OSR

problem defines a more realistic scenario and has drawn significant attention

in application areas.

In this chapter, we introduce a loss extension to help the existing loss

functions better handle the open set scenario. The proposed extension is

inspired by Extreme Value Signatures (EVS) in [81]. Borrowing from a pre-

trained neural network for regular classification, EVS uses only the top K

activations (i.e., largest in magnitude) at one layer for calculating the dis-
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tance between an instance and a class. The EVS distance function can help

identify the unknown class. Instead of using a pre-trained network and the

top K activations, we directly emphasize features with the largest, as well as

smallest, magnitudes during network training. We name our approach Min

Max Feature (MMF). Although the MMF extension is not a standalone loss

function, it can be incorporated into different loss functions. Our contribu-

tion in this chapter is threefold: First, we propose MMF as an extension to

different types of loss functions for the OSR problem. Second, we show that

MMF achieves statistically significant AUC ROC improvement when applied

to two types of loss functions (classification and representation loss functions)

on four datasets from two different domains (images and malware). Third,

our results indicate that the combination of MMF and the ii loss function

[41] outperforms the other combinations in both training time and overall F1

score.

We organize the chapter as follows. Section 3.2 presents the MMF loss

extension. Finally, section 3.3 shows that the MMF extension can improve

different types of loss functions significantly.

3.2 Approach

We propose the MMF extension to learn more discriminative representations

through known classes, thus better separating known and unknown classes.

The proposed MMF extension does not borrow or generate additional data

for the unknown class, and it can be incorporated into different loss func-

tions. We focus on classification loss functions such as cross-entropy loss and

representation loss functions, such as triplet loss and ii loss.
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Figure 3.1: An overview of the network architectures of different types of loss
functions. The convolutional layers are optional. The MMF module in red
is our proposed loss extension.

A typical classification neural network consists of an input layer, hidden

layers, and classification layer. We can consider the hidden layers as different

levels of representations of the input. We call the values of the last hidden

layer activation vector (AV), and each activation is a learned feature. The

mean activation vectors (MAV) of a class is the average of the activation

vectors of the class. For example, the network in Figure 3.1a contains one

convolutional layer, one fully connected layer, one representation layer (rep-

resentation layer Z), and one classification layer (softmax layer). In some

scenarios, a neural network only consists of the input layer and hidden layers

as in Figure 3.1b, where we use learned representations instead of a classifica-

tion layer for classification tasks. Figure 3.3a shows the learned MAV values

from the representation layer using standalone cross-entropy loss.

To improve the accuracy of detecting open set samples from unknown

classes, we can increase the distances (we use Euclidean distance here) be-

tween the learned features of known and unknown samples, summarized by

the MAVs of the known and unknown classes. Squared differences are the
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Figure 3.2: Squared differences of MAV values between the known and un-
known classes in Figure 3.3a. The x-axis is the absolute feature values in
six features, and the y-axis is their corresponding squared differences to the
unknown class.

components of Euclidean distance. Thus we can increase the distance by

increasing squared differences. Figure 3.2 depicts the relationship between

squared differences with the absolute feature values (feature magnitudes) of

the six known classes. We consider a feature with a larger magnitude is more

significant than that with a smaller magnitude. We observe that a more

significant feature leads to a higher squared difference to the unknown class.

The reason is that the MAV of the unknown class has a relatively small

magnitude (green column), as we observe in Figure 3.3a. The small magni-

tude is due to the unknown class being absent from training, and hence its

features are not learned. More importantly, the squared difference increases

faster with more significant features, which indicates a slight improvement
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Figure 3.3: The heatmap of MAVs (columns) of the MNIST classes us-
ing cross-entropy loss without and with different extensions. Each row is
a learned feature. The largest/smallest magnitude magnitude of a feature in
each MAV is in a red/yellow box. MAV of the unknown class is in a green
column/box.
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in a more significant feature will increase squared difference more. Thus, we

want the features with larger magnitudes to become even more significant to

increase the distance between the unknown and known classes.

However, based on the preliminary experiments, we found that after en-

larging the magnitudes of the most significant features for the known classes,

the unknown class’s MAV became further away from the origin, which re-

duces the increase in the distance between the known and unknown classes.

As shown in Figure 3.3b, the MAV of the unknown class (green column)

has significantly increased compared to the one only using standalone cross-

entropy loss in Figure 3.3a. To further improve accuracy and increase the

magnitudes of the most significant feature, we also decrease the magnitudes

of the least significant features to mitigate the increase of the MAV of the

unknown class. Comparing Figure 3.3c and Figure 3.3a, we can see that after

reducing the magnitude of the least significant features, the feature values of

unknown classes indeed get smaller. Consequently, the distance between the

MAV of a known class and the MAV of the unknown class has increased, and

the classes are more separated. For example, the Euclidean distance between

class “9” and the unknown class learned from standalone cross-entropy loss

in Figure 3.3a is 2.32. After adding “MMF” in 3.3c enlarges the distance to

2.62, making the two classes more separable.

Therefore, our MMF extension has two properties. Property A maximizes

the most significant feature, i.e., the feature with the largest magnitude, for

all the known classes. Property B minimizes the least significant feature,

i.e., the feature with the smallest magnitude, for all the known classes. As a

result, the learned representations for known classes should be more discrim-

inative, while the unknown classes should be less affected.
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3.2.1 Learning objectives

Let x ∈ X be an instance and y ∈ Y be its label. The hidden layers in

a neural network can be considered as different levels of representations of

input x. Suppose that there are C known classes in training data, and C+1

classes in test data with the additional class as unknown class. We denote the

MAV of class i as µi, and µij represents the jth feature of the MAV of class

i. Assume the AVs and MAVs have F dimensions, representing F features,

we stack the MAVs for all the classes to form a representation matrix UC×F .

To satisfy Property A, we first select the most significant features for each

class to form the “max feature” vector. The ith element in “max feature” is

for class i:

max featurei = max
1≤j≤F

|µij|, (3.1)

In the example of Figure 3.3a, the “max feature” would be (1.8, 1.2, 1.3,

1.4, 1.6, 1.4) (the absolute values of the red boxes). Likewise, for Property

B, we measure the vector of the “min feature” as the least significant feature

for each class. The ith element is for class i:

min featurei = min
1≤j≤F

|µij| (3.2)

The “min feature” in the example of Figure 3.3a would be (0.13, 0.45,

0.27, 0.34, 0.25, 0.32) (the absolute values of the yellow boxes). Then, to

maximize all the values in the “max feature”, we maximize the lower bound-

ary (i.e., the smallest value) in “max feature” directly. Thus the most signif-

icant features for all the known classes would be maximized as Property A.

Meanwhile, we minimize the largest value in the “min feature” to implicitly
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minimize all the values in the “min feature”. The least significant features

for all the known classes would be minimized as Property B. As a result, the

proposed MMF extension satisfies both properties:

MMF = max
1≤i≤C

(min featurei)− min
1≤i≤C

(max featurei) (3.3)

In the example of Figure 3.3a, we would like to maximize the “1.2” in

the “max feature” and minimize the “0.45” in the “min feature”. There are

alternative methods to generate the “max feature” and “min feature”, for ex-

ample, instead of selecting the highest absolute values for “max feature”, we

experimented with the highest values (max feature1i = max1≤j≤F (µij)) and

the lowest values (max feature2i = max1≤j≤F (−µij)) to form two “max feature”

vectors and later to be maximized at the same time. However, our experi-

ments indicate that using the single “max feauture” vector can achieve bet-

ter performances. There are also other methods to implicitly maximize the

most significant features and minimize the least significant values for all the

classes, such as maximizing the average value of the “max feature”, or mini-

mizing the average value of the “min feature”, i.e.
∑C

i=1
1
C
(min featurei −

max featurei). However, the results of using average value are weaker than

using the extreme values across all classes, hence we choose to use the extreme

values in our extension function and in our experiments.

3.2.2 Training with MMF and Open Set Recognition

In addition to Properties A and B, the MMF extension can be incorporated

into different loss functions. We focus on two types of loss functions: a)

loss functions designed for decision layers such as cross-entropy loss; b) loss
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functions designed for representation layers such as triplet loss and ii loss.

Notably, we combine the MMF extension with these two types of loss func-

tions differently, as Figure 3.1.

We use the network architecture in Figure 3.1a to simultaneously train the

network with classification loss functions and the MMF extension. During

each iteration, we first extract AVs and generate the representation matrix as

shown from line 2 and line 5 in Algorithm 1, then we construct the MMF ex-

tension function from the “max feature” vector (max f) and “min feature”

vector (min f) as shown from line 6 to line 8. The weights of each layer of

the network are first updated to minimize the MMF extension then updated

to minimize classification loss functions (Lclass) using stochastic gradient de-

scent, as shown from line 12 to line 15.

Algorithm 1 Training to minimize MMF with different loss functions

Input: (X, Y ): Training data and labels
Output: U: Representation matrix for all the

known classes; W : model parameters

1: for number of iterations do
2: z ← Extract AVs from the penultimate layer
3: for i = 1...C do
4: µi ← meanj(z) ▷ MAVs for each class

5: U← STACK(µi)
6: max f ← get max feature(U) ▷ Eq. 3.1
7: min f ← get min feature(U) ▷ Eq. 3.2
8: MMF ← max(min f)−min(max f) ▷ Eq. 3.3
9: if representation loss function Lrep then

10: L ← Lrep + λMMF
11: else
12: L ←MMF
13: W ← SGD(W ,L)
14: if classification loss function Lclass then
15: W ← SGD(W ,Lclass)

return U, W

The MMF extension can also be incorporated into representation loss
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functions such as triplet loss and ii loss. As both representation loss functions

and the MMF extension should be applied to the layer learning representa-

tions, their combination gives us:

L = Lrep + λMMF, (3.4)

Lrep is a representation loss function, and λ is a hyperparameter that strikes

a balance between the representation loss function and the MMF extension.

Figure 3.1b shows the network architecture using a representation loss func-

tion with an MMF extension. The combination serves on the Z-layer of

the network. Moreover, the network weights get updated using stochastic

gradient descent during each iteration.

After the training process, we obtain the representation centroids for each

class. Then during the inference, we use the same strategy as used in ii loss

[41]. First, we calculate the outlier score as the distance of learned represen-

tation to the nearest representation centroid. Then we sort the outlier score

of the training data in descending order and pick the 99 percentile outlier

score value as the outlier threshold. If the outlier score of a test sample ex-

ceeds the threshold, it will be recognized as the unknown class. Otherwise, it

will be classified as the known class with the nearest representation centroid.

3.3 Experimental Evaluation

We evaluate the MMF extension with simulated open-set datasets from the

following four datasets.

MNIST [74] contains 70,000 handwritten digits from 0 to 9, which is 10

classes in total. To simulate an open-set dataset, we randomly pick six digits
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as the known classes participant in the training, while the rest are treated as

the unknown class only existing in the test set.

CIFAR-10 [56] contains 60,000 32x32 color images in 10 classes, with 6,000

images per class. There are 50,000 training images and 10,000 test images.

We first convert the color images to grayscale and randomly pick six classes

out of the ten classes as the known classes, while the remaining classes are

treated as the known class only existing in the test set.

Microsoft Challenge (MC) [58] contains disassembled malware samples

from 9 families. We use 10260 samples that can be correctly parsed then

extract their function call graphs (FCG) as in [39] for the experiment. The

dimensionality of the FCG is 63x63. Again, to simulate an open-set dataset,

we randomly pick six classes as the known classes, while the rest are consid-

ered unknowns.

Android Genome (AG) [108] consists of malicious android apps from

many families in different sizes. We use nine families (986 samples) with

a relatively larger size for the experiment to be fairly split into the training

set, the test set, and the validation set. we first use [23] to extract the func-

tion instructions and then extract 1453 raw FCG features as in [39]. Like

the MNIST and the MC dataset, we randomly pick six classes as the known

classes in the training set and consider the rest as the unknown class, which

are only used in the test phase.

3.3.1 Network Architectures and Evaluation Criteria

We evaluate the MMF extension associated with two types of loss functions:

classification loss functions and representation loss functions. Specifically,

we use the cross-entropy loss as the example of classification loss functions,

38



and use ii loss [41] and triplet loss [80] as the examples of representation loss

functions. Moreover, we compare these pairs with OpenMax [4].

For the MNIST dataset, the padded input layer is of size (32, 32), followed

by two non-linear convolutional layers with 32 and 64 nodes. We also use

the max-pooling layers with kernel size (3, 3) and strides (2, 2) after each

convolutional layer. We use two fully connected non-linear layers with 256

and 128 hidden units after the convolutional component. Furthermore, the

linear layer Z, where we extract the representation matrix, is six dimensions

in our experiment. We use the Relu activation function for all the non-linear

layers and set the Dropout rate as 0.2 for the fully connected layers. We

use Adam optimizer with a learning rate of 0.001. The network architecture

of the CIFAR-10 experiment is similar to the MNIST dataset, except the

padded input layer is of size (36, 36). The experiment for the MS Challenge

dataset also implements two convolutional layers. The padded input layer is

of size (67, 67). However, we only use one fully connected layer instead of

two after the convolutional layers. Also, we set the Dropout rate as 0.1. The

Android Genome dataset does not use the convolutional component. We

use a network with one fully connected layer of 64 units before the linear

layer Z. We also used Dropout with a keep probability of 0.9 for the fully

connected layers. We set the learning rate of Adam optimizer as 0.1. Besides,

we use batch normalization in all the layers to prevent features from getting

excessively large. And as mentioned in section 3.2.2, we use contamination

ratio of 0.01 for the threshold selection.

As we discussed in Equation 3.4, we use a hyperparameter λ combine the

MMF extension with the representation loss functions (i.e. ii loss and triplet

loss in the experiments) as: L = Lrep + λMMF . While the range of λ is
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Table 3.1: The average AUC scores of 30 runs at 100% and 10% FPR of
OpenMax and three loss functions quadruples. The underlined values are
statistical significant better than the standalone loss functions via t-test with
95% confidence. The values in bold are the highest values in each quadruple.
The values in brackets are the highest values in each row.

OpenMax ce ii triplet

FPR Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF

MNIST
100% 0.9138 0.9255 0.9479 0.9515 0.9393 0.9578 [0.9649] 0.9579 0.9607 0.9496 0.9585 0.9480 0.9404
10% 0.0590 0.0765 0.0744 0.0761 0.0751 0.0821 [0.0842] 0.0826 0.0830 0.0750 0.0796 0.0777 0.0739

CIFAR-10
100% [0.6757] 0.5803 0.5982 0.6103 0.5807 0.6392 0.6419 0.6437 0.6439 0.6106 0.6248 0.6131 0.6127
10% 0.0065 0.0070 0.0089 0.0090 0.0077 [0.0103] 0.0096 0.0100 0.0100 0.0089 0.0102 0.0092 0.0093

MC
100% 0.8739 0.9148 [0.9500] 0.9387 0.9352 0.9385 0.9461 0.9407 0.9397 0.9240 0.9430 0.9317 0.9178
10% 0.0405 0.0530 0.0635 0.0600 0.0588 0.0627 [0.0656] 0.0629 0.0619 0.0565 0.0622 0.0563 0.0546

AG
100% 0.4150 0.7506 0.8205 0.8152 0.7501 0.8427 0.8694 0.8763 [0.8831] 0.8271 0.8379 0.8203 0.8256
10% 0.0010 0.0058 0.0148 0.0163 0.0036 0.0285 0.0305 [0.0368] 0.0366 0.0229 0.0275 0.0260 0.0235

(0, 1], we set λ as 0.2 and 0.5 for ii loss and triplet loss for the MNIST and

CIFAR-10 datasets. For the MC dataset, we set λ as 0.5 and 0.3 for ii loss

and triplet loss. We set λ as 0.4 for both ii loss and triplet loss in the AG

dataset’s experiments.

We simulate three different groups of open sets for each dataset then

repeat each group 10 runs, so each dataset has 30 runs in total. When

measuring the model performance, we use the average AUC scores under

10% and 100% FPR (False Positive Rate) for recognizing the unknown class,

as lower FPR is desirable in the real world for cases like malware detection.

Furthermore, we measure the F1 scores for known and unknown classes (C+1

classes) separately as one of the OSR tasks is to classify the known classes.

Moreover, we perform t-tests with 95% confidence in both the AUC scores

and F1 scores to see if the proposed MMF extension can significantly improve

different loss functions.

3.3.2 Experimental Results

We compare the model performances of OpenMax as well as three loss func-

tion quadruples: cross-entropy loss, ii loss, and triplet loss. Table 3.1 shows
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Table 3.2: The average F1 scores of 30 runs of OpenMax and three loss func-
tions pairs. The underlined values show statistically significant improvements
(t-test with 95% confidence) comparing with the standalone loss functions.
The values in bold are the highest values in each column.

MNIST CIFAR-10 MC AG

Known Unknown Overall Known Unknown Overall Known Unknown Overall Known Unknown Overall

OpenMax 0.8964 0.7910 0.8814 0.6456 0.5407 0.6306 0.8903 0.7329 0.8679 0.2273 0.7761 0.3057

ce
Standalone 0.7596 0.7561 0.7591 0.5672 0.3697 0.5390 0.8881 0.6643 0.8562 0.5346 0.0033 0.4587
+MMF 0.8504 0.7902 0.8809 0.5994 0.3271 0.5605 0.9090 0.7963 0.8929 0.5555 0.1142 0.4925

ii
Standalone 0.9320 0.8833 0.9250 0.6206 0.3570 0.5829 0.9128 0.7257 0.886 0.6349 0.6677 0.6396
+MMF 0.9373 0.8916 0.9308 0.6205 0.3660 0.5842 0.9210 0.7680 0.8991 0.6407 0.7251 0.6528

triplet
Standalone 0.9103 0.8302 0.8989 0.5798 0.4515 0.5614 0.8998 0.7018 0.8715 0.5929 0.6323 0.5986
+MMF 0.9239 0.8625 0.9152 0.5943 0.4790 0.5778 0.9064 0.7213 0.8800 0.6005 0.6895 0.6132

the AUC scores of the models in the four datasets; mainly, we focus on

comparing the “Standalone” with the corresponding “+MMF” subcolumns.

We observe that the quadruples, in general, achieve better AUC scores than

OpenMax. Moreover, with the MMF extension, the AUC scores of the loss

functions have achieved statistically significant improvements in 16 out of 24

cases (3 loss functions×4 datasets×2 FPR values).

Table 3.2 shows the average F1 scores for the four datasets. We first

calculate the F1 scores for each of the C known classes and the unknown

class, then average the C + 1 classes as the Overall F1 scores. We can

see that the loss functions with the MMF extension have better results than

their corresponding standalone versions for both the known and the unknown

classes. We observe that ii loss with the MMF extension is more accurate

than the other five methods in six out of twelve F1 scores. Particularly, it

achieves the highest Overall F1 scores for three out of four datasets.

Table 3.3 shows the comparison of the average training time of the 30 runs

for the MNIST dataset with 5000 iterations via NVIDIA Tesla K80 GPU on

AWS. We find that adding the MMF extension almost doubles the training

time of using standalone cross-entropy. While for ii loss and triplet loss,

adding the extension increases the training time by around 1%. The reason

41



is that the MMF extension needs to create the representation matrix from

scratch for the network with ce loss, which needs an extra backpropagation

step, both of which take more time. We also observe that ii loss has the

fastest training time among three loss functions with our MMF extension.

Overall F1 scores and training time indicate that “ii+MMF” is the most

accurate and efficient combination.

3.3.3 Analysis

Figure 3.3c shows the heatmap of MAV values of the simulated open MNIST

dataset trained by cross-entropy loss with the MMF extension. We take digits

“0”, “2”, “3”, “4”, “6”, “9” as the known classes and the remaining digits

as the unknown class. Comparing with the MAV values from the network

with standalone cross-entropy loss (Figure 3.3a), we can find that the MAVs

of the known classes become more discriminative from each other, and each

of the known classes has its representative feature. (e.g. Z1 for class “0”, Z2

for class “2”). Whereas the MMF extension has less effect on the unknown

class, its MAV values are relatively evenly distributed.

Since we recognize the unknown class based on the outlier score described

in section 3.3, we analyze both the test samples’ outlier scores from the known

classes and the unknown class from the MNIST experiment. Figure 3.4 shows

the histogram of the distributions of the outlier scores in triplet loss experi-

ments and triplet loss with the MMF extension. Compared with standalone

triplet loss, adding an MMF extension increases the outlier scores of the un-

known class, which pushes the score distributions further away from those of

the known classes and results in fewer overlaps between the known classes

the unknown class. It is the reduced overlaps that make the known classes
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Figure 3.4: The distributions of outlier scores in MNIST.

Table 3.3: The comparison of training time for the MNIST dataset.

Regular +MMF delta

ce 119.33 230.43 +111.1
ii 122.17 123.30 +1.14
triplet 223.27 225.70 +2.43

and the unknown classes more separable than before. Figure 3.5 shows the

t-SNE (perplexity: 50) plots of the Z-layer representations of the MNIST

dataset from the same experiments. With the MMF extension, the known

classes and the unknown class are more separate from each other, and the

known classes become more disparate than before.

We also perform an ablation analysis for the MMF loss extension to un-

derstand the importance of the MMF extension’s two properties. As shown

in Table 3.1, our baselines include (1) standalone loss functions; (2) loss

functions with an extension that maximize the most significant feature as

Property A (MaxF); (3) loss functions with an extension that minimizes the

least significant feature as Property B (MinF). In general, the MMF exten-

sion with both properties outperforms the baselines. This result is consistent

with our motivation for the two properties at the beginning of Section 3.2.
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Figure 3.5: The t-SNE plots of the MNIST dataset in the experiments of
triplet vs. triplet+MMF. The left subplots of (a) and (b) are the representa-
tions of the unknown class (a mixture of digits “1”, “5”, “7” and “8”), and
the right plots are the representations of the known classes.
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Figure 3.6: The heatmap of the unknown class’s MAV in the experiment of
cross entropy loss (ce) on the Microsoft Challenge dataset (MC).

Moreover, we find that MaxF and MinF extensions can also achieve better

performance than standalone loss functions. While both properties improve

AUC scores, Property A (MaxF) has a more significant improvement. Hence,

Property A plays a more critical role in AUC improvement than Property B.

To investigate why MinF also helps improve AUC performance, we show

the heatmap of the MAV for the unknown class in the experiment of ce on the

MC dataset in Figure 3.6. Comparing Figure 3.6a and Figure 3.6b, we ob-

serve that MinF reduced the feature magnitudes for the unknown class, thus

increased the distance between the known and unknown classes. Similarly,

from Figure 3.6c and Figure 3.6d, we observe that the feature magnitudes of

the unknown class in MMF (MaxF+MinF) are much smaller than the ones

in MaxF. The second observation is consistent with the earlier discussion

on adding MinF to help MaxF in MMF at the beginning of Section 3.2. In

addition, we observed similar behaviors from other datasets.
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3.4 Conclusion

We introduced a loss function extension for the OSR problem. The extension

maximizes the feature with the largest magnitude meanwhile minimizes the

one with the smallest magnitude for all the known classes during training so

that the learned representations are more discriminative from each other. We

have shown that while the known classes are more discriminative from each

other, the feature values of unknown classes are less affected by the extension,

hence simplifying the open set recognition. We incorporated the proposed

extension into classification and representation loss functions and evaluated

them in images and malware samples. The results show that the proposed

approach has achieved statistically significant improvements for different loss

functions.
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Chapter 4

Self-supervised

Detransformation Autoencoder

for Representation Learning in

Open Set Recognition

4.1 Introduction

Deep learning has shown great success in recognition and classification tasks

in recent years. However, there is still a wide range of challenges when ap-

plying deep learning to the real world. Most deep neural networks and other

machine learning models are trained under a static close-set scenario. How-

ever, the real world is more of an open-set scenario, in which it is difficult

to collect samples that exhaust all classes. The problem of rejecting the un-

known samples meanwhile accurately classifying the known classes is referred
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as Open Set Recognition (OSR) [4] or Open Category Learning [18].

In this chapter, we bring self-supervised pre-training to the OSR problem

and fine-tune the pre-trained model with different types of loss functions:

classification loss and representation loss. Particularly, we propose Detrans-

formation Autoencoder (DTAE) for self-supervision. DTAE consists of three

components: an encoder, a decoder, and an input transformation module.

The encoder encodes all transformed images to representations, and the de-

coder reconstructs the representations back to the original images before

transformations. Compared to the traditional autoencoder, DTAE learns

the representations that describe the pixels and are invariant to the transfor-

mations. Our contribution in this chapter is threefold: First, we introduce

DTAE as a self-supervised pre-training method for the OSR tasks. Second,

our experiment results show that DTAE significantly improves the model

performances for different down-streaming loss functions on several image

datasets. Third, our analysis indicates that DTAE is able to capture some

cluster information for both known and unknown samples even without class

labels.

We organize the chapter as follows. Section 4.2 presents the self-supervision

method, DTAE, in pre-training for the OSR tasks. Section 4.3 shows that the

pre-training process can significantly improve the model performance in sev-

eral standard image datasets. Meanwhile, the models pre-trained with DTAE

achieve the best performance in detecting the unknown class and classifying

the known classes.
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Figure 4.1: The two stage training process of the OSR problem.

4.2 Approach

We propose a two-step training process (pre-training step and fine-tuning

step) for the OSR problems, thus better separating different classes in the

feature space. As illustrated in Figure 4.1, the training process includes two

steps: 1) pre-training step uses detransformation autoencoder (DTAE) to

learn features for all the input data; 2) fine-tuning step uses representation

loss functions or classification loss functions to learn discriminative features

for different classes.

4.2.1 Pre-training step

The objective of the self-supervised pre-training process is to learn some

meaningful representations via pretext tasks without semantic annotations.

The desirable features should be invariant under input transformations, mean-

while, contain the essential information that can reconstruct the original

input. We propose a detransformation autoencoder (DTAE) to learn rep-

resentations by reconstructing (“detransforming”) the original input from
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the transformed input. DTAE employs a transformation module and an

encoder-decoder structure. While the encoder extracts the representations,

the decoder reconstructs the original input from the learned representations.

The motivation of DTAE is to learn better representations for the OSR

problem via encouraging intra-sample similarity and intra-class similarity of

the learned representations. For example, if we have samples from “cat” class

and “dog” class, given sample “cat1” and its transformation “cat1a”, we can

learn their representations zc1 and zc1a. Similarly, we can learn the repre-

sentations of “cat2” and “dog1” as zc2 and zd1. The intra-sample similarity

describes the similarity between the representations of the original input and

its transformations, as zc1 and zc1a in our example, and we denote this simi-

larity as sim(zc1, zc1a). As the decoder in DTAE reconstructs the same origi-

nal samples from the learned representations of both original and transformed

samples, the learned representations are of high intra-sample similarity. Thus

the learned representations are invariant to the transformations and contain

important features of the samples. The intra-class similarity describes the

similarity among the learned representations of the same class, as zc1 and zc2

in our example, and we denote this similarity as sim(zc1, zc2). The encoder-

decoder structure in DTAE is a generative model that embeds crucial features

in lower dimensions. Compared to a discriminate model, the representations

learned by a generative model contain more comprehensive information to

reconstruct the inputs. Thus, for a generative model, the learned represen-

tations of samples from the same class should be more similar than those

of different classes. Overall, the desired representation space should satisfy

sim(zc1, zc1a) > sim(zc1, zc2) > sim(zc1, zd1).

As shown in Figure 4.1a, in the pre-training stage with DTAE, the input
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transformation module T transforms any given data example x to several cor-

related views of the same example, denoted as xt = T (x). The network-based

encoder f(·) extracts representation vectors from transformed data examples.

Furthermore, decoder g(·) reconstructs the original data examples from the

representation vectors. Let rt denotes the reconstructed data example from

transformed input xt, then the detransformation loss function becomes:

L(x, rt) = L(x, g(f(xt))) (4.1)

where rt = g(f(xt)). Specifically, we use MSE (Mean Squared Error) loss

and have a total of M transformations, the loss function can be defined as:

LDTAE =
1

2

M−1∑
t=0

N∑
i=1

(xi − rit)
2 (4.2)

Each of the N data points has M transformations, and there are M×N data

points after the input transformation module. In this work, we consider four

transformations for each data example, i.e. t ∈ {0, 1, 2, 3} for all N input ex-

amples, resulting in 4N data points. For this paper, the four transformations

in our experiments are rotations of an image: 0, 90, 180, and 270 degrees.

4.2.2 Fine-tuning step

While the pre-trained network can be fine-tuned by different loss functions,

we focus on two types of loss functions in this paper: the classification loss

and the representation loss. The objective of classification loss is to lower

the classification error of the training data explicitly in the decision layers.

One of the widely used classification loss functions is cross-entropy loss. The

objective of representation loss functions is to learn better representations of
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training data. The representation loss functions are normally applied to the

representation layers, such as triplet loss [80] and ii loss [41].

The fine-tuning network shares the same encoder and representation layer

with the pre-training network. However, compared with the pre-training

process, the fine-tuning process does not contain the input transformation

module, which means the training examples are sent directly into the en-

coder. Moreover, instead of connecting to a decoder, the representation layer

connects to a classification loss function or a representation loss function as

shown in Figure 4.1b and Figure 4.1c. In this work, we consider both classi-

fication loss (cross-entropy loss) and representation loss (triplet loss [80] and

ii loss [41]) in the OSR task.

4.2.3 Open Set Recognition (OSR)

A typical OSR task solves two problems: classifying the known classes and

identifying the unknown class. From the representation level, the instances

from the same class are close to each other, while those from different classes

are further apart. Under this property, we propose the outlier score:

outlier score(x) = min
1≤i≤C

∥µi − z∥22, (4.3)

Where z is the learned representation of test sample x, µi is the representation

centroid of the known class i. There are multiple ways to set the outlier

threshold. Here, we sort the outlier score of the training date in ascending

order and pick the 99 percentile outlier score value as the outlier threshold.

Then, for the C known classes, we predict the class probability P (y = i|x) for

each class. When a network is trained on classification loss, the P (y = i|x)
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is the output of the classification layer. Whereas in the case of a network

without classification layer such as Figure 4.1c, we calculate P (y = i|x) as:

P (y = i|x) = e−∥µi−z∥22∑C
j=1 e

−∥µj−z∥22
(4.4)

In summary, a test instance is recognized as “unknown” if its outlier score

is greater than the threshold t, otherwise it is classified as the known class

with the highest class probability:

y =

⎧⎪⎪⎨⎪⎪⎩
unknown, if outlier score(x) > t

argmax
1≤i≤C

P (y = i|x), otherwise

(4.5)

4.3 Experimental Evaluation

We evaluate the proposed pre-training method: Detransformation Autoen-

coder (DTAE) with simulated open-set datasets from the following datasets.

MNIST [58] contains 60,000 training and 10,000 testing handwritten digits

from 0 to 9, which is 10 classes in total. Each example is a 28x28 grayscale

image. To simulate an open-set dataset, we randomly pick six digits as the

known classes participant in the training, while the rest are treated as the

unknown class only existing in the test set.

Fashion-MNIST [93] is associated with 10 classes of clothing images. It

contains 60,000 training and 10,000 testing examples. Same as the MNIST

dataset, each example is a 28x28 grayscale image. To simulate an open-set

dataset, we randomly pick six digits as the known classes participant in the

training, while the rest are treated as the unknown class for testing.
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CIFAR-10 [56] contains 60,000 32x32 color images in 10 classes, with 6,000

images per class. There are 50,000 training images and 10,000 test images.

We first convert the color images to grayscale and randomly pick six classes

out of the ten classes as the known classes, while the remaining classes are

treated as the known class only existing in the test set.

4.3.1 Evaluation Network Architectures and Evalua-

tion Criteria

In the proposed method, we use self-supervision in the pre-training stage,

and then in the second stage, we fine-tune the pre-trained model with two

types of loss functions: classification loss and representation loss. Specifi-

cally, we use the cross-entropy loss as the example of classification loss, and

use ii loss [41] and triplet loss [80] as the examples of representation loss. We

first trained the model from scratch as a baseline (no pre-training) for each

loss function and compared it with the corresponding fine-tuned models after

self-supervision. Second, to evaluate our proposed self-supervision technique

DTAE, we compare the model performance using DTAE with traditional Au-

toencoder (AE) and RotNet [27] in the pre-training stage. We also compare

the proposed method with OpenMax [4] to show that it is effective to OSR

problems.

Figure 4.1a illustrates the network architecture of the DTAE. Moreover,

the hyper-parameters are different based on datasets. For the encoder of

the MNIST and the Fashion-MNIST datasets, the padded input layer is of

size (32, 32), followed by two non-linear convolutional layers with 32 and 64

nodes. We also use the max-polling layers with kernel size (3, 3) and strides
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(2, 2) after each convolutional layer. We use two fully connected non-linear

layers with 256 and 128 hidden units after the convolutional component.

Furthermore, the representation layer is six dimensions in our experiments.

The representation layer is followed by a decoder, which is the reverse of

the encoder in our experiments. We use the Relu activation function and

set the Dropout rate as 0.2. We use Adam optimizer with a learning rate

of 0.001. The encoder network architecture of the CIFAR-10 experiment

is similar to the MNIST dataset, except the padded input layer is of size

(36, 36). We use batch normalization in all the layers to prevent features

from getting excessively large. And as mentioned in section 4.2.3, we use

contamination ratio of 0.01 for the threshold selection. The encoder and

representation layer maintain the same architecture and hyper-parameters in

the fine-tuning network. Meanwhile, the decoder is replaced with different

fully connected layers associated with different loss functions.

We simulate three different groups of open sets for each dataset then

repeat each group 10 runs, so each dataset has 30 runs in total. When

measuring the model performance, we use the average AUC scores under 10%

and 100% FPR (False Positive Rate) for recognizing the unknown class. We

chose the 10% FPR limit as higher FPR is generally undesirable, particularly

when negative instances are much more abundant than positive instances. We

measure the F1 scores for known and unknown classes separately as one of

the OSR tasks is to classify the known classes. Moreover, we perform t-tests

with 95% confidence in the AUC scores and F1 scores to see if the proposed

DTAE pre-training method can significantly improve different loss functions.
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Table 4.1: The average ROC AUC scores of 30 runs at 100% and 10% FPR
of OpenMax and a group of 5 methods (without pre-training as baseline, pre-
training with AE, RotNet, DTAE and TAE) for each of the 3 loss functions
(ce, ii, triplet). The underlined values are statistically significantly better
than the baselines via t-test with 95% confidence. The values in bold and in
brackets are the highest and the second-highest values in each group.

MNIST Fashion-MNIST CIFAR-10
FPR 100% 10% 100% 10% 100% 10%

OpenMax 0.9138 0.0590 0.7405 0.0160 0.6750 0.0060

ce

No pre-training 0.9255 0.0765 0.7175 0.0300 0.5803 0.0070
AE 0.9410 0.0805 0.7346 0.0300 0.6114 [0.0084]
RotNet 0.9367 0.0769 0.7364 [0.0316] [0.6124] 0.0083
DTAE (ours) 0.9523 [0.0801] 0.7490 0.0324 0.6183 0.0086
TAE [0.9477] 0.0799 [0.7389] 0.0298 0.6012 0.0075

ii

No pre-training 0.9578 0.0821 0.7684 0.0399 0.6392 0.0103
AE 0.9560 0.0828 0.7636 0.0377 0.6320 0.0098
RotNet 0.9530 0.0813 [0.7703] [0.0404] [0.6478] [0.0106]
DTAE (ours) [0.9566] [0.0825] 0.7802 0.0410 0.6520 0.0108
TAE 0.9515 0.0815 0.7657 0.0387 0.6214 0.0091

triplet

No pre-training 0.9496 0.0750 0.7160 0.0211 0.6106 0.0089
AE 0.9563 0.0772 0.7254 0.0220 0.6251 0.0090
RotNet 0.9342 0.0702 [0.7435] 0.0252 [0.6285] [0.0095]
DTAE (ours) [0.9543] [0.0758] 0.7441 [0.0234] 0.6327 0.0096
TAE 0.9531 0.0757 0.7271 0.0215 0.6114 0.0081

4.3.2 Experimental Results

Model performance We compare the model performances of cross-entropy

loss, ii loss, and triplet loss with and without pre-training. Table 4.1 are the

averaged ROC AUC scores of the model performances in three datasets under

different FPR values. Comparing “RotNet”, “DTAE” and “AE” rows with

“No pre-training” rows, we observe that using self-supervision techniques for

pre-training significantly improved the model performance. The results also

show that our proposed self-supervision method DTAE achieves the top two

ROC AUC scores for all the cases. Moreover, with our proposed pre-training

method, all three loss functions perform better than OpenMax in 5 out of 6
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Table 4.2: The average F1 scores of 30 runs of OpenMax and a group of
5 methods (without pre-training as baseline, pre-training with AE, RotNet,
DTAE and TAE) for each of the 3 loss functions (ce, ii, triplet). The un-
derlined values show statistically significant improvements (t-test with 95%
confidence) comparing to the baselines. The values in bold and in brackets
are the highest and the second highest values in each group.

MNIST Fashion-MNIST CIFAR-10

Known Unknown Overall Known Unknown Overall Known Unknown Overall

OpenMax 0.8964 0.7910 0.8814 0.7473 0.5211 0.7150 0.6456 0.5407 0.6307

ce

No pre-training 0.7596 0.7561 0.7591 0.6858 0.5591 0.6677 0.5672 0.3697 0.5390
AE 0.7735 0.7894 0.7757 0.7264 0.5481 0.7009 0.5729 0.4605 [0.5569]
RotNet [0.8931] [0.8447] [0.8862] 0.7117 0.5694 0.6914 0.5616 0.4729 0.5489
DTAE (ours) 0.8967 0.8579 0.8912 [0.7335] [0.5692] [0.7100] 0.5911 [0.4728] 0.5742
TAE 0.8804 0.8420 0.8749 0.7482 0.5364 0.7179 [0.5815] 0.3889 0.5540

ii

No pre-training 0.9320 0.8833 0.9250 0.7720 0.5870 0.7456 0.6206 0.3570 0.5829
AE 0.9387 0.8950 0.9325 0.7669 0.5745 0.7394 0.6241 0.2527 0.5711
RotNet 0.9300 0.8761 0.9223 0.7771 0.6108 0.7533 0.6442 [0.3980] [0.6090]
DTAE (ours) [0.9344] [0.8885] [0.9279] [0.7768] [0.6064] [0.7524] [0.6421] 0.4252 0.6111
TAE 0.9308 0.8830 0.9240 0.7625 0.5869 0.7374 0.6135 0.2103 0.5559

triplet

No pre-training 0.9103 0.8302 0.8989 0.7491 0.5055 [0.7208] 0.5798 0.4515 0.5614
AE [0.9144] 0.8356 [0.9032] 0.7505 0.5051 0.7154 [0.6086] [0.4800] 0.5902

RotNet 0.9012 0.8182 0.8893 [0.7514] [0.5376] [0.7208] 0.6037 0.4978 [0.5886]
DTAE (ours) 0.9166 0.8513 0.9073 0.7558 0.5459 0.7259 0.6205 0.4724 0.5993
TAE 0.9126 [0.8387] 0.9021 0.7472 0.5092 0.7132 0.5926 0.4220 0.5682

cases (3 datasets×2 FPR limits).

To evaluate the detransformation component of DTAE, we performed an

ablation study on our method without detransformation, which is denoted

as TAE. Although both DTAE and TAE use transformed instances as input,

TAE reconstructs the transformed instances as output, while DTAE recon-

structs the original instances as output. Comparing the “TAE” rows and

“DTAE” rows, we observe that the detransformation component in DTAE

plays a key role in improving the model performance. That is, our results in-

dicate that learning features invariant to transformations, via detransforma-

tion, can yield more effective features than those learned from reconstructing

the same samples.

Table 4.2 shows that the OSR performances of different methods are mea-

sured by F1 scores in known and unknown class domains. We first calculate
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Table 4.3: The training time (in seconds) for the self-supervision methods in
different datasets.

AE RotNet DTAE

MNIST 75 132 137
Fashion-MNIST 70 118 145
CIFAR-10 86 147 182

the F1 scores for each known class and the unknown class, then average all

the classes as the Overall F1 scores. The results show that models with

pre-training achieve statistically significant improvements. Moreover, Our

proposed method also achieves the top two F1 scores in 26 out of 27 cases (3

loss functions×3 datasets×3 domains).

Training time While the pre-training step benefits the model performances

and does not affect the final model complexity and inference time, it takes

extra time during the training phase. Table 3.3 shows the comparison of the

training time of the self-supervised networks in different datasets via NVIDIA

RTX 2080. Because RotNet and DTAE both include transformed data as in-

put, they took a longer training time than AE. We observe that DTAE takes

a slightly longer training time than RotNet. The reason is that the network

structure of DTAE is more complex than that of RotNet. While both RotNet

and DTAE share the same encoder and representation layer structures, Rot-

Net uses a softmax layer after the representation layer. Meanwhile, DTAE

connects the representation layer with a decoder module. The decoder is the

reverse of the encoder, which contains more layers than a softmax layer and

needs a longer time in the forward and backward propagations.

Openness study We also study the model performances against vary Open-

ness [78]. Let ntrain be the number of known classes participant in the training
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Figure 4.2: AUC-ROC scores against varying Openness.

phase, with ntest denotes the number of classes in the test set, and ntarget de-

notes the number of classes to be recognized in the testing phase. Openness

can be defined as: Openness = 1−
√

2×ntrain

ntest+ntarget
.

In our experiments with the Fashion-MNIST dataset, we use all the ten

classes in testing phase (ntest = 10) and varying the number of known classes

from 2 to 9 (ntrain = 2, . . . , 9) in the training phase, and remaining classes

together are treated as the unknown class to be recognized along with the

known classes during inference (ntarget = ntrain+1). That is, the openness is

varied from 8% to 44%. We evaluate the AUC ROC scores of different models

using cross-entropy loss: without pre-training (baseline), pre-training with

AE, pre-training with RotNet, and pre-training with our proposed DTAE.

The results are shown in Figure 4.2. We observe that the three different

models have similar performances when the openness is small. However,

the AUC ROC scores of the baseline (No pre-training) degrade rapidly as

the Openness increases. Moreover, the trend is alleviated by pre-training

with self-supervision methods. Overall, the model pre-trained with DTAE is
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relatively more robust to openness and achieves the best performance.

4.3.3 Analysis

In this section, we empirically analyze some properties of the proposed method

related to the learned representations. Figure 4.3 shows the confusion ma-

trices of the experiments with the MNIST test set. In these experiments,

digits “0”, “2”, “3”, “4”, “6” and “9” are known classes while the remaining

classes are unknown and absent from training set. Figure 4.3a shows the

confusion matrix of the model using cross-entropy loss without pre-training.

Figures 4.3b and 4.3c show the confusion matrices of the learned represen-

tations of the model pre-trained by RotNet and DTAE and fine-tuned by

cross-entropy, respectively. According to the true positive predictions along

the diagonals of the matrices. Both pre-training methods benefit the model

performance. Moreover, we observe that RotNet has relatively poor perfor-

mance on digit “0” and DTAE almost doubles the true positive predictions

on digit “0” compared to RotNet. As the objective of RotNet is to predict

the image rotations. However, the features learned in this method cannot

benefit rotation agnostic images [20], such as round objects like digit “0”.

The objective of DTAE, on the other hand, is to learn the representations

that are invariant to rotations/transformations. Thus the ambiguity of the

orientations does not affect the model performance.

To analyze the differences in representations after pre-training and after

fine-turning, we plot 1000 samples from the Fashion-MNIST test set in Fig-

ure 4.4. In these experiments, classes “T-shirt/top”, “Pullover”, “Dress”,

“Coat”, “Shirt” and “Ankle boot” are known classes while the remaining

classes are unknown and absent from the training set. Figure 4.4a shows
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Figure 4.3: The confusion matirces of the MNIST dataset in different ex-
periments using cross-entropy loss: (a) training without pre-training (CE);
(b): pre-training with RotNet (RotNet + CE); (c): pre-training with DTAE
(DTAE + CE).
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(a) Without pre-training (CE)

(b) After pre-training (RotNet) (c) After fine-tuning (RotNet + CE)

(d) After pre-training (DTAE) (e) After fine-tuning (DTAE + CE)

Figure 4.4: The t-SNE plots of the Fashion-MNIST test set using cross-
entropy loss. The left subplots are the representations of the known class,
and the right plots are the representations of the unknown classes.

the t-SNE plot of the representations learned from cross-entropy loss with-

out pre-training. Figures 4.4b and 4.4c are the learned representations of

the model pre-trained by RotNet and fine-tuned by cross-entropy in different

stages. Figures 4.4d and 4.4e are the learned representations of the model

pre-trained by DTAE and again, fine-tuned by cross-entropy. From all the

final representations of the three models in Figures 4.4a, 4.4c and 4.4e, we

observe overlaps between the known class “Ankle boot” (blue) and one com-

ponent of the unknown class “Sneaker” (gray) as well as class “Dress” (red)

and class “Trouser” (cyan). And the pre-training reduces the overlaps be-

tween “Shirt” (pink) and “Bag” (orange). Moreover, for the representations
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Figure 4.5: The t-SNE plots of the learned representations for the Fashion-
MNIST training set in the pre-training stage: (a): the representations on
transformation (Trans.) classes learned by RotNet; (b): the representations
on fashion (Fash.) classes learned by RotNet; similarly for DTAE in (c) and
(d).
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after pre-training, it shows that the representations learned by DTAE in Fig-

ure 4.4b are more separable than those learned by RotNet in Figure 4.4d for

different classes. Note that DTAE, similar to RotNet, is not provided with

class labels, but it can find representations that are more separable among

the classes than RotNet.

To understand what kind of information is in the learned representa-

tions after pre-training, we analyze how the representations are associated

with the transformation classes and fashion (target) classes. We color the

representations of the Fashion-MNIST training set based on transformation

and fashion classes separately in Figure 4.5. If the representations have

much information for the transformation classes, representations in the same

transformation class (color) will be clustered together; otherwise, they will

be dispersed. Similarly, we can use the same technique to understand the

amount of fashion information in the learned representations. By comparing

Figures 4.5a and 4.5b, we observe that RotNet learns more transformation

than fashion information in the representations. However, from Figures 4.5c

and 4.5d, we find that DTAE learns more fashion than transformation infor-

mation in the representations. Therefore, RotNet is more biased towards the

transformation information, while DTAE is more biased towards the fashion

information, which is more desirable in our case. Moreover, from Figures

4.5a and 4.5c, we observe that the representations learned by DTAE contain

much less transformation information than those learned by RotNet. How-

ever, from Figures 4.5b and 4.5d, we find that the representations learned

by DTAE contain more fashion (target) information than those learned by

RotNet. In summary, DTAE is not only more biased towards fashion (target)

than transformation information, and it also learns more fashion information
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(a) Without pre-training (b) After fine-tuning (Rot-
Net)

(c) After fine-tuning (DTAE)

Figure 4.6: The distributions of outlier scores for the known and unknown
classes of the Fashion-MNIST dataset in different experiments using cross-
entropy loss.

and less transformation information than RotNet.

Figure 4.6 shows distributions of the outlier scores in experiments on the

Fashion-MNIST test set. Compared with the model without pre-training in

Figure 4.6a, the pre-training steps in Figures 4.6b and Figure 4.6c increase

the outlier scores in the unknown classes, which pushes their score distribu-

tions further away from the known classes. The fact that there are fewer

overlaps between the known classes and the unknown class makes them more

separable. The results indicate that the model pre-trained with DTAE has

the fewest overlaps between the known and unknown classes.

4.4 Conclusion

In this chapter, we introduce the self-supervision technique to OSR prob-

lems. We provide experiments across different image datasets to measure

the benefits of the pre-training step for OSR problems. Moreover, we have

presented a novel method: Detransformation Autoencoder (DTAE) for self-

supervision. The proposed method engages in learning the representations

that are invariant to the transformations of the input data. We evaluate
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the pre-trained model with both classification and representation loss func-

tions. The experiments on several standard image datasets show that the

proposed method significantly outperforms the baseline methods and other

self-supervision techniques. Our analysis indicates that DTAE outperforms

traditional AE and also yields representations that contain more target class

information and less transformation information than RotNet.
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Chapter 5

Representation Learning with

Function Call Graph

Transformations for Malware

Open Set Recognition

5.1 Introduction

As machine learning has achieved great success in various domains, there

is still a wide range of challenges in the real world. For example, from

the security scenario, new malware classes emerge daily. A robust machine

learning system for malware detection should be able to classify the known

malware classes and recognize the newly unknown malware classes, which

is referred as Open Set Recognition (OSR) problem [4]. The OSR problem

aims to classify the multiple known classes for a multinomial classification
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problem while identifying the unknown classes.

In this chapter, we follow a two-stage learning approach to address the

OSR problem in malware classification. Given the malware assembly files,

we first extract the function call graphs (FCGs) as the input representa-

tions of the malware samples. Next, to learn better representations for the

malware samples, we use a self-supervised pre-training approach for the ex-

tracted FCGs. As the self-supervised learning approach needs a pretext

task, we propose two transformations for the FCG inputs. Then both origi-

nal and transformed FCGs are processed by a detransformation autoencoder

(DTAE) [48]. DTAE involves an encoder and a decoder. The encoder learns

the representations for the inputs while the decoder reconstructs the trans-

formed inputs back to their original forms. After pre-training and fine-tuning

the representations, we apply a statistical thresholding approach to find the

optimal threshold for the OSR tasks. Our contributions include, first, we

summarize the characteristics of the malware FCGs. Second, we propose

two transformation methods for the malware FCGs to facilitate the self-

supervised pre-training process for the OSR tasks. Third, we introduce a

statistical thresholding approach for the OSR task, which performs similarly

to the manually selected threshold. Finally, our experiments on two differ-

ent malware datasets indicate that our proposed self-supervised pre-training

approach improves the model performance on the OSR tasks.

We organize this chapter as follows. In section 5.2, we first present our

proposed approach to the self-supervised pre-training for the malware FCGs,

then introduce a statistical thresholding approach for the OSR tasks. Finally,

section 5.3 evaluates the proposed approach through experiment setup and

results from the analysis.
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5.2 Approach

The objective of open set recognition (OSR) is to classify the known classes

and the unknown classes even when the collected training samples cannot ex-

haust all the classes. An advanced malware classification system that utilizes

OSR techniques can classify the known malware families while identifying the

unknown malware family. Hassen and Chan [39] convert malware assembly

files to FCGs as OSR input. Here, we also use the FCGs as input samples. To

learn better representations for the OSR problem in malware classification,

we introduce a self-supervised pre-training process to learn low-level features

of the malware samples. Based on the FCGs characteristics, we propose

two transformation methods for malware FCGs to facilitate the pretext task.

Moreover, we introduce a statistical method to identify unknown instances.

5.2.1 Malware Function Call Graphs (FCGs)

Previous research works have proposed various ways to extract features for

malware classifications: Schultz et al. [82] extract features from printable

strings in malware binaries. Hu et al. [45] extract features from instruction

n-grams. Hassen and Chan [39] convert malware assembly files to FCGs as

input features. The FCGs can better preserve structural information be-

tween functions. Thus, in this paper, we adopt the same FCGs as in [39].

The system first extracts FCG representations from dissembled binaries. In

the FCGs, the vertices are functions, and edges are the interactions (calls)

between functions. Then based on the instruction opcode sequence, it clus-

ters the functions using Locality Sensitive Hashing (LSH), and the vertices

(functions) are then arbitrarily labeled with cluster-ids.
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Table 5.1: Graph statistics for datasets in function call graphs (FCGs), bio-
chemical molecules (BMs) and social networks (SN). The statistics includes:
average number of vertices, average number of degrees and % of vertices that
are neighbors (Degree/Vertex), average number of connected components
(C.C.), average size of each connected components and relative connected
components size (C.C. Size/Vertex).

Dataset Category Vertex Degree (/Vertex) C.C. C.C. Size (/Vertex)

MS FCGs 27.55 1.66(6%) 14.99 3.74(16%)
AG FCGs 31.73 3.31(10%) 16.97 2.28(7%)
MUTAG BMs 17.93 1.10 (6%) 3.49 5.86(33%)
PROTEINS BMs 39.06 1.86(5%) 4.75 9.78(25%)
COLLAB SNs 74.49 32.99(44%) 4.65 30.36(41%)
DBLP v1 SNs 10.48 1.87(18%) 1.93 6.12(58%)

The extracted FCGs are directed graph representations of the dissembled

malware binaries, with function clusters as the graph vertices and the caller-

callee relations between functions as graph edges. As the cluster ids are

arbitrarily assigned, we will get different isomorphic graphs for the same

malware binaries when we change the order of the cluster ids.

5.2.2 FCG characteristics

In this subsection, we compare the characteristics of the FCGs of malware

datasets with two other categories of graphs: biomedical molecules (BMs)

and social networks (SNs) in Table 5.1. Specifically, we compare the FCGs

extracted from two malware datasets: Microsoft Challenge (MC) and An-

droid Genome (AG) (see section 5.3 for more details) with MUTAG [55],

PROTEINS [7], COLLAB [97] and DBLP v1 [30]. In the table, “Vertex” and

“Degree” are the average numbers of vertices and degrees in each dataset.

We also measure the average percentage of vertices that are neighbors by

dividing the number of degrees by the number of vertices. Moreover, we cal-

culate the average number of connected components (C.C.) and the average
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size of connected components (C.C. Size) for each dataset. Also, we divide

the size of the C.C. by the number of vertices to measure the relative C.C.

Size. Comparing the graph statistics of the FCGs with the other categories,

we conclude two characteristics of the FCGs.

First, FCGs are sparser (i.e., have fewer direct neighbors) than the graphs

from the other two categories, especially social networks. In the COLLAB

dataset, the average degree of a graph is 32.99, which means 44% of the

vertices are direct neighbors. Meanwhile, 6% of vertices are direct neighbors

in the MS dataset and 10% for the AG dataset.

Second, FCGs have more and relatively small connected components than

the other two categories of graphs. From Table 5.1, both malware FCGs

contain around 15 connective components, while the datasets from the other

two categories contain less than five connected components. Furthermore,

the average sizes of each connected component in the two malware FCGs are

less than 4, which means less than four vertices are connected while isolated

from the rest of the vertices. Especially for the AG dataset, the connected

components are of size 2.28 on average, which is only 7% of the total vertices.

The relative connected components size is above 25% of the total vertices for

the four datasets from the other two categories. Notably, the relative size of

connected components in DBLP v1 dataset reaches 58%.

5.2.3 FCG transformations

Self-supervised learning generally involves input transformations to achieve

pretext tasks to learn better representations of input samples. The research

in [100] finds that the optimal input transformation method is task-relevant,

and it concludes that node dropping and subgraph sampling are generally
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Figure 5.1: Transformations of FCG adjacency matrix

beneficial across biochemical molecules and social networks datasets. The

node dropping transformation creates a new graph view by discarding a spe-

cific set of vertices and edges from the original input graph. As the FCGs

have fewer direct neighbors and are sparser than other graph datasets, dis-

carding vertices and their edges will remove more neighborhood information.

Thus the node dropping transformation is less applicable to the malware

FCGs. The subgraph sampling transformation creates a new graph view

by sampling a subgraph from the original input graph via a random walk.

From the second characteristic of the FCGs, the FCGs contain more con-

nected components (around 15 for the FCGs dataset from Table 5.1). Since

a random walk subgraph sampling will keep one connected component and

discard the rest (14 out of 15), the subgraph sampling will discard more than

90% information. Thus subgraph sampling is not desirable in learning the

representations of the FCGs.

As FCGs can be represented by adjacency matrices, and the ordering of
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vertices in the matrices is arbitrary. Here, we propose two types of trans-

formations: FCG-shift and FCG-random for the malware FCGs. The two

transformations generate a new isomorphic view by altering the ordering of

vertices. Given the original order of clusters-ids assignment as Figure 5.1a,

the FCG-shift transformation randomly select a pivots n, and then shift the

cluster-ids assignments n positions to the left. For example, in Figure 5.1b,

the order of vertices (cluster-ids) is shifted one position to the left. The orig-

inal vertex order “F1”, “F2”, “F3”, “F4”, “F5” becomes “F2”, “F3”, “F4”,

“F5”, “F1”. The FCG-random transformation randomly permute the order

of vertices and generated new adjacency matrices based on the permuted

vertex order. In Figure 5.1c, after the random permutation, the original ver-

tex order “F1”, “F2”, “F3”, “F4”, “F5” becomes “F2”, “F5”, “F4”, “F1”,

“F3”. Both FCG-shift and FCG-random maintain the orignal FCGs’ proper-

ties without information loss by generating isomorphic graphs to the original

graphs.

5.2.4 Representation Learning

In this work, we follow the two-stage learning strategy to learn the representa-

tions of input malware FCGs. We adopt the self-supervised learning strategy

to initial the network with low-level representations in the first stage. In the

second stage, we fine-tune the network with different loss functions to extract

the discriminative representations.

5.2.4.1 Pre-training stage

With the proposed FCG transformations, we adopt detransformation autoen-

coder (DTAE) proposed in [48] as our pretext task here to pre-train the the
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Figure 5.2: The training process of using detransformation autoencoder.

network. As depict in Figure 5.2a, given an input disassembled binaries of the

malware samples from the known classes, we first extract its FCG xi. Then

the FCG transformation module T (.) transforms the original FCG to its cor-

related views xit. Next, the encoder f(.) learns the representations z of the

transformed FCG xit, and the decoder reconstruct the representation z back

to its original FCG format x̂it. Assuming we have M transformations for N

FCG inputs. The learning process of neural network-based encoder-decoder

structure is guided by DTAE loss:

LDTAE =
1

2

M−1∑
t=0

N∑
i=1

(xi − x̂it)
2 (5.1)

In this paper, we transform FCGs four times for each experiment, i.e.,

M = 4, t ∈ {0, 1, 2, 3}.

5.2.4.2 Fine-tuning stage

After pre-training the neural network with transformed inputs, we fine-tune

the encoder and presentation layer (z) with the original inputs for the down-
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stream tasks. Here, we consider two types of loss functions for fine-tuning:

classification loss and representation loss. The objective of classification loss

is to explicitly lower the training data’s classification error in the decision

layers, such as cross-entropy loss. When using classification loss as the fine-

tuning loss function, we connect the presentation layer with a classifier, which

associates with a classification loss function as shown in Figure 5.2b. The

objective of representation loss functions is to learn better representations of

training data. The representation loss functions are normally applied to the

representation layers, such as triplet loss. When using representation loss as

the fine-tuning loss function, we directly constrain the representation layer

with a representation loss function, as shown in Figure 5.2c.

5.2.5 Open Set Recognition

After fine-tuning the encoder with the original FCG inputs, we extract the

learned representations z for the malware input. We utilize the distances be-

tween the representations for the open set recognition (OSR) task: classifying

the known classes and identifying the unknown class.

For a known class k that participant in the training process, we first find

its representation centroid as prototype µk. Given the representation zi for

sample i from class k (i.e. yi = k), we can calculate the prototype as:

µk =
1

Nk

Nk∑
i=1

zi, (5.2)

where Nk is the number of samples in class k. After obtaining the proto-

types, we introduce a statistical method to perform the OSR task. Specifi-

cally, we calculate the mean mk and standard deviation sk of the distances
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di from the training samples to the prototype k.

mk =
1

Nk

Nk∑
i=1

di (5.3)

sk =

√∑Nk

i=1(zi −mk)2

Nk

(5.4)

Then we normalize the distances between representations and prototypes

based on the prototypes’ means and standard deviations, and calculate the

outlier score based on the least of standard deviations to the prototype :

outlier score(x) = min
1≤k≤C

∥D(µk, z)−mk∥
sk

, (5.5)

where C is the number of known classes, and z is the learned representa-

tion of input x. D(., .) is a distance function, and we use euclidean distances

in this paper. Based on the Empirical Rule, a test instance can be recog-

nized as “unknown” if its outlier score is more significant than three standard

deviations.

y =

⎧⎪⎪⎨⎪⎪⎩
unknown, if outlier score(x) > 3

argmin
1≤k≤C

∥D(µk,z)−mk∥
sk

, otherwise

(5.6)

5.3 Experiments

We evaluate the proposed self-supervised pre-training method with two types

of downstream loss functions: triplet loss [80] (representation loss) and cross-

entropy loss (classification loss). Moreover, we test the proposed approach

on two malware datasets:
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Table 5.2: The average AUC scores of 30 runs at 100% and 10% FPR of
OpenMax and a group of 5 methods for each of the two types of loss func-
tions (ce and triplet): without pre-training, pre-training via DTAE with
transformations node dropping (ND), Subgraph sampling (SS), FCG-shift
and FCG-random. The values in bold are the highest values in each group.
The underlined values show statistically significant improvements (t-test with
95% confidence) comparing with OpenMax.

OpenMax ce triplet

FPR No pre-training / ND / SS / FCG-shift (ours) / FCG-random (ours) No pre-training / ND / SS / FCG-shift (ours) / FCG-random (ours)

MC
100% 0.880±0.037 0.918±0.036 / 0.914±0.063 / 0.626±0.054 / 0.938±0.015 / 0.947±0.011 0.929±0.020 / 0.919±0.032 / 0.723±0.071 / 0.932±0.017 / 0.933±0.015

10% 0.040±0.003 0.053±0.008 / 0.053±0.014 / 0.018±0.005 / 0.061±0.003 / 0.063±0.003 0.058±0.004 / 0.056±0.006 / 0.036±0.008 / 0.061±0.003 / 0.061±0.003

AG
100% 0.457±0.200 0.852±0.056 / 0.820±0.128 / 0.418±0.080 / 0.865±0.060 / 0.854±0.062 0.868±0.046 / 0.818±0.124 / 0.427±0.094 / 0.873±0.036 / 0.883±0.035

10% 0.001±0.001 0.021±0.012 / 0.019±0.016 / 0.002±0.002 / 0.022±0.013 / 0.019±0.009 0.024±0.010 / 0.018±0.011 / 0.002±0.002 / 0.025±0.011 / 0.027±0.011

Microsoft Challenge (MC) [74] contains disassembled malware samples

from 9 families:“Ramnit”, “Lollipop”, “Kelihos ver3”, “Vundo”, “Simda”,

“Tracur”, “Kelihos ver1”, “Obfuscator.ACY ” and “Gatak”. We use 10260

samples that can be correctly parsed then extracted their FCGs as in [39] for

the experiment. To simulate an open-world dataset, we randomly pick six

classes of digits as the known classes participant in the training, while the

rest are considered as unknowns that only exist in the test set.

Android Genome (AG) consists of 1,113 benign android apps and 1,200

malicious android apps. The benign samples are provided by our colleague,

and the malicious samples are from [108]. We select nine families with a

relatively larger size for the experiment to be fairly split into the training and

test sets. The nine families contain 986 samples in total. We first use [23]

to extract the function instructions and then generated the FCGs as in [39].

Also, to simulate an open-world scenario as the MC dataset, we randomly

pick six digits as the known classes in the training set while considering the

rest as the unknown class, which are only used in the test phase.
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5.3.1 Experimental Setup

As described in Section 5.2, our proposed approach first extracts the FCGs

from the malware samples, then uses self-supervised DTAE [48] for pre-

training before applying downstream fine-tuning tasks. We experiment with

classification loss (cross-entropy loss: ce) and representation loss (triplet loss:

triplet) as loss functions in the fine-tuning network for the OSR tasks. To

demonstrate that our proposed approach is effective for OSR problems, we

compare our approach with OpenMax[4]. Moreover, to prove that the self-

supervised pre-training step benefits the OSR tasks, we compare the results

of using and not using self-supervised pre-training for the two types of loss

functions mentioned above.

As illustrated in Figure 4.1a, the pre-trained network contains an encoder

and a decoder. Furthermore, the learned encoder is fine-tuned with down-

stream OSR tasks. For the encoder, the padded input layer is of size (67,67)

for both MC and AG datasets. Two non-linear convolutional layers follow

the input layer with 32 and 64 nodes. We apply the max-pooling layers with

kernel size (3, 3) and strides (2, 2) as well as batch normalization after each

convolutional layer. After a convolutional block, we add one fully connected

non-linear layer with 256 hidden units before the representation layer, con-

taining six dimensions. Moreover, We use the Relu activation function and

set the Dropout rate as 0.2. We use Adam optimizer with a 0.001 learning

rate. The decoder in the pre-trained network is simply the reverse of the en-

coder in our experiments. The encoder and representation layer maintain the

same architecture and hyperparameters in the fine-tuning network. Mean-

while, the decoder is replaced with different fully connected layers associated

with different loss functions.
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Figure 5.3: The confusion matirces of the MC test dataset under different
settings: (a) Cross-entropy loss without pre-training; (b) Augmented with
FCG-random and pre-trained with DTAE; (c) Fine-tuned with cross-entropy
loss after (b).
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Figure 5.4: The t-SNE plots of the MC test representations learned by differ-
ent settings: (a) OpenMax; (b) Cross-entropy loss without pre-training; (c)
Augmented with node dropping and pre-trained with DTAE; (d) fine-tuned
with cross-entropy loss after (c); (e) Augmented with FCG-random and pre-
trained with DTAE; (f): fine-tuned with cross-entropy loss after (d). The left
subplots are the representations of the known class, and the right subplots
are the representations of the unknown classes.
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Table 5.3: The average F1 scores of 30 runs of OpenMax and a group of 6
methods (without pre-training using manually selected threshold as baseline,
without pre-training using statistical threshold, pre-training via DTAE with
transformations node dropping, subgraph sampling, FCG-shift and FCG-
random) for each of the two types of loss functions (ce and triplet). The
values in bold are the highest values in each group. The underlined values
are statistical significant better than OpenMax.

MC AG

Known Unknown Overall Known Unknown Overall

OpenMax 0.891±0.006 0.737±0.010 0.869±0.006 0.408±0.190 0.640±0.163 0.441±0.184

ce

No pre-training (manual threshold) 0.899±0.010 0.703±0.061 0.871±0.017 0.683±0.117 0.540±0.329 0.663±0.120

No pre-training (statistical threshold) 0.890±0.021 0.663±0.176 0.858±0.042 0.705±0.088 0.512±0.363 0.678±0.120

Node dropping 0.852±0.077 0.715±0.097 0.833±0.078 0.684±0.176 0.636±0.339 0.677±0.181

Subgraph sampling 0.000±0.000 0.384±0.000 0.055±0.000 0.006±0.018 0.616±0.210 0.093±0.016

FCG-shift (ours) 0.896±0.010 0.765±0.024 0.878±0.011 0.743±0.088 0.612±0.327 0.724±0.113

FCG-random (ours) 0.898±0.012 0.774±0.025 0.880±0.013 0.647±0.129 0.608±0.318 0.641±0.127

triplet

No pre-training (manual threshold) 0.905±0.007 0.728±0.035 0.879±0.011 0.753±0.074 0.789±0.133 0.758±0.068

No pre-training (statistical threshold) 0.903±0.010 0.749±0.036 0.881±0.013 0.771±0.059 0.827±0.093 0.779±0.054

Node dropping 0.884±0.036 0.736±0.046 0.862±0.037 0.679±0.184 0.768±0.170 0.692±0.171

Subgraph sampling 0.014±0.075 0.372±0.069 0.065±0.054 0.011±0.061 0.657±0.135 0.104±0.036

FCG-shift (ours) 0.906±0.007 0.758±0.021 0.885±0.008 0.745±0.074 0.744±0.250 0.745±0.092

FCG-random (ours) 0.906±0.007 0.763±0.020 0.885±0.008 0.776±0.061 0.819±0.166 0.782±0.067

5.3.2 Evaluation Criteria

To simulate an open-set scenario, we randomly pick six out of nine classes

as the known classes and used them in training, and samples from the other

classes are regarded as the unknown class, which only exists in the test set.

We simulate three different open set groups for each dataset and then repeat

each group 10 runs, so each dataset has 30 runs. We calculate the average

results of 30 runs for performance evaluation.

We perform a three-dimensional comparison for our proposed approach.

First, to show that our proposed approach can achieve good performance

in the OSR problem, we compare our proposed approach with the popular

OSR solution OpenMax [4]. Moreover, to verify that the self-supervised pre-

training process benefits the OSR problem for different downstream loss func-

tions, we compare the model performances with and without using the pre-

training process. Finally, we compare our proposed transformation methods
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“FCG-shift” and “FCG-random” with other graph transformations “Node

dropping” (ND) and “Subgraph sampling” (SS), which are generally bene-

ficial across datasets [100]. While the AUC score under 100% FPR is com-

monly used in model performance measurements, the AUC score under 10%

FPR is more meaningful for malware detection applications. Moreover, we

measure the F1 scores for classifying the known classes correctly and rec-

ognizing the unknown class correctly for the OSR system. Finally, to show

that our proposed statistical approach to recognizing unknown classes in Sec-

tion 5.2.5 performs as good as the manual thresholding approach: sort the

outlier score of the training date in ascending order and then manually pick

an outlier score value (99 percentile) as the outlier threshold as in [37, 48],

we compare two different thresholding strategies – “manual threshold” and

“statistical threshold” – on the representations learned by the vanilla models

without pre-training process. To verify that our proposed approaches achieve

significant improvement on the OSR, we perform t-tests against OpenMax

with 95% confidence in both the AUC scores and F1 scores.

5.3.3 Experimental Results

We test our proposed pre-training strategy on downstream networks with

classification (cross-entropy loss) and representation (triplet loss) loss func-

tions and apply the statistical thresholding approach to learned represen-

tations. Table 5.2 shows the average ROC AUC scores of the model per-

formances in two malware datasets under different FPR values: 100% and

10%. Comparing “ce” and “triplet” columns with “OpenMax” columns,

we observe that no matter with or without our proposed pre-training pro-

cess, the models that use cross-entropy loss and triplet loss perform better
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than OpenMax for our malware datasets. Furthermore, our proposed pre-

training approach outperforms the models without the pre-training process

in all 8 cases (2 datasets × 2 FPRs × 2 loss functions). On the contrary,

the DTAE pre-training with node dropping transformation does not bene-

fit the model performance, and the subgraph sampling transformation even

hurts the model performance. For MC dataset, the FCG-random transfor-

mation works better than the FCG-shift transformation. Meanwhile, their

performances differ with different loss functions for the AG dataset.

We also measure the OSR performances via F1 scores under different

categories. As shown in Table 5.3. The three categories are: “Known”,

“Unknown”, and “Overall”. Specifically, the “Known” category is the av-

erage F1 scores of the known classes. Moreover, the “Overall” category is

the average F1 scores of the known and unknown classes. We observe that

the pre-training with our proposed transformation methods improves the

model performances in the majority of the cases. However, the pre-training

with node dropping and subgraph sampling hurts the model performance

in most cases. Moreover, the results in the “manual threshold” and “sta-

tistical threshold” rows indicate that our proposed statistical thresholding

strategy in Section 5.2.5 can achieve similar performance with the manually

selected threshold. Meanwhile, the statistical thresholding approach reduces

the number of hyperparameters and alleviates the grid searching process.

Overall, we notice that for both ROC AUC scores and F1 scores, the

DTAE pre-training using our proposed transformation approach benefits

the model performance in OSR problems. Meanwhile, the transformation

method node dropping does not help malware FCGs datasets. As discussed

in Section 5.2.3, the FCGs are, in general, very sparse graphs. Dropping
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nodes and subgraph sampling will potentially lose important information

about the malware. Meanwhile, our proposed FCG-shift and FCG-random

transformation will preserve all the information by creating isomorphic views.

5.3.4 Analysis

While the ROC AUC and F1 scores show that our proposed pre-training

approach improves the models’ performances, we plot the confusion matrices

of one set of the experiments with the MC test set to analyze the exper-

iment results further. In the experiments, the known malware classes are

“Lollipop”, “Kelihos ver3”, “Vundo”, “Tracur”, “Kelihos ver1”, and “Ob-

fuscator.ACY”, the remaining three classes together are considered as the

unknown class not participating in the training process. Figure 5.3a shows

the confusion matrix of the model using cross-entropy without pre-training.

Figure 5.3b and Figure 5.3c are the confusion matrices of the model perfor-

mance after pre-training with FCG-random and after being fine-tuned with

cross-entropy loss, respectively. According to the true positive (TP) predic-

tions along the diagonals of the confusion matrices in Figure 5.3b, the model

can already classify the known classes after the pre-training stage. Com-

paring the model performance without pre-training in Figure 5.3a and the

one with pre-training in 5.3c, we observe that the TP predictions have been

significantly increased for the unknown class. While the TP predictions on

the “Vundo” class have decreased, the False Positive (FP) predictions (off-

diagonal values) happen only between the known classes and the unknown

class instead of among the known classes, which indicates that the known

classes are more separable.

To visualize the differences between learned representations, we generate
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the t-SNE plots of the representations at different stages in different exper-

iments as in Figure 5.4. Specifically, Figure 5.4a is the t-SNE plot of the

learned representations of OpenMax. Figure 5.4b shows the representations

learned by the model using cross-entropy loss without pre-training. Figures

5.4c and 5.4d are the representations learned by the model after pre-training

with node dropping and being fine-tuned with cross-entropy loss. Figure 5.4e

and Figure 5.4f are the representations learned by pre-trained model using

DTAE with FCG-random and after being fine-tuned with cross-entropy loss.

From the left subplot in Figure 5.4c and Figure 5.4e, we observe that even

without class label information, the self-supervised pre-training model can

capture some cluster information. We can find the tiny clusters for the “Ob-

fuscator.ACY” class, “Kelihos ver3” class and “Lollipop” class, which ex-

plains the behavior in Figure 5.4c and Figure 5.3b. Moreover, in Figure 5.4f,

the representations of the known classes in the left subplots are more sepa-

rate from each other. Meanwhile, the representations of the unknown class

are more concentrated near the origin.

Figure 5.5 shows the distributions of the average outlier scores for the

known and unknown classes for the MC test set. Comparing the distributions

of outlier scores generated from cross-entropy loss without pre-training in

Figure 5.5a and with pre-training in Figure 5.5b, we notice that while the

pre-training process increases the outlier scores for both the known classes

and the unknown class, it increases the outlier scores in the unknown classes

more significantly, which pushes the distribution further away from the known

classes. Therefore, there is less overlap and higher accuracy.
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Figure 5.5: The distributions of outlier scores for the known and unknown
classes of the MC dataset using cross-entropy loss with and without pre-
training process.

5.4 Conclusion

In this chapter, we design a two-stage learning process for learning the rep-

resentations of the malware FCGs to resolve the set recognition problem

of malware samples. Specifically, we propose two transformation methods

for the FCGs to facilitate the detransformation autoencoder (DTAE) in the

pre-training step. Then, we fine-tune the network with different types of

loss functions. Moreover, to find the optimal threshold for the OSR prob-

lem, we design a statistical thresholding approach based on the distribution

of learned representations. The proposed approach reduced the number of

hyper-parameters and hence the costs of the resources for the hyperparame-

ter tuning process. We evaluate the pre-training approach with classification

loss and representation loss functions on two malware datasets. The results

indicate that our proposed approach can improve both model performances

for the OSR tasks.
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Chapter 6

Feature Decoupling in

Self-supervised Representation

Learning for Open Set

Recognition

6.1 Introduction

As classification techniques have achieved great success in various fields in

research and industry, most traditional classification problems focus on the

known classes. However, collecting samples exhausting all classes in the real

world is difficult. This problem is referred as Open Set Recognition (OSR) [4].

OSR attempts to handle the known classes that already exist in the training

set and the unknown classes that are absent from the training set. Hence,

for a multinomial classification problem, an OSR task normally involves two
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objectives: to classify the known classes and reject the unknown class.

In this chapter, we introduce a two-stage learning strategy for the OSR

problem. The first stage extracts the content features via a self-supervised

learning approach. The majority of the self-supervised learning methods fo-

cus on designing various pre-text tasks [27, 102, 48]. These pretext tasks

usually aim to learn content features, which implicitly try to remove the

transformation information. We hypothesize that explicitly learning sepa-

rate content and transformation features can improve the content features.

During the first (pre-training) stage, we introduce a feature decoupling ap-

proach to extract the content features irrelevant to transformation informa-

tion. The proposed approach decouples the representations through content

reconstruction and transformation prediction tasks. A learned representation

in our network is a concatenation of content features and transformation fea-

tures. The content features are irrelevant to the transformations. Thus, the

content features of the different views from the same original input should

be the same. We achieve this goal by reconstructing the different views to

their original form. Furthermore, the transformation features should contain

the discriminative information on the transformation types. Thus, we intro-

duce the transformation labels inside the input transformation module and

build an auxiliary transformation classifier on top of the transformation fea-

tures. After explicitly learning separate content and transformation features,

in the second stage, we fine-tune the content features with the provided class

labels and discard the transformation features. We look into two different

supervised loss functions: classification loss and representation loss. The

classification loss, such as cross-entropy loss, is applied to the decision layer

to lower the classification error. The representations loss, such as triplet
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loss [80], is applied directly to the representation layer to decrease the intra-

class spread and increase inter-class separation. In the case of classification

loss, we connect a content classifier to the content features and fine-tune

the network with a content classification loss. In the case of representation

loss, we apply the loss function directly to the content features. Finally, the

fine-tuned content features are used for the OSR tasks. We also consider an

unsupervised learning scenario in the second stage, where the known class

labels are unavailable. In this case, we cluster the content features learned

in the first stage to find the potential classes.

Our contribution includes: first, we design a two-stage training strategy

for the OSR tasks. Among these, we propose a feature decoupling approach

to extract the content features that are irrelevant to the transformation in-

formation. Second, we extend our approach to the unsupervised scenario in

OSR. Third, to evaluate the quality of learned representations of the pre-

training and fine-tuning stages, we propose intra-inter ratio (IIR) and show

that it is correlated to OSR performance. Lastly, we experiment with dif-

ferent loss functions with image and malware datasets. The results indicate

that our proposed self-supervised learning method is more effective than other

approaches in OSR.

We organize this chapter as follows. Section 6.2 presents a two-stage

training strategy for learning content features and introduces how to use

the learned content features to perform the OSR tasks. In Section 6.3, we

evaluate our proposed approach through experiments on different types of

datasets and also compare the experimental results with other approaches.
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6.2 Approach

In this section, we first describe a two-stage learning process to learn the

representations of input samples. In the first stage (pre-training), we utilize

a self-supervision approach to extract the low-level content features of the

input samples. In the second stage (fine-tuning), we introduce two types of

loss functions (classification loss and representation loss) to fine-tune the dis-

criminative content features. Then, we present a recognition strategy for the

OSR problem with the centroids of the fine-tuned content features. More-

over, we consider an unsupervised scenario for the second stage of learning,

where the labels of known classes are unavailable. In this case, we cluster

the learned content features with K-Means instead of fine-tuning them with

class labels in the second stage. Moreover, cluster centroids are used in the

recognition strategy for the OSR problem.

6.2.1 Pre-training stage: self-supervised feature de-

coupling

Self-supervised learning uses pretext tasks in the objectives, which gener-

ally incorporate the transformations of original input samples. Thus, the

learned features contain two types of information for a transformed input

sample: transformation unrelated content information and transformation

information. The information solely related to transformation is introduced

by pretext tasks, which are not practical for the downstream tasks. There-

fore, we develop a feature decoupling method to separate these two types of

information into transformation unrelated content features and transforma-

tion features.
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As shown in Figure 6.1, given an original input sample x, we use a trans-

formation module T augments the input x with different several correlated

views. The transformation module contains M different transformations as

T = {t1, t2, ...tm}. In our example in Figure 6.1, the transformations are the

rotations of input image samples by multiples of 90 degrees (0°, 90°, 180° and

270°) such thatM = 4. We denote the original input x with transformation tj

by xj. i.e, xj = tj(x). Then, a network-based encoder f(·) extracts the repre-

sentation vector zj from transformed data example xj, such that zj = f(xj).

We suppose that the high level representation vector zj can be represented

as zj = [zcj , z
t
j], where zcj is content features of the transformed data exam-

ple while ztj is responsible for the transformation features. We apply two

different objectives to decouple these two types of information. Specifically,

we use a reconstruction decoder gc(·) to learn the content features and a

transformation classifier gt(·) to extract the transformation related features.

6.2.1.1 Learning content features

The content features should be invariant to the transformations. In other

words, for the same input sample, the content features should be invariant

for all its transformed views. SimCLR [12] and Barlow Twins [102] achieve

such agreement by maximizing similarity of representations obtained from

different transformed views of a sample in the latent space. DTAE [48] en-

courages the similarity of representations of different views by reconstructing

them back to their original forms. Here, we apply a content reconstruction

decoder on reconstructed transformed samples. As shown in the “Objective

1” in Figure 6.1, the input of the decoder is the content part of the repre-

sentation, zcj . Moreover, instead of reconstructing the content features back
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Figure 6.1: Illustration of proposed feature decoupling method. The transfor-
mation module transforms the original input samples into several correlation
views. The encoder outputs decoupled content and transformation features.
The content part is learned by reconstructing the transformed input samples
back to their original forms, and the transformation part is learned by trans-
formation classification.

to their transformed views, the decoder here “reconstructs” them to their

original form before the transformation module.

Specifically, let gc(zcj) denotes reconstruction from the content feature of

the transformed view xj, we use MSE (Mean Squared Error) loss to maximize

the similarity of the reconstruction and the original input sample x:

Lcontent =
1

2

M∑
j=1

(x− gc(zcj))
2 (6.1)

Where each of the data points has M transformations, and there are M times

data points as the original input sample after the transformation module.

6.2.1.2 Learning transformation features

Towards the goal of extracting transformation features, we apply a classifier

to predict the transformation classes introduced from the transformation
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module. As shown in the “Objective 2” in Figure 6.1, the input of the

transformation classifier is the transformation part of the representation, ztj,

and the output is the prediction logits of transformation classes, i.e., the

rotation angles in our example. Formally, given the transformation part of

the representation ztj, the classifier outputs the transformation prediction

logit of the i-th class: pi(g
t(ztj)). We use a softmax cross-entropy loss for the

transformation classification and write the loss functions as:

Ltransformation = − log pi=j(g
t(ztj)), (6.2)

where j is the ground truth transformation label of input sample xj. In

our example in Figure 6.1, the objective of the classifier is classifying four

rotation types that introduced from the transformation module.

Algorithm 2 Pre-training stage of feature decoupling in self-supervised rep-
resentation learning

Input: Training data and labels (x, y).
Output: Encoder f(·), content decoder gc(·), and

transformation classifier gt(·).
1: Random Initialize f(·), gc(·) and gt(·);
2: for each transformation j do
3: j, xj ←− tj(x)

4: for epochs do
5: for each transformation j do
6: Extract the representation zj[z

c
j , z

t
j] from f(xj);

7: Reconstruct the original input x from gc(zcj);
8: Train f(·) and gc(·) by Eq. 6.1;
9: Classify the transformation label j from gt(ztj);
10: Train f(·) and gt(·) by Eq. 6.2;

return f(·), gc(·), gt(·).

In Algorithm 2, we summarize the overall pre-training stage of the pro-

posed feature decoupling method. After initializing the networks in Line 1

and transforming the original training data in Line 2, the network is trained
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Figure 6.2: Illustration of two types of fine-tuning objectives. only the orig-
inal input sample are used in the fine-tuning stage. The encoder and rep-
resentation layer are inherited from the pre-training stage, then the content
features (zc, pink) are connected to (a) a classifier or (b) a representation loss
function for fine-tuning. The transformation features (orange) are discarded.

using mini-batch stochastic gradient descent with backpropagation. Dur-

ing each epoch, we first extract the representation zj (Line 4). Lines 6-7

train the encoder f(·) and content decoder gc(·) under the guidance of con-

tent reconstruction loss function (Equation 6.1) on the content part of the

representation zcj . Next, Line 8 and 9 execute the training for the transfor-

mation part of the representation ztj under the transformation classification

loss function in Equation 6.2.

6.2.2 Fine-tuning stage: supervised fine-tuning

The self-supervised feature decoupling approach in the first stage attempts

to find the low-level content features. We further fine-tune the content fea-

tures learned in the first stage with the class labels. The fine-tuning stage

incorporates the available class labels in the training data to discover the dis-

criminative features between classes for class awareness. The loss functions

of the fine-tuning network can be categorized into two types: classification

and representation loss.

The classification loss function requires a classifier connected to the rep-
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resentation layer, which is applied to the output logits in the decision layer.

One of the widely used classification loss functions is cross-entropy loss. Fig-

ure 6.2a illustrates the network architecture of using the classification loss in

the fine-tuning step. Compared with the pre-training step, the fine-tuning

step only uses the original training data. The training data is passed through

the encoder learned in the pre-training step. Moreover, instead of connecting

to a content decoder, the content part of the representation connects to a

classifier that outputs class logits. The classification loss is applied to this

output to lower the classification error.

Unlike the classification loss, the representation loss functions do not

require a classifier. They constrain the representation layers directly, such as

triplet loss [80]. Figure 6.2b illustrates how we incorporate the representation

loss in the fine-tuning stage. After passing the input data through the pre-

trained encoder, we extract the decoupled representations. Then, instead

of a content decoder or a classifier, the content part of the representation is

directly constrained by the representation loss function. After fine-tuning the

encoder with the labeled dataset, we calculate centroid uk of class k based

on the content features:

µk =
1

Nk

Nk∑
i=1

zci , (6.3)

where Nk is the number of training instances in class k. During the inference

time, we only use the content features zc to represent the input sample for

the OSR tasks.
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6.2.3 Open set recognition

After the second stage, we obtain the encoder and centroids of all the known

classes. We have two problems to solve for an OSR task: classifying the

known classes and identifying the unknown class. If we haveK known classes,

given the content features zc of test sample x, we define the outlier score as

the Euclidean distance to its closest centroid:

outlier score(x) = min
1≤k≤K

∥µk − zc∥22 (6.4)

In this work, the outlier threshold t is the 99 percentile of the outlier score

in ascending order. A test sample is recognized as unknown if an outlier score

exceeds the selected threshold. Otherwise, we use a class probability P (y =

k|x) to decide the test sample belongs to which known class. For the fine-

tuning network with classification loss, we use the output probability in the

decision layer as P (y = k|x). For the fine-tuning network with representation

loss, we calculate P (y = k|x) as:

P (y = k|x) = e−∥µk−z∥22∑K
k=1 e

−∥µk−z∥22
(6.5)

And the test sample is classified as the known class with the highest class

probability.

ŷ =

⎧⎪⎪⎨⎪⎪⎩
unknown, if outlier score(x) > t

argmax
1≤k≤K

P (y = k|x), otherwise

(6.6)
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6.2.4 Extension to unsupervised OSR

When the class labels of the known classes are unavailable, the problem

becomes an unsupervised OSR problem. The unsupervised OSR aims to

identify whether an instance is from the known data distributions or an

unknown data distribution without known class labels. In this scenario, after

self-supervised pre-training (Sec. 6.2.1), instead of supervised fine-tuning

(Sec. 6.2.2), we apply a clustering algorithm (such as K-Means) to identify

clusters based on the content features learned from pre-training. That is,

we do not perform supervised fine-tuning of the features. After finding the

clusters, we calculate the centroid of each cluster (instead of each class)

according to Eq. 6.3. Centroids of the clusters (instead of the classes) are

then used for OSR as discussed in Sec. 6.2.3. For reference convenience, we

assign an ID to each cluster. Unsupervised OSR outputs one of the known

cluster IDs or unknown.

6.3 Experiments

We evaluate the proposed feature decoupling approach with two types of

fine-tuning functions as mentioned in Section 6.2.2: classification loss (cross-

entropy loss) and representation loss (triplet loss). Moreover, to show that

our proposed approach works on different datasets. We test the proposed

approach on images and malware datasets. A web link will be provided for

our implementation and datasets in the paper if it is published.

Fashion-MNIST [93] is associated with 10 classes of clothing images. It

contains 60,000 training and 10,000 testing examples. In the Fashion-MNIST

dataset, each example is a 28x28 grayscale image. To simulate an open-set
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dataset, we randomly pick six digits as the known classes, while the rest are

treated as the unknown class for testing.

CIFAR-10 [56] contains 60,000 32x32 color images in 10 classes, with 6,000

images per class. There are 50,000 training images and 10,000 test images. As

the Fashion-MNIST datasets and the FCGs datasets only have one channel,

for consistency, we first convert the color images to grayscale and randomly

pick six classes out of the ten classes as the known classes. In contrast, the

remaining classes are treated as the known class only existing in the test set.

Microsoft Challenge (MS) [74] contains disassembled malware samples

from 9 families:“Ramnit”, “Lollipop”, “Kelihos ver3”, “Vundo”, “Simda”,

“Tracur”, “Kelihos ver1”, “Obfuscator.ACY ” and “Gatak”. We use 10260

samples that can be correctly parsed then extracted their FCGs as in [39] for

the experiment. We randomly pick six classes of digits as the known classes

participant in the training, while the rest are considered as unknowns that

only exist in the test set.

Android Genome (AG) consists of 1,113 benign android apps and 1,200

malicious android apps. Our colleague provides the benign samples, and the

malicious samples are from [108]. We select nine families with a relatively

larger size for the experiment to be fairly split into the training set and the

test set. The nine families contain 986 samples in total. We first use [23]

to extract the function instructions and then generated the FCGs as in [39].

Also, to simulate an open-set scenario, we randomly pick six digits as the

known classes while considering the rest as the unknown class.
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6.3.1 Implementation details and comparison methods

Our proposed training process consists of two stages. In the first stage, we

compare our proposed self-supervised feature decoupling (FD) approach with

other self-supervised learning approaches: RotNet [27], Barlow Twins [102],

DTAE [48][46]. We construct a fine-tuning network in the second stage to

refine the learned content features. We experiment with classification loss

(cross-entropy loss: ce) and representation loss (triplet loss: triplet) as loss

functions in the fine-tuning network. Furthermore, To demonstrate that our

proposed approach is effective for OSR problems, we compare our approach

with OpenMax[4].

6.3.1.1 Self-supervised feature decoupling

As illustrated in Figure 4.1a, the pre-training stage includes a transformation

module to facilitate the pre-text task. For the image datasets, we use the

rotation of a multiplier of 90 degrees (e.g., 0, 90, 180, 270 degrees) in the

transformation module. As for the malware datasets. We first extract the

FCGs of each sample, then apply FCG-random [46] on the FCGs. The trans-

formed samples are then passed through an encoder. The padded input layer

size varies for different datasets. For the Fashion-MNIST dataset, the input

images are of size (28, 28) and are padded to get the size (32, 32) with one

channel. For the CIFAR-10 dataset, the padded input size is (36, 36). For the

FCG datasets (MS and Android), the padded input layer is in the size of (67,

67). The padded input layer is then flowed by two non-linear convolutional

layers with 32 and 64 nodes. We apply the max-polling layers with kernel

size (3, 3) and strides (2, 2). We also add batch normalization after each

convolutional layer to complete the convolutional block. After the convolu-
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tional block, we use two fully connected non-linear layers with 256 and 128

hidden units for the image datasets Fashion-MNIST and CIFAR-10. We only

use one fully connected non-linear layer with 256 hidden units for the graph

dataset. Furthermore, the size of representations is nine dimensions for all

the datasets in our experiments, with six dimensions for the content features

and the remaining three for the non-content transformation features. The

six-dimensional content features are connected to a decoder, which is simply

the reverse of the encoder. The three-dimensional transformation features

are further connected to a linear layer and then fed to a softmax layer for

the transformation classification. We use the Relu activation function and

set the Dropout rate as 0.2. We use Adam as the optimizer with a learning

rate of 0.001.

The comparison methods RotNet, Barlow Twins, and DTAE share the

same backbone encoder architecture as our proposed method. Their repre-

sentation layers have six dimensions. Also, we have generalized the original

RotNet and Barlow Twins methods for fair comparison in our experiments.

Specifically, the pre-text task of original RotNet was classifying the rotation

degrees in [27], which is only applicable for the image datasets. Here, to make

RotNet feasible for the FCG datasets, we extend the pre-text task to predict-

ing the FCG-random transformation labels for the FCG datasets. Moreover,

the original Barlow Twins impose constraints on the cross-correlation ma-

trix between the representations of two transformed views in [102]. Here,

we apply the same constraints to the cross-correlation matrices between the

transformed views and their corresponding original samples.
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Table 6.1: The average ROC AUC scores of 30 runs at 100% and 10% FPR of
OpenMax and a group of 5 methods (without pre-training, pre-training with
RotNet, Barlow Twins, DTAE and Feature Decoupling (FD)) for two loss
functions: cross-entropy loss and triplet loss under supervised OSR scenario.
The values in bold are the highest values in each group.

Fashion-MNIST CIFAR-10 MS AG
FPR 100% 10% 100% 10% 100% 10% 100% 10%

OpenMax 0.740±0.046 0.016±0.008 0.675±0.017 0.006±0.001 0.880±0.037 0.040±0.002 0.480±0.190 0.001±0.001

ce

No Pre-training 0.717±0.036 0.029±0.005 0.580±0.046 0.007±0.001 0.914±0.030 0.052±0.006 0.853±0.082 0.022±0.014

RotNet 0.736±0.047 0.031±0.007 0.612±0.040 0.008±0.001 0.911±0.032 0.055±0.005 0.870±0.059 0.026±0.017

Barlow Twins 0.719±0.034 0.028±0.007 0.606±0.017 0.007±0.001 0.915±0.022 0.053±0.003 0.850±0.068 0.020±0.011

DTAE 0.748±0.040 0.032±0.006 0.618±0.019 0.008±0.001 0.941±0.018 0.064±0.002 0.855±0.079 0.023±0.013

FD (ours) 0.771±0.032 0.034±0.006 0.628±0.012 0.009±0.001 0.945±0.010 0.060±0.002 0.876±0.047 0.025±0.013

triplet

No Pre-training 0.716±0.037 0.021±0.005 0.610±0.026 0.008±0.001 0.923±0.028 0.056±0.005 0.868±0.046 0.027±0.014

RotNet 0.743±0.028 0.025±0.005 0.628±0.015 0.009±0.001 0.924±0.018 0.057±0.003 0.870±0.036 0.025±0.009

Barlow Twins 0.709±0.041 0.021±0.007 0.621±0.016 0.009±0.001 0.918±0.018 0.054±0.003 0.871±0.035 0.022±0.006

DTAE 0.744±0.028 0.023±0.003 0.632±0.015 0.009±0.001 0.928±0.017 0.061±0.002 0.879±0.030 0.026±0.010

FD (ours) 0.758±0.030 0.025±0.004 0.636±0.016 0.010±0.001 0.941±0.014 0.061±0.003 0.876±0.029 0.025±0.011

6.3.1.2 Supervised fine-tuning

In the fine-tuning network, the encoder and representation layer maintains

the same architectures as the pre-trained network. Then, instead of connect-

ing the representation layer to a decoder and a transformation classifier, we

only connect the content features of the representation layer to a decision

layer (for classification loss) in Figure 4.1b or a representation loss function

as shown in Figure 4.1c. Likewise, for the comparison methods, we connect

their representation layers to the decision layer (for classification loss) or a

representation loss function.

As one of the comparison methods, OpenMax does not have a pre-training

stage. It shares the same encoder architecture as our backbone network, then

the representation is directly fed to a softmax layer.

6.3.2 Evaluation criteria

To simulate an open-set scenario, we randomly pick six classes as the known

classes and use them in the training process. The ensemble of the remaining
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Table 6.2: The average F1 scores of 30 runs OpenMax and a group of 5 meth-
ods (without pre-training, pre-training with RotNet, Barlow Twins, DTAE
and Feature Decoupling) for two loss functions (cross entropy loss and triplet
loss) under supervised OSR scenario. The values are the highest values in
each group.

Image Dataset Fashion-MNIST CIFAR-10
Known Unknown Overall Known Unknown Overall

OpenMax 0.747±0.049 0.521±0.178 0.714±0.051 0.645±0.022 0.540±0.065 0.630±0.017

ce

No Pre-training 0.685±0.102 0.559±0.076 0.667±0.086 0.567±0.048 0.369±0.169 0.538±0.045

RotNet 0.711±0.067 0.569±0.097 0.691±0.058 0.561±0.061 0.472±0.136 0.548±0.049

Barlow Twins 0.738±0.025 0.506±0.066 0.704±0.025 0.599±0.022 0.395±0.105 0.570±0.023

DTAE 0.733±0.050 0.570±0.087 0.710±0.041 0.591±0.037 0.472±0.096 0.574±0.027

FD (ours) 0.748±0.024 0.587±0.075 0.725±0.022 0.587±0.031 0.514±0.067 0.576±0.025

triplet

No Pre-training 0.749±0.014 0.505±0.075 0.714±0.021 0.579±0.042 0.451±0.134 0.561±0.038

RotNet 0.751±0.015 0.537±0.075 0.720±0.020 0.603±0.033 0.497±0.087 0.588±0.030

Barlow Twins 0.740±0.015 0.433±0.042 0.696±0.016 0.609±0.025 0.446±0.104 0.586±0.026

DTAE 0.755±0.010 0.545±0.076 0.725±0.018 0.620±0.027 0.472±0.086 0.599±0.028

FD (ours) 0.753±0.011 0.582±0.083 0.729±0.018 0.617±0.030 0.515±0.028 0.603±0.026

Malware Dataset MS AG
Known Unknown Overall Known Unknown Overall

OpenMax 0.891±0.006 0.737±0.010 0.869±0.006 0.408±0.190 0.640±0.163 0.441±0.184

ce

No Pre-training 0.899±0.010 0.703±0.061 0.871±0.017 0.683±0.117 0.540±0.329 0.663±0.120

RotNet 0.900±0.012 0.708±0.077 0.872±0.021 0.709±0.121 0.613±0.335 0.695±0.135

Barlow Twins 0.896±0.007 0.712±0.039 0.870±0.011 0.701±0.093 0.541±0.309 0.678±0.113

DTAE 0.908±0.008 0.779±0.027 0.890±0.010 0.686±0.107 0.535±0.280 0.664±0.110

FD (ours) 0.905±0.007 0.771±0.026 0.886±0.009 0.711±0.096 0.612±0.339 0.697±0.118

triplet

No Pre-training 0.905±0.007 0.728±0.035 0.879±0.011 0.753±0.074 0.789±0.133 0.758±0.068

RotNet 0.906±0.008 0.739±0.031 0.882±0.011 0.755±0.069 0.791±0.178 0.760±0.074

Barlow Twins 0.896±0.006 0.699±0.034 0.868±0.010 0.761±0.081 0.739±0.247 0.757±0.091

DTAE 0.911±0.006 0.751±0.024 0.889±0.009 0.734±0.079 0.735±0.197 0.734±0.081

FD (ours) 0.909±0.007 0.762±0.031 0.889±0.010 0.760±0.059 0.807±0.160 0.766±0.061

classes is considered the unknown class, which does not participate in the

training process and only exists in the test set. We experiment with both

supervised and unsupervised OSR scenarios.

For the supervised scenario, we simulate three groups of such open sets

and experiment with each group with ten runs. We calculate the aver-

age results of these 30 runs when evaluating the model performances. For

evaluation, we perform a three-dimensional comparison of our proposed ap-

proach. First, we compare model performances with and without using the

pre-training process to verify that the pre-training process benefits the OSR

problem for different loss functions. Second, we compare our feature decou-
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(a) RotNet (b) Barlow Twins (c) DTAE (d) Feature Decoupling

Figure 6.3: The t-SNE plots of the representations of Fashion-MNIST test
samples on pre-trained models.

pling (FD) approach with other self-supervised pre-training approaches, Rot-

Net, Barlow Twins, and DTAE. Finally, to show that the two-stage trained

model can achieve good performance compared to other OSR approach, we

compare the proposed approach with the popular OSR solution OpenMax.

Similar to the unsupervised scenario, we measure both ROC AUC scores

under 100% and 10% FPRs. The ROC AUC scores under 100% FPR is

commonly used in measuring model performance. However, in real-life ap-

plications such as malware detection, a lower FPR is more desirable. Thus

the ROC AUC scores under 10% FPR are more meaningful in these cases.

Moreover, as the objective of the OSR problem is twofold: classifying the

known classes and recognizing the unknown class, we evaluate the F1 scores

for the known class and the unknown class separately.

6.3.3 Evaluation results

Table 6.1 reports the AUC ROC scores under different FPR values: 100% and

10% under the supervised OSR scenario, where the known class labels are

available. Comparing the “No Pre-training” rows with “OpenMax” rows of

both loss functions, we observe that without the pre-training stage, OpenMax
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Figure 6.4: IIR after the pre-training stage.

outperforms the cross-entropy loss and triplet loss in the image datasets. On

the contrary, for the malware datasets, the cross-entropy and triplet loss

perform better than OpenMax. Moreover, comparing the models without

pre-training stages with those with pre-training stages, we observe that the

pre-training methods benefit the model performances in most cases. Also, the

model pre-trained with our proposed feature decoupling (FD) achieves the

best performance in 12 out of 16 comparison groups (4 datasets x 2 FPRs x 2

loss functions). Especially, the model pre-trained with our proposed approach

achieves the best performance in all the cases in the graph datasets.

Besides the AUC ROC scores, we measure the F1 scores of different meth-

ods in Table 6.2. Notably, we measure the performance under three cate-

gories: the average F1 scores of all the known class (”Known” columns), the

F1 scores of the unknown class (”Unknown” columns), and the average F1

scores of the known and unknown classes (”Overall” columns). Similar to the

AUC ROC results, OpenMax outperforms cross-entropy loss and triplet loss

104



in the image datasets when no pre-training stage is involved. However, both

loss functions surpass OpenMax in the malware datasets. Moreover, all the

pre-training methods benefit the model performance in classifying the known

classes and recognizing the unknown class in most cases. Our proposed ap-

proach outperforms the other pre-training methods in 15 out of 24 groups

(4 datasets x 3 categories x 2 loss functions). Especially for the ”Overall”

performances, our proposed approach achieves the best performance in 7 out

of 8 groups.

From the experiment results, we observe that the performance of Open-

Max differs on image and malware datasets. Also, a pre-training stage boosts

the model performance on both classification and representation loss. More-

over, in most cases, our proposed self-supervised feature decoupling approach

outperforms the other pre-training methods.

We perform an ablation study from two perspectives for our approach.

First, from the two-stage training perspective, we study the effects of the

pre-training stage. We compare the AUC scores in the “No Pre-training”

rows and “FD(ours)” rows in Table 6.1 and Table 6.2. As expected, we ob-

serve that the pre-training stage has played an important role in the process.

Second, our proposed pre-training approach, Feature Decoupling, has two

components: a content reconstructor and a transformation classifier. The

content reconstructor shares the same objective as DTAE. The results in the

“DTAE” rows and “FD(ours)” rows in Table 6.1 and Table 6.2 indicate that

the transformation classifier usually contributes to improved performance in

our proposed approach.
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(a) OpenMax (b) No Pre-training

(c) RotNet (d) Barlow Twins

(e) DTAE (f) Feature Decoupling

Figure 6.5: The t-SNE plots of the representations of MS test samples learned
by different models: (a) OpenMax; (b) triplet loss without pre-training; (c)
triplet loss pre-trained with RotNet; (d) triplet loss pre-trained with Barlow
Twins; (e) triplet loss pre-trained with DTAE; (f) triplet loss pre-trained
with Feature Decoupling. The left subplots are the representations of the
known class, and the right subplots are the representations of the unknown
classes.
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6.3.4 Analysis of the self-supervised models

Our experiment results indicate that the proposed feature decoupling ap-

proach benefits different loss functions on the OSR tasks. We plot the t-SNE

plots at different stages to further analyze the model performances. Fig-

ure 6.3 shows the t-SNE plots of the known classes in the (unseen) test set

of Fashion-MNIST after pre-training. Specifically, the known classes include

“Ankle boot”, “Coat”, “Dress”, “Pullover”, “Sandal” and “Shirt”. The mod-

els are pre-trained by self-supervised learning approaches: RotNet, Barlow

Twins, DTAE, and Feature Decoupling. Comparing the four approaches, we

observe that RotNet fails to separate any of the six known classes, while

the other three approaches manage to separate the known classes to some

level. Among the other three approaches, Barlow Twins and Feature De-

coupling can better cluster ”Dress” samples, whereas the representations

of the ”Dress” samples learned by DTAE are more spread out and mean-

while overlap with the representations of the ”Shirt” samples. Moreover, the

representations of ”Ankle boot” and ”Sandal” samples learned by Feature

Decoupling are more separable than the other approaches.

Besides visually evaluating representations via t-SNE plots, we propose

intra-inter ratio (IIR) to measure the representation quality learned by differ-

ent self-supervised pre-training approaches. For class k, we define the intra

class spread as the average distance of instances from its centroid:

intrak =
1

Nk

Nk∑
i=1

d(µk, zi), (6.7)

where Nk is the number of samples in class k and d(., .) is a distance function.

Meanwhile, we measure the inter separation of the class k as the distance of
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the its centroid µk to its nearest centroid of other classes:

interk = min
i,i ̸=k

d(µk, µi) (6.8)

Moreover, the intra-inter ratio of class k can be then defined as IIRk =

intrak/interk, which combines both intra-spread and inter-separation for the

representation quality measurement. Here, we use the average IIR over all

the K known classes to further measure the representation quality:

IIR =
1

K

K∑
k=1

intrak
interk

(6.9)

IIR is similar to the feature space density proposed by Roth et al. [75].

One difference is that IIR calculates the average ratio of all classes instead

of the ratio of the average intra-distance and inter-distance. That is, IIR

focuses on the representation quality of each class before considering the

overall quality. Also, the inter-distance in IIR is calculated with respect to

the nearest centroid, while in feature space density, it is an average of all

pairs of centroids. That is, inter-distance in IIR is designed to characterize

the ”near miss” centroid that is most likely to cause misclassification.

A lower IIR score indicates lower intra-spread and/or higher inter-separation,

which characterizes better representation quality. Figure 6.4 shows the IIR of

different datasets after the pre-training stage. We observe that our proposed

Feature Decoupling (FD) outperforms the other pre-training approaches for

the image and malware datasets. Note that self-supervised pre-training does

not use class labels, but FD can yield better representations in the t-SNE

plots and lower IIR in the test set.
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6.3.5 Analysis of the fine-tuned models

Besides the self-supervised learning stage, we also visualize the difference be-

tween learned representations after the fine-tuning stage under the supervised

OSR scenario. Figure 6.5 shows the representations of known and unknown

MS malware samples learned by different methods after the fine-tuning stage.

In these experiments, we consider “Kelihos ver3”, “Kelihos ver1”, “Gatak”,

“Obfuscator.ACY”, “Ramnit” and “Lollipop” as the known classes, and the

samples of the remaining three classes “Vundo”, “Simda”, “Tracur” together

are treated as the unknown class not a participant in the training process.

Figure 6.5a and Figure 6.5b do not involve the pre-training stage. The model

used in Figure 6.5a is trained by OpenMax, and Figure 6.5b is trained by

triplet loss directly. For comparison, the models in Figure 6.5c - Figure 6.5f

are pre-trained by different self-supervision approaches and fine-tuned by

triplet loss. From the representations of the unknown classes in the left

subplots, we observe that OpenMax, triplet loss without pre-training, and

Feature Decoupling perform better in the intra-class spread. At the same

time, the models pre-trained by RotNet, Barlow Twins, and DTAE tend

to spread one class into several clusters, such as “Kelihos ver3” and “Lol-

lipop”. Furthermore, comparing the representations of the unknown samples

in the right subplots, the representations of the unknown class learned by

models in the pre-training stage are more concentrated near the origin and

tend to achieve better intra-class spread. Comparing the left and right sub-

plots, we observe that compared with other approaches, the representations

of the known classes have less overlap with those of the unknown class in the

Feature Decoupling approach.

Besides the triplet loss, we plot the IIR of the models fine-tuned by cross-
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Figure 6.6: IIR after the fine-tuning stage.

entropy loss in Figure 6.6. Self-supervised pre-training benefits IIR in most

cases, except for Barlow Twins in the CIFAR-10 dataset. Consistent with

the IIR after the pre-training stage, the model pre-trained with Feature De-

coupling benefits IIR in most cases. Furthermore, to determine if IIR can

help explain OSR performance, we plot the overall F1 scores in Table 6.2

against IIR in Figure 6.7. We observe that F1 scores and IIR are highly

correlated, where the Pearson correlation coefficient is -0.88. The strong cor-

relation indicates that improvement in IIR can help explain enhancement in

overall F1. Hence, self-supervised methods (such as FD) that can improve

IIR can increase OSR performance.

Figure 6.8 shows the distributions of the outlier scores for the known

and unknown classes in the MC dataset. Figure 6.8a and Figure 6.8b show

the outlier scores distributions of the models using cross-entropy with and

without Feature Decoupling pre-training, respectively. Figure 6.8c and Fig-

ure 6.8d show the outlier scores distributions of the models using triplet loss
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Figure 6.7: F1 against IIR after the fine-tuning stage.

with and without Feature Decoupling pre-training, respectively. We observe

that for both loss functions, the pre-training stage significantly increases out-

lier scores for the unknown class. Meanwhile, the outlier scores of the known

classes are slightly increased. This effect pushes the outlier scores of the un-

known class further away from the known classes and results in less overlap.

The less overlap leads to higher accuracy of recognizing the unknown class.

6.3.6 Experiments on unsupervised OSR

We evaluate the unsupervised scenario discussed in Section 6.2.4 on the

Fashion-MNIST and MS datasets. Although both datasets contain class

labels, we only use the labels to create the open-set datasets and calculate

model performance metrics. We perform K-Means (K=6) on the represen-

tations learned by the self-supervised models to find the potential class cen-

troids. Similar to the supervised scenario, we simulate an open-set scenario

by randomly picking six classes as the known classes. Also, we simulate

three groups of such open sets and experiment with each group with three

runs, resulting 9 runs. Then, we calculate the average results of these 9

runs when evaluating the model performances. We compare our feature de-
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(a) Without FD (ce) (b) With FD (ce)

(c) Without FD (triplet) (d) With FD (triplet)

Figure 6.8: The distributions of outlier scores for the known and unknown
classes of the MS dataset with and without our proposed Feature Decoupling
(FD) pre-training process.

coupling (FD) approach with other self-supervised pre-training approaches,

RotNet, Barlow Twins, and DTAE, and report the ROC AUC scores under

100% and 10% False Positive Rate (FPR) in Table 6.3. Our feature decou-

pling approach outperforms the other self-supervised learning approaches in

both image and malware datasets. Though we expect AUC in the unsuper-

vised OSR scenario (Table 6.3) to be lower than AUC in the supervised OSR

scenario (Table 6.1), for feature decoupling (FD), the difference might not

be huge. For Fashion-MINST, AUC with 100% FPR in unsupervised OSR

is 0.655, compared to 0.771 (ce) or 0.758 (triplet) in supervised OSR. This

provides additional evidence (beyond Sec. 6.3.4) that the features learned
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Table 6.3: The average ROC AUC scores of 9 runs at 100% and 10% FPR of a
group of 4 methods (RotNet, Barlow Twins, DTAE and Feature Decoupling
(FD)) for the unsupervised OSR scenario. The values in bold are the highest
values.

Fashion-MNIST MS
FPR 100% 10% 100% 10%

RotNet 0.519±0.089 0.005±0.002 0.587±0.063 0.008±0.002

Barlow Twins 0.463±0.059 0.004±0.002 0.537±0.120 0.007±0.002

DTAE 0.639±0.083 0.032±0.006 0.639±0.083 0.010±0.001

FD (ours) 0.655±0.053 0.034±0.006 0.686±0.092 0.012±0.005

via feature decoupling could be effective for OSR.

6.4 Conclusion

We use a two-stage learning approach for the OSR problems. We propose a

self-supervised feature decoupling method to split the learned representation

into the content and transformation parts in the first stage. In the second

stage, we fine-tune the content features from the first stage with class labels.

Furthermore, we consider an unsupervised OSR scenario, where we cluster

the content features to find the potential classes in the second stage. We

introduce intra-inter ratio (IIR) to evaluate the learned content representa-

tions. The results indicate that our feature decoupling method outperforms

the other self-supervised learning methods in supervised and unsupervised

OSR scenarios with image and malware datasets. Our analyses indicate that

IIR is correlated with and can explain OSR performance.
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Chapter 7

Novel Category Discovery in

Open Set Recognition

7.1 Introduction

Machine learning models have achieved significant advances in various tasks

in recent years. Most of these models are developed under a closed-world

assumption and rely on a huge amount of data with human annotations. The

real world is an open set, and humans can determine whether images belong

to the same category or not. However, such an open-set setting brings new

challenges for machine learning models. First, it is cost-inhibitive to keep

manually annotating the emerging new categories. Second, it is unlikely

to collect samples exhausting all the classes. In the open-set setting, an

ideal machine learning model should automatically discover new categories

in the training set without having access to their labels, called novel category

discovery (NCD) [36]. Meanwhile, the model should recognize the unknown
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Cluster 1 Cluster 2

Dog Cat

(a) Training samples (b) Conventional
NCD

(c) NCD under open-
set scenario

Figure 7.1: The differences between conventional NCD and NCD under open-
set scenario.

classes absent from the training set, which is referred as Open Set Recognition

(OSR) [4].

In this chapter, we focus on automatically discovering novel categories in a

more realistic open-set scenario. In the open-set setting, we have labeled and

unlabeled samples available for training. Meantime we have unknown sam-

ples that are not available in the training process. Our proposed approach has

three objectives: classifying the existing categories from the labeled samples,

clustering the novel categories from the unlabeled samples, and recognizing

the unknown classes absent from the training set. As shown in the exam-

ple in Figure 7.1, we have labeled “dog” and “cat” samples and unlabeled

“chicken” and “duck” samples for training. Conventional NCD methods

classify the “dog” and “cat” samples, meanwhile cluster the “chicken” and

“duck” samples, as shown in Figure 7.1b. For NCD under the open-set sce-

nario in Figure 7.1c, the ideal system not only recognizes the existing (“dog”,

“cat”) and novel categories (“chicken”, “duck”), but also rejects the classes
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(“sheep”, “cow”) that absent from the training samples as unknown.

Specifically, we introduce a one-step solution for NCD under the open-

set scenario and name this solution general inter-intra (GII) loss. Mehadi

and Chan [37] propose inter-intra (ii) loss for OSR with labeled training

samples. Ii loss maximizes the inter-class distances and minimizes the intra-

class distances in the representation space to achieve inter-class separation

and intra-class compactness. We generalize this idea to unlabeled samples in

our work. The proposed GII consists of three components: intra-class loss for

existing categories, intra-cluster loss for novel categories, and inter-category

loss for merged categories. We calculate their class centroids in representation

space for existing categories and minimize the intra-class distance. For novel

categories, we first estimate the centroids of the novel categories and cluster

assignments via k-means, then we minimize the intra-cluster distance in the

representation space. The assumption is that novel categories are totally

disjoint with the existing ones, so intra-category loss is designed to maximize

the distance between any two categories.

Our contribution includes: first, we propose a generic, one-step solution

for NCD under an open-set scenario. Second, to the best of our knowledge,

we are the first to extend NCD to an open-set setting. Third, we experiment

with the proposed approach with image and graph datasets, and the results

indicate that our proposed approach is more effective than other approaches

for NCD and OSR.

We organize this chapter as follows. Section 7.2 presents our one-step

solution for NCD under open-set scenario. In Section 7.3, we evaluate our

proposed approach through experiments on different types of datasets and

also compare the experimental results with other approaches.
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Figure 7.2: Illustration of GII architecture for NCD.

7.2 Approach

This section includes details on the General Intra-Inter (GII) loss for the NCD

under an open-set scenario. Hassen and Chan [41] propose ii loss for OSR,

where the training samples are all labeled data. Ii loss learns the representa-

tions that encourage intra-class compactness and inter-class separability. In

this work, we generalize a similar motivation to the unlabeled data for NCD.

As shown in Figure 7.2, our proposed network architecture consists of three

paths: the existing categories path decreases the intra-class spread for the la-

beled samples; the novel categories path uses k-means to estimate the cluster

centroids as well as cluster assignments for the unlabeled samples, then assist

intra-cluster compactness; merged categories path deals with both existing

categories and novel categories by increasing inter-category separation.

7.2.1 Learning Representations of Existing and Novel

Categories

Suppose we have a labeled collection of instances Dl = {(xl
i, y

l
i)}N

l

i=1, where

yli ∈ {1, . . . , C l} is the ground-truth class labels for the labeled samples, and
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N l is the number of labeled samples. In addition, we have an unlabelled

collection of instances Du = {xu
i }N

u

i=1, where Nu is the number of unlabelled

samples. Following a common assumption in other works [36, 35], we assume

that the novel categories are disjoint with the existing ones, i.e., Dl∩Du = ∅,

also the number of novel categories Cu is known.

Our goal is to model a representation space that separates the existing

categories in Dl and the novel categories in Du. Through such representa-

tion space, we can identify if a test instance belongs to one of the existing

categories, one of the novel categories, or the unknown class. We propose an

end-to-end framework to learn the representations, which provides a one-step

solution for NCD under the open-set scenario. The end-to-end training of the

framework consists of three components: intra-class loss for the existing cat-

egories, intra-cluster loss for the novel categories, and inter-category loss for

the merged categories. The existing categories are the classes of the labeled

samples. The novel categories are the clusters of the unlabeled samples, and

the merged categories are the combinations of these classes and clusters.

7.2.1.1 Intra-class loss for existing categories

The intra-class component deals with the intra-spread for the labeled sam-

ples. One can expect the network to capture some informative knowledge

for the existing categories through the training process, which not only helps

classify labeled samples but also is beneficial to transfer the basic feature for

clustering unlabeled samples.

Given a labeled sample xl
i, we use a network-based trainable decoder f(·)

to extract its representation vector zli. Thus, for existing category (or class)

j, we find its centroid in the representation space as:
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µl
j =

1

N l
j

N l
j∑

i=1

zli, (7.1)

where N l
j denotes the number of samples in the existing category j. Then,

we measure the intra-class spread as the average distance of labeled instances

from their class means:

intra-classj =
1

N l
j

N l
j∑

i=1

∥µl
j − zli∥22. (7.2)

To improve the intra-class compactness, we minimize the largest intra-

class spread among the existing categories.

Lintra-class = max
1≤j≤Cl

intra-classj (7.3)

7.2.1.2 Intra-cluster loss for novel categories

There are several differences comparing intra-cluster spread with intra-class

spread. First, intra-class spread relies on labels to find class centroids. In

the intra-cluster spread, we only have unlabeled samples. Thus, we use k-

means to estimate the representation cluster centroids as the centers of novel

categories µ̃u. Second, we are uncertain which specific centroid is for an

unlabeled sample. Thus, we calculate the soft assignment of sample xu
i based

on the distance of its representation zui to the estimated centroids. Since

unlabeled samples do not belong to known classes, these samples do not

have a soft assignment to known classes. To calculate the soft assignment

(probability), we use the softmax of the negative distance of zui from all the

estimated centroids. Hence, the probability of sample xu
i belongs to novel

category (or cluster) k is given by:
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pik = P (yui = k|xu
i ) =

e−∥µ̃u
k−zui ∥22∑Cu

t=1 e
−∥µ̃u

t −zui ∥22
, (7.4)

where µ̃u
k is the estimated centroid for novel category k. Similar to the intra-

class spread, we measure the intra-cluster spread as the weighted average

distance of unlabeled instances from their soft assignments. Suppose we

have Nu unlabeled samples, the intra-cluster spread of novel category k is

calculated as:

intra-clusterk =

∑Nu

i=1 pik∥µ̃u
k − zui ∥22∑Nu

i=1 pik
. (7.5)

Then, we minimize the largest intra-cluster spread among the novel cat-

egories to achieve intra-cluster compactness. The differences between the

intra-cluster spread in Equation 7.5 with the intra-class spread in Equation

7.2 are the estimated cluster centroid µ̃u
k and the soft assignment pik.

Lintra-cluster = max
1≤k≤Cu

intra-clusterk (7.6)

It can be seen that intra-cluster loss sharpens the distribution of soft

assignments through the training process.

The cluster centroids are initialized and updated by k-means. To reduce

the training time, we use a scheduling function for the k-means. Intuitively,

we want to update the centroids more frequently at the beginning of the

training. Close to the end of the training, when the network has learned in-

formative knowledge from the labeled samples, and the clusters of the unla-

beled samples have been formed for the novel categories, we perform k-means

less frequently for the centroids updates.

Finally, to avoid a trivial solution of assigning all unlabeled samples to
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the same class, we regularize the model with maximum entropy regularization

(MER). Specifically, we use the probability pik calculated from Equation 6.5

as the probability of an unlabeled sample xu
i being assigned to novel category

k. MER maximizes the entropy of the output probability distribution:

R = −H(p) =
1

Nu

Nu∑
i=1

Cu∑
k=1

pik log pik. (7.7)

MER has been used in pseudo-labeling based semi-supervised learning

[1, 9] and deep clustering methods [22].

7.2.1.3 Inter-category loss for merged categories

The above two components shorten the distance between representations of

the same categories to ensure intra-class and intra-cluster compactness. To

distribute the representations of different categories to different subspaces,

we further measure the inter-category separation as the distance between the

two closest category centroids. Let µc be the centroid of category c, where

c ∈ {1, ..., C l}
⋃
{1, ..., Cu}. The inter-category separation for category m is

defined as:

inter-categorym = min
1≤i≤(Cl+Cu),k ̸=i

∥µm − µi∥22. (7.8)

To improve the intra-category separability, we maximize the inter-category

separation in the inter-category loss:

Linter-category = − min
1≤m≤(Cl+Cu)

inter-categorym. (7.9)

The objective function in GII combines three components, and the overall

training loss of our end-to-end framework can then be written as:

121



L = Lintra-class + λ1Lintra-cluster + λ2Linter-category + λ3R, (7.10)

where λ1, λ2, and λ3 are regularization parameters set to 1 in all our exper-

iments.

Algorithm 3 Training to minimize GII loss

Input: Labeled samples and their labels {(xl, yl)}. Unlabeled samples
{xu}.

Output: Encoder f(·). Cluster assignment ỹu.
Representation centroids of all categories {µl, µu}.

1: Initialize f(·)
2: Initialize {µu} via k-means(xu)
3: for number of iterations do
4: if k-means scheduler is on then
5: Update cluster centroids {µ̃u} ← k-means(xu)

6: Sample a mini-batch from the training set.
7: Extract the representations zl ← f(xl), zu ← f(xu)
8: Calculate class centroids {µl} ← mean(zl) ▷ Eq. 7.1
9: Calculate intra-class loss Lintra-class(µ

l, zl) ▷ Eq. 7.3
10: Get the prediction probability p for unlabeled data ▷ Eq.6.5
11: Calculate intra-cluster loss Lintra-cluster(µ̃

u, zu) ▷ Eq. 7.6
12: Calculate inter-category loss Linter-category(µ̃

u, µ̃l) ▷ Eq. 7.9
13: Calculate MER R ← −H(p) ▷ Eq. 7.7
14: Compute the joint loss L(Lintra-class,Lintra-cluster,Linter-category,R) ▷

Eq. 7.10
15: Update f(·) via back-propagation

16: Update cluster centroids and assignments {µu}, ỹu ← k-mean(zu).
17: return f(·), {µl, µu}, ỹu

In Algorithm 3, we summarize the overall training process for GII loss.

After Initializing the networks in Line 1 and estimating the cluster centroids

in Line 2, the network is trained using mini-batch stochastic gradient descent

with back-propagation. During each iteration, we first check if it is time to

update the cluster centroids based on the pre-defined scheduling function.
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Then we update the cluster centroids via k-means if the schedular is on (Line

4- Line 5). After extracting the representations of labeled and unlabeled

samples, we calculate class centroids for labeled samples in Line 8. Lines

9 - 12 calculate inter-class, intra-cluster, and inter-category loss separately.

Then, to avoid a trivial solution, we calculate MER as in Line 13. Line

14 computes the joint loss of the three components. Then we update the

network parameters to minimize the loss value via back-propagation in Line

15. Finally, after the training process, we get the cluster centroids and cluster

assignments via k-means.

7.2.2 Open Set Recognition

After training the encoder and obtaining the category centroids, we utilize

the distances between the representations and the centroids for the NCD and

OSR tasks.

Since different categories have different spreads in the representation

space, we first normalize the distances between the representations to their

category centroids. Specifically, or category k (k can be either existing cat-

egory or novel category), we calculate the mean mk and standard deviation

sk of the category spread as the distance from training sample i in category

k to their centroid µk.

mk =
1

Nk

Nk∑
i=1

D(zi, µk)

sk =

√∑Nk

i=1(D(zi, µk)−mk)2

Nk

,

(7.11)

where Nk is the number of training samples in category k. Given the repre-

sentation of a test sample z, we normalize its distance to category centroid
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µk as:

dnormk =
∥D(µk, z)−mk∥

sk
. (7.12)

Then, for sample x, we calculate its probability belonging to category k as:

P (y = k|x) = e−dnorm
k∑Cl+Cu

k=1 e−dnorm
k

(7.13)

Furthermore, the test sample is classified as the category with the highest

probability if the probability is above the threshold t. Otherwise, the test

sample is identified as the unknown class.

ŷ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
unknown, if max1≤k≤(Cl+Cu) P (y = k|x) < t

argmax
1≤k≤(Cl+Cu)

P (y = k|x), otherwise
(7.14)

7.3 Experimental Evaluation

In this section, our proposed GII is systemically evaluated on image and

graph datasets.

MNIST [74] contains 70,000 handwritten digits from 0 to 9. Each example

in the MNIST dataset is a 28x28 grayscale image.

Fashion-MNIST [74] is associated with 10 classes of clothing images. It

contains 60,000 training and 10,000 testing examples. In the Fashion-MNIST

dataset, each example is a 28x28 grayscale image.

Microsoft Challenge (MS) [74] contains disassembled malware samples
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from 9 families:“Ramnit”, “Lollipop”, “Kelihos ver3”, “Vundo”, “Simda”,

“Tracur”, “Kelihos ver1”, “Obfuscator.ACY ” and “Gatak”. We use 10260

samples that can be correctly parsed and then extracted their FCGs as in

[39] for the experiment.

Android Genome (AG) consists of 1,113 benign android apps and 1,200

malicious android apps. Our colleague provides the benign samples, and the

malicious samples are from [108]. We select nine families with a relatively

larger size for the experiment to be fairly split into the training set and the

test set. The nine families contain 986 samples in total. We first use [23] to

extract the function instructions and then generated the FCGs as in [39].

7.3.1 Implementation details

To simulate an open-set scenario, we randomly select six classes from the

datasets as existing categories. Moreover, we randomly select another two

classes from the datasets as novel categories by removing their labels. These

eight classes participate in the training, while the rest are considered un-

knowns that only exist in the test set.

As shown in Figure 7.2, labeled and unlabeled data share the same en-

coder. For the MNIST and Fashion-MNIST datasets, the padded input layer

of the encoder is of size (32, 32), followed by two non-linear convolutional

layers with 32 and 64 nodes. We also use the max-polling layers with kernel

size (3, 3) and strides (2, 2) after each convolutional layer. We use two fully

connected non-linear layers with 256 and 128 hidden units after the convolu-

tional component. Then we have an eight-dimensional representation layer

after the encoder. We use the Relu activation function for all the non-linear

layers and set the Dropout rate as 0.2 for the fully connected layers. We
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use Adam optimizer with a learning rate of 0.001. We use a contamination

ratio of 0.001 for the unknown class threshold selection. We sort the output

probability of training data in ascending order and pick the 0.1 percentile of

the probability as the threshold.

For the FCG datasets (MS and Android), the padded input layer is in

the size of (67, 67). The padded input layer is then flowed by two non-linear

convolutional layers with 32 and 64 nodes. We apply the max-polling layers

with kernel size (3, 3) and strides (2, 2). We also add batch normalization

after each convolutional layer to complete the convolutional block. After the

convolutional block, we only use one fully connected non-linear layer with

256 hidden units for the graph dataset. Next, we add an eight-dimensional

representation layer after the encoder same as the Fashion-MNIST dataset.

We use the Relu activation function and set the Dropout rate as 0.2. We

use Adam as the optimizer with a learning rate of 0.001. Finally, we use a

contamination ratio of 0.01 for the unknown class threshold selection.

Moreover, as mentioned in section 7.2.1.2, we use a scheduling function

for the k-means updates in the NCD process. In the experiments, we apply

k-means every ten iterations in the first 5000 iterations, then reduce the

frequency to every 100 iterations in the rest of the training process.

7.3.2 Comparison methods

We compare the proposed with ii loss without sharpening on the unlabeled

samples (No sharpening) , cluster loss, and supervised OSR. For a fair com-

parison with “No sharpening”, we first pre-train the encoder with labeled

samples using ii loss [41]. After obtaining the representations of the unlabeled

samples, we find the novel cluster centroids and assignments via k-means di-
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rectly in the representation space without further sharpening. Finally, we

apply the same OSR process as described in section 5.2.5.

Liu and Tuytelaars [64] propose cluster loss to sharpen the distribution

of unlabeled samples through the clustering process. Specifically, they con-

struct an auxiliary target distribution as a sharper version of the distribution

of unlabeled samples and minimize the KL-divergence loss between the tar-

get distribution and actual distribution. While our proposed intra-cluster

loss in section 7.2.1.2 can be seen as a sharpening process for the unlabeled

samples as well, we compare our proposed intra-cluster loss with cluster loss

by substituting the inter-cluster loss term with cluster loss in our overall

loss function in Equation 7.10. Moreover, as the cluster loss measures the

KL-divergence between two distributions, which is in a different scale with

other terms (intra-class and inter-category), we set λ1 differently for different

datasets.

In addition, we experiment on fully supervised OSR and use the results

as the upper bounds of NCD and OSR performances. In the supervised

OSR experiments, we apply ii loss on eight labeled categories in the training

process. The remaining categories are considered as the unknown class and

only participants in the testing phase.

7.3.3 Evaluation Criteria

As mentioned above, we simulate an open-set scenario for all the datasets.

Moreover, we randomly select two classes in the training set as novel cate-

gories and remove their class labels. We simulate three open-set groups for

each dataset and then repeat each group 10 runs, so each dataset has results

for 30 runs. We calculate the average results of the 30 runs for performance
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evaluation.

We calculate the accuracy (ACC) scores under different types of cate-

gories: existing categories (ACCE), novel categories (ACCN) and the un-

known category (ACCU). Specifically, we evaluate the classification accuracy

of existing categories and the recognition accuracy of the unknown category.

Moreover, we evaluate the model performance on novel categories with

clustering accuracy. Clustering accuracy is widely used in NCD problems.

To find the optimal match between the class labels and the cluster labels,

the ACC of novel categories is defined as:

ACCN = max
perm∈P

1

N

N∑
i=1

δ(perm(ŷi) = yi), (7.15)

where N is the total number of unlabeled samples; δ is the Kronecker delta

response; ŷi denotes the predicted cluster label; perm(·) is the permutation

operation and P is the set of all permutations of the class assignments in

the test set. The score ranges between 0 and 1, and a higher value means

better clustering performance. The Hungarian algorithm is commonly used

to optimize the permutations for faster computation.

To further evaluate our approach’s performance on OSR, we measure

the AUC scores under 100% and 10% False Positive Rate (FPR). While the

AUC score under 100% FPR is commonly used in model performance mea-

surements, the AUC score under 10% FPR is more meaningful for malware

detection applications.
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Table 7.1: The average ACC scores of 30 runs. The upper bounds results
are trained with fully supervised learning, and the values in boldface are the
highest in each column.

Image Dataset MNIST Fashion-MNIST
ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.733±0.078 0.800±0.091 0.697±0.078 0.767±0.015 0.615±0.060 0.598±0.068 0.668±0.089 0.539±0.098 0.786±0.008 0.468±0.079

Cluster loss 0.752±0.161 0.625±0.125 0.687±0.166 0.751±0.031 0.624±0.127 0.820±0.062 0.608±0.104 0.757±0.052 0.698±0.049 0.628±0.042

GII (ours) 0.936±0.08 0.854±0.088 0.909±0.089 0.817±0.070 0.810±0.069 0.875±0.047 0.808±0.084 0.847±0.051 0.797±0.003 0.687±0.034

Upper bound (supervised) 0.983±0.001 0.977±0.004 0.981±0.001 0.937±0.012 0.935±0.012 0.896±0.018 0.967±0.005 0.914±0.014 0.822±0.011 0.770±0.016

Malware Dataset MS AG
ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.732±0.131 0.625±0.180 0.717±0.132 0.763±0.112 0.653±0.166 0.680±0.167 0.708±0.140 0.602±0.176 0.798±0.027 0.564±0.193

Cluster loss 0.880±0.117 0.602±0.183 0.818±0.106 0.758±0.096 0.742±0.094 0.779±0.146 0.601±0.177 0.734±0.120 0.773±0.063 0.684±0.118

GII (ours) 0.942±0.026 0.630±0.143 0.895±0.054 0.834±0.071 0.811±0.078 0.944±0.013 0.714±0.080 0.906±0.020 0.831±0.048 0.820±0.034

Upper bound (supervised) 0.960±0.016 0.916±0.035 0.950±0.020 0.903±0.035 0.899±0.035 0.922±0.012 0.712±0.080 0.898±0.021 0.908±0.013 0.904±0.012

Table 7.2: The average ROC AUC scores of 30 runs at 100% and 10% FPR.
The upper bounds results are trained with fully supervised learning, and the
values in boldface are the highest in each column.

MNIST Fashion-MNIST MS AG
FPR 100% 10% 100% 10% 100% 10% 100% 10%

No sharpening 0.439±0.127 0.004±0.003 0.418±0.073 0.003±0.001 0.528±0.122 0.007±0.004 0.293±0.214 0.000±0.000

Cluster loss 0.413±0.231 0.007±0.009 0.620±0.084 0.008±0.003 0.651±0.271 0.018±0.015 0.507±0.283 0.007±0.015

GII (ours) 0.829±0.104 0.047±0.016 0.674±0.040 0.012±0.004 0.858±0.086 0.028±0.015 0.885±0.090 0.016±0.020

Upper bound (supervised) 0.966±0.010 0.078±0.003 0.676±0.062 0.015±0.002 0.945±0.045 0.062±0.017 0.963±0.013 0.052±0.015

7.3.4 Experimental Results

We test our proposed method on image and malware datasets for 30 runs. Ta-

ble 7.1 shows the average accuracy scores of different methods. Notably, we

measure the average clustering/classification accuracy on the existing/novel

set and the merged set (ACCE+N). Moreover, considering an open-set sce-

nario, we measure the average accuracy of the unknown set, and the set con-

tains all the existing, novel, and unknown categories (ACCE+N+U). Compar-

ing the ACC under existing categories (ACCE) and novel categories (ACCN),

we observe that our proposed GII outperforms both ii loss without sharpen-

ing and cluster loss in NCD. Also, comparing the ACC under the unknown

category (ACCU), we observe that GII achieves the best performance in

OSR. The upper bound performances are generated from supervised ii loss,

where we utilize the labels of novel categories in the training set. We can see
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that GII has comparable performances with the supervised training in some

datasets. In particular, GII obtains higher accuracy than supervised learning

in the combined novel and existing categories (ACCE+N) in the AG dataset.

In addition to the ACC scores, we measure the AUC ROC scores under

different FPR values: 100% and 10% in Table 7.2. The AUC ROC measures

OSR at various threshold settings. Similar to the ACC scores, our proposed

GII outperforms ii loss without sharpening and cluster loss in the AUC ROC

scores. Furthermore, comparing GII with supervised learning, we observe

that GII can achieve comparable OSR performance in the Fashion-MNIST

dataset.

7.3.5 Analysis

Our experiment results indicate that GII outperforms ii loss without sharp-

ening and cluster loss in terms of performances in NCD and OSR. We plot the

t-SNE plots of the representations of samples from different categories in the

MNIST test set, as shown in Figure 7.3. The left subplots are the represen-

tations of the samples from existing categories (“0”, “2”. “3”, “4”, “6” and

“9”) and novel categories (“cluster 1” and “cluster 2”). The right subplots

show the representations of samples from unknown categories, which only ex-

ist in the test set. Comparing Figure 7.3a with Figures 7.3b and 7.3c, we can

see that samples from the two clusters result in more compact intra-cluster

spread with cluster loss and GII. The reason is that cluster and GII sharpen

the distributions of the unlabeled samples while “No sharpening” does not

change the distributions of the unlabeled samples. Furthermore, it can be

seen that GII forms better clusters compared with cluster loss. GII generates

a more discriminative boundary for the samples in cluster 2 (grey) and the
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(a) No sharpening

(b) Cluster loss

(c) GII (ours)

Figure 7.3: The t-SNE plots of the representations of MNIST test samples
learned by different models.
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(a) MNIST (b) Fashion-MNIST

(c) MS (d) Android

Figure 7.4: Intra-inter ratio (IIR) of the representations in different categories
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samples in class “9” (brown). The reason is that GII forms a tighter cluster

for cluster 2. Thus a more accurate cluster centroid is estimated and used

in the inter-category loss. Also, comparing the representations in the right

subplots, we find that the representations of unknown samples learned by ii

loss without sharpening and GII are more concentrated around the origin.

In contrast, those learned by GII are more widespread.

Besides visually evaluating representations via t-SNE plots, we also eval-

uate intra-inter ratio (IIR) [49] with test samples to measure the represen-

tation quality learned by different approaches. IIR measures the representa-

tion quality by calculating the ratio between intra-category spread and inter-

category separation, and a lower value means better representations. Here,

we calculate inter-category separation as the average distance between any

two nearest category centroids. Moreover, we calculate intra-category spread

differently of different categories. We measure the intra-category spread for

novel categories as the average distances between two novel category cen-

troids. Moreover, we use the average distances between two existing cate-

gory centroids as the intra-category spread of existing categories. For the

combined categories (N+E), we calculate the intra-category spread as the

average distance between any two combined category centroids.

When calculating the IIR, we desire a relatively small intra-category

spread with a relatively large inter-category separation. Hence, a lower IIR

means better representations. To find the reference point for the desired IIR

score, we assume that the representations of one category are distributed in a

sphere. Then, the intra-category spread represents the radius of this sphere,

and the inter-category separation is the distance between its centroid and an-

other nearest centroid. For example, if we have the centroid of category 1 as

133



Figure 7.5: ACC against IIR in four datasets

“c1” with intra-category spread (radius) “r1”. The nearest centroid to “c1”

is “c2” from category 2 with intra-category spread (radius) “r2”. If category

1 and category 2 are separable, the distance between “c1” and “c2” (inter-

category separation, denote as “d”) should be greater than “r1+r2”. The

IIR of these two categories is calculated as IIR = 1
2
r1+r2

d
with d > (r2 + r2),

which makes IIR less than 0.5. Thus, 0.5 can be used as a reference point

for the desired IIR score.

Figure 7.4 shows the IIR values of different datasets. We find that cluster

loss and GII achieve better IIR in novel categories for both image and graph

datasets, consistent with the earlier discussion in the t-SNE plot. Also, all

three approaches have comparable performances in the existing categories.

The IIRs obtained by GII are less than 0.5 in most cases. Overall, GII

outperforms the other approaches in all types of categories.

To determine if the IIR of the existing and novel categories in test samples

helps explain the overall NCD and OSR performance, we plot the overall

ACC scores of the combination of existing, novel, and unknown categories
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(ACCE+N+U) against IIR scores of existing and novel categories (E+N) in

Figure 7.4. We find a strong correlation between ACCE+N+U scores and IIR

(E+N) values, where the Pearson correlation coefficient is -0.63. It indicates

that the improvements in IIR can help explain the boost in NCD and OSR

performance.

7.4 Conclusion

We have presented a generic one-step representation learning approach to

tackle the challenging problem of novel category discovery under an open-set

scenario. Our proposed approach consists of three components. First, we

achieve intra-class spread for labeled samples by minimizing the intra-class

distance. Second, we estimate the novel category centroids and propose intra-

cluster loss for the unlabeled samples to discover novel categories. Third,

we separate different categories by maximizing the intra-category distance

such that all the categories inhabit the same representation space. Last,

we evaluated our approach on image and graph datasets, and the results

indicate that the proposed approach obtained superior results in NCD and

OSR compared with other approaches.
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Chapter 8

Conclusion

With the tremendous advances in representation learning, recent machine

learning models have achieved great success in various areas. However, these

models’ success often relies heavily on the massive amount of data collection

and human annotations. The real world is an open set, which brings new

challenges for machine learning models. First, as new categories emerge on

a daily basis, it is difficult to collect samples that cover all the possible cate-

gories for training. Thus, an ideal machine learning model should be highly

sensitive to unknown categories. Second, it is costly to manually analyze and

annotate emerging new categories daily. A mature machine learning model

should automatically discover the new categories in the collected training

samples. In this dissertation, we focused on solving the above challenges.

Specifically, we worked on neural-network-based methods for extracting the

representations for open set recognition (OSR) and novel category discovery

(NCD).

In Chapter 3, we proposed Min Max Feature (MMF) loss extension to

enhance the representation space that leverages intra-class spread and inter-
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class separation for OSR. The proposed loss extension can be incorporated

into different loss functions to find more discriminative representations. We

experimented with MMF loss extension on image and graph datasets, and

the results indicate that MMF can significantly improve the performances of

different types of loss functions.

Chapter 4 to Chapter 5 introduced self-supervised learning approaches

as a pre-training stage for OSR. Particularly, we proposed Detransformation

Autoencoer (DTAE) in Chapter 4. DTAE engages in learning representa-

tions invariant to the input data transformations, and experiments on several

standard image datasets indicated that the pre-training process significantly

improves the model performance in the OSR tasks. In Chapter 5, we ex-

tended DTAE to graph datasets. We proposed two transformations for the

function call graph (FCG) based malware representations: FCG-shift and

FCG-random. These two transformations are designed to facilitate the pre-

text task in DTAE. Also, we presented a statistical thresholding approach to

find the optimal threshold for the unknown class. The experiment results in-

dicate that our proposed pre-training process can improve the performances

of different loss functions for the OSR problem. In Chapter 6, we proposed

a feature decoupling approach in the self-supervised pre-training stage. The

proposed approach learns a representation that can be split into content

and transformation features. Then, only the content features are fine-tuned

and used for the OSR problems. We also introduced intra-inter ratio (IIR) to

evaluate OSR performance. Moreover, our experimental results indicate that

the feature decoupling approach outperforms other self-supervised learning

approaches in image and graph OSR problems.

We extended NCD to an open-set setting in Chapter 7. After recognizing
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the unknown categories, as a following step of OSR, we proposed General

Inter-Intra (GII) loss to learn a representation space that clusters the un-

known samples under an open-set scenario. Our evaluations show that GII

obtains superior results in NCD and OSR compared with other approaches.

8.1 Limitations and Future Work

The open-set problem is a class-incremental learning problem with new cat-

egories emerging daily. To maintain a sustainable environment, we need to

build a robust and adaptable system that can be continuously updated with

samples from new categories without suffering from catastrophic forgetting

[65]. The proposed approaches in our work assume all the samples from the

old categories are stored in memory and available for training with the new

categories. However, it is cost-inhibitive to store all the samples. One way

to handle this is to store only representative exemplars for rehearsal, such as

iCaRL [73] and AANets [63]. Another way is to prevent consolidated model

parameters from drifting via knowledge distillation, such as LwF [62] and

ResTune [64].

Moreover, in our novel category discovery approach presented in Chapter

7, we assume the number of novel categories is given. Based on that, we

use k-means to estimate the novel categories’ centroids. A more practical

approach is to estimate the number of novel categories in the unlabelled data

first. There are many approaches that can be explored. For example, GCD

[89] leverages the information of labeled samples to estimate the number

of total categories. They perform k-means on the entire dataset and select

the “k” that achieves the highest accuracy on labeled samples as the total
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number of categories.
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[21] Enrico Fini, Enver Sangineto, Stéphane Lathuilière, Zhun Zhong, Moin

Nabi, and Elisa Ricci. A unified objective for novel class discovery. In

2021 IEEE/CVF International Conference on Computer Vision, ICCV

2021, Montreal, QC, Canada, October 10-17, 2021, pages 9264–9272.

IEEE, 2021.

[22] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis,

Marc Proesmans, and Luc Van Gool. SCAN: learning to classify images

without labels. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and

Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th Eu-

ropean Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part

X, volume 12355 of Lecture Notes in Computer Science, pages 268–285.

Springer, 2020.

[23] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Struc-

tural detection of android malware using embedded call graphs. In

AISec’13, Proc. of the 2013 ACM Workshop on Artificial Intelligence

and Security, pages 45–54, 2013.

[24] Zongyuan Ge, Sergey Demyanov, and Rahil Garnavi. Generative open-

max for multi-class open set classification. In British Machine Vision

Conf., 2017.

[25] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Re-

cent advances in open set recognition: A survey. arXiv preprint

arXiv:1811.08581, 2018.

144



[26] Chuanxing Geng, Sheng-Jun Huang, and Songcan Chen. Recent ad-

vances in open set recognition: A survey. IEEE Trans. Pattern Anal.

Mach. Intell., 43(10):3614–3631, 2021.

[27] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised

representation learning by predicting image rotations. In 6th Intl. Conf.

on Learning Representations, ICLR 2018.

[28] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,

and George E. Dahl. Neural message passing for quantum chemistry. In

Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Inter-

national Conference on Machine Learning, ICML 2017, Sydney, NSW,

Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learn-

ing Research, pages 1263–1272. PMLR, 2017.

[29] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric

transformations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
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