
LARGE-SCALE NON-LINEAR REGRESSION WITHIN

THE MAPREDUCE FRAMEWORK

by

Ahmed Khademzadeh

A thesis submitted to the College of Engineering at

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Melbourne, Florida

July 2013

c© Copyright by Ahmed Khademzadeh 2013

All Rights Reserved

The author grants permission to make single copies

We the undersigned committee
hereby approve the attached thesis

LARGE-SCALE NON-LINEAR REGRESSION WITHIN
THE MAPREDUCE FRAMEWORK

by
Ahmed Khademzadeh

Philip Chan, Ph.D.
Associate Professor
Computer Sciences
Principal Adviser

Marius Silaghi, Ph.D.
Assistant Professor
Computer Sciences

Georgios C. Anagnostopoulos, Ph.D.
Associate Professor
Electrical & Computer Engineering

William D. Shoaff, Ph.D.
Associate Professor and Department Head
Computer Sciences

Abstract

Large-scale Non-linear Regression within the MapReduce Framework

By: Ahmed Khademzadeh

Thesis Advisor: Philip Chan, Ph.D.

Regression models have many applications in real world problems such as finance, epidemiol-

ogy, environmental science, etc.. Big datasets are everywhere these days, and bigger datasets

would help us to construct better models from the data. The issue with big datasets is that

they would need a long time to be processed or even to be read on a single machine. This

research employs MapReduce to model large-scale non-linear regression problems in a par-

allel fashion. MRRT (MapReduce Regression Tree) algorithm divides the feature space into

overlapping subspaces and then shuffles each of the subspace’s data items to a node in the

cluster. Each node in the cluster then constructs a regression tree for the subspace of the

data it has received. Different versions of algorithm (overlapping/non-overlapping subspaces

and weighted/unweighted prediction using neighboring models) are proposed and compared

with the regression tree (RT) algorithm implemented in Matlab libraries.

Experiments on synthetic and real datasets show that MRRT algorithm that is devised

to be fast and scalable for MapReduce framework not only has a close to linear speedup, and

close to optimum scalability, but also outperforms the RT algorithm in terms of accuracy

(in most cases) and improves the prediction time by more than 80%. Although MRRT is

designed for MapReduce framework, it could be used on a single machine, and in that case

it improves the learning time by 60% (in most cases) comparing to RT algorithm, and shows

to be of close to linear scalability (comparing to RT algorithm which is roughly of quadratic

scalability).

iii

Contents

Abstract iii

Preface xiii

Acknowledgments xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Overview of Approach . 3

1.4 Overview of Contributions . 4

1.5 Overview of Chapters . 5

2 Literature Review 6

2.1 Approximating Non-linear Regression Using Piecewise Regression 6

2.1.1 Linear Regression . 6

2.1.2 Non-linear Regression via Piecewise Linear Regression 7

2.1.3 Piecewise Regression with Regression Trees 8

2.1.4 Piecewise Linear Approximation of Time Series 10

2.1.5 Online Approximation of Non-linear Models 12

2.2 MapReduce . 13

2.2.1 Why <key, value> Pairs? . 14

2.2.2 Is That All MapReduce Does? . 14

2.2.3 MapReduce for Clustering . 16

2.2.4 MapReduce and Iterative Tasks . 19

2.2.5 Arguments about Using or not Using MapReduce 20

iv

3 Approach 22

3.1 MapReduce Regression Tree . 22

3.1.1 Map1: Finding the Min and Max of Dimension that Is Being Split . . . 25

3.1.2 Reduce1: Finding Split Points Along the Dimension that Is Being Split 26

3.1.3 Map2: Shuffling the Data Among Cluster Nodes 27

3.1.4 Reduce2: Constructing the Tree Regression Models for Each Subspace . 28

3.1.5 Using the MRRT Model to Predict . 28

3.2 Slope-changing Algorithm . 28

3.2.1 Choosing Good Split Points . 28

3.2.2 Overview of the Algorithm . 30

3.2.3 Map1: Finding Candidate Split Points 31

3.2.4 Reduce1 : Generating a Split Point Set from Candidate Set 35

3.2.5 Map2 : Shuffling the Data Points Based on Split Points 39

3.2.6 Reduce2 : Finding the Linear Model for Each Subspace 39

3.2.7 Using the Slope-changing Model to Predict 40

4 Empirical Evaluation 42

4.1 Evaluation Criteria . 42

4.1.1 Accuracy . 43

4.1.2 Speedup . 43

4.1.3 Scalability . 44

4.2 Overview of Datasets . 44

4.2.1 Real Datasets . 44

4.2.2 Synthetic Datasets . 45

4.3 Overview of Experiments . 45

4.4 MRRT Experiment Results . 47

4.4.1 Number of Dimensions to Split Along 47

4.4.2 Overlapping Subspaces and Neighbor-weighted Predictions 50

4.4.3 Comparing the Accuracy of MRRT and the Baseline Algorithm 54

4.4.4 Choosing the Dimension to Split Along 58

4.4.5 Prediction Time . 64

4.4.6 Speedup of MRRT Algorithm . 67

4.4.7 Scalability of MRRT Algorithm . 69

4.4.8 Could MRRT Be Used as a Sequential Algorithm? 72

4.5 Slope-changing Experiments Results . 77

4.5.1 Slope-changing Algorithm Limitation . 77

v

4.5.2 Comparing Accuracy of Slope-changing Algorithm to Baseline Algorithm 78

4.5.3 Comparing Runtime of Slope-changing Algorithm to Baseline Algorithm 79

5 Concluding Remarks 80

5.1 Summary of Findings . 80

5.2 Possible Improvements . 80

A Synthetic Datasets Details 83

Bibliography 88

vi

List of Tables

4.1 Summary of Real Datasets . 44

4.2 Summary of Synthetic Datasets . 45

4.3 Comparing accuracy and learning time of MRRT when dividing the feature

space along one dimension versus two dimensions on synthetic datasets. As it

can be seen, none of the methods for dividing the feature space is superceeding

the other one and there is no obvious reason to prefer one over the other one

based on this experiment. The learning time of algorithms in both methods is

also similar. 48

4.4 Comparing accuracy and learning time of MRRT when dividing the feature

space along one dimension versus two dimensions on real datasets. As it can

be seen, Two Dimensions split wins in accuracy and One Dimension split wins

in learing time. The accuracy difference is not a major difference, but the

learning time difference is significant. 48

4.5 Comparing accuracy of MRRT(W) and MRRT both with no overlap. As it can

be seen the MRRT(W) algorithms works bettern than MRRT on most datasets. 53

4.6 Comparing accuracy of Weighted Overlapping MapReduce Regression Tree and

baseline algorithm on 10-dimensional synthetic datasets. Numbers in the table

are RMSE values. MRRT(WO) algorithm always performs better than baseline

algorithm, when splitting the feature space is done along one dimension and if

the dimension to split is chosen properly. 55

4.7 Comparing accuracy of Weighted Overlapping MapReduce Regression Tree and

baseline algorithm on 20-dimensional synthetic datasets. Numbers in the table

are RMSE values. MRRT(WO) algorithm always performs better than baseline

algorithm, when splitting the feature space is done along one dimension and if

the dimension to split is chosen properly. 56

vii

4.8 Comparing accuracy of MRRT(WO) and baseline algorithm on real datasets.

Numbers in the table are RMSE values. MRRT(WO) algorithm always per-

forms better than baseline algorithm, when splitting the feature space is done

along one dimension and if the dimension to split is chosen properly. 57

4.9 Dimensions with lowest RMSE on synthetic datasets and rank of same dimen-

sion on samples using MRRT(O) and MRRT(WO) algorithms. 61

4.10 Dimensions with lowest RMSE on sample of synthetic datasets and RMSE of

dataset when divided along same dimension using MRRT(WO) algorithm. . . . 62

4.11 Dimensions with lowest RMSE on real datasets and rank of same dimension

on samples using MRRT(O) and MRRT(WO) algorithms. 63

4.12 Dimensions with lowest RMSE on sample of real datasets and RMSE of dataset

when divided along same dimension using MRRT(WO) algorithm. 64

4.13 Comparing prediction time of MRRT(O), MRRT(WO) and baseline algorithm

on 20-dimensional ttoy20d3 synthetic test set containing 1000 test items on

different size of clusters. MRRT(WO) and MRRT(O) algorithms reduce pre-

diction time by more than 80% comparing to baseline algorithm in all cases. . . 65

4.14 Comparing prediction time of MRRT(O), MRRT(WO) and baseline algorithm

on real datasets’ test sets containing 4111 test items on different size of clusters.

MRRT(WO) and MRRT(O) algorithms reduce prediction time by more than

80% comparing to baseline algorithm in all cases. 66

4.15 Comparing learning time of MRRT(WOS) and baseline algorithm on 20-dimensional

ttoy20d3 synthetic dataset on different number of subspaces. MRRT(WOS)

always perform better than baseline algorithm although it also has better ac-

curacy. 73

4.16 Comparing accuracy of MRRT(WOS) and baseline algorithm on 20-dimensional

ttoy20d3 synthetic datasets on different number of subspaces when dataset is

divided into supspaces along first dimension. MRRT(WOS) algorithm’s RMSE

is lower than baseline algorithm in all cases. 74

4.17 Comparing learning time of MRRT(WOS) and baseline algorithm on real datasets

on different number of subspaces. MRRT(WOS) algorithm’s learning time is

always less than baseline algorithm except in one case when number of sub-

spaces is 32. 75

viii

4.18 Comparing accuracy of MRRT(WOS) and baseline algorithm on three real

datasets on different number of subspaces when dataset is divided into supspaces

along first dimension. MRRT(WOS) algorithm’s RMSE is lower than baseline

algorithm in all cases, and it mostly decreases with increasing number of sub-

spaces. 76

4.19 Summary of synthetic datasets . 77

4.20 Comparing accuracy of slope-changing algorithm (PWC and FPS versions) and

baseline algorithm on four datasets. 78

4.21 Comparing learning time of slope-changing algorithm (PWC and FPS versions)

and baseline algorithm on four datasets. 79

ix

List of Figures

2.1 A regression tree (left), and the corresponding 2-dimensional feature space

(right). Each of tree nodes are corresponding to a subspace in feature space [19] 7

2.2 MapReduce Execution Overview [3]. 15

3.1 Dataset distribution among cluster nodes with overlap to decrease borderline

data points prediction error . 23

3.2 Different overlap factors of subspaces on cluster nodes 25

3.3 Bad split points causes bad piecewise linear models and higher prediction error 29

3.4 Good split points helps to have better piecewise linear models and lower pre-

diction error. 30

3.5 Finding the data points with maximum target value by gridifying data points

and using a initial random seed . 32

3.6 Using Parzen Window Classifier to find areas with many candidate split points [18] 36

4.1 Splitting the feature space to subspaces. 47

4.2 Summary of MRRT versions . 50

4.3 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 10-dimensional

datasets (gtoy10d1, gtoy10d2, ptoy10d1, ptoy10d2, ttoy10d1 and ttoy10d2)

datasets with different overlap values when dividing along first dimension. . . . 51

4.4 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 20-dimensional

datasets (ptoy20d1, ptoy20d2, ttoy20d1 and ttoy20d2) datasets with different

overlap values when dividing along first dimension. 53

4.5 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on IHEPC1

real dataset with different overlap values when dividing along first dimension. . 54

4.6 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 10 dimen-

sional datasets with overlap = 0.75, when splitting along differnt dimensions. . 59

x

4.7 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 20 dimen-

sional datasets with overlap = 0.75, when splitting along differnt dimensions. . 60

4.8 Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on IHEPC1

real datasets with overlap = 0.75, when splitting along differnt dimensions. . . 63

4.9 Speedup of MRRT(O) and MRRT(WO) algorithms in log scale and linear

scale on ttoy20d3 dataset with overlap = 0.75 when splitting along the first

dimensions. The runtime of same algorithms on a single machien is 2609.6

seconds. 67

4.10 Speedup of MRRT(O) and MRRT(WO) algorithms in log scale and linear

scale on all IHEPC1, IHEPC2, and IHEPC3 real datasets respectively with

overlap = 0.75 when splitting along the first dimensions. 68

4.11 Analyzing scalability of baseline, MRRT(WO) and MRRT(WOS) algorithms

on ttoy20d3 datasets with overlap = 0.75 when changing the dataset size from

50,000 items to 1,000,000 data itmes. 69

4.12 Analyzing scalability of baseline, MRRT(WO) and MRRT(WOS) algorithms

on IHEPC1, IHEPC2, and IHEPC3 real datasets with overlap = 0.75 when

changing the dataset size from 103,557 items to 2,071,148 data itmes. 71

4.13 Comparing runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on

ttoy20d3 dataset with overlap = 0.75 when splitting along first dimensions. . . 72

4.14 Comparing runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on

IHEPC1, IHEPC2, and IHEPC3 real datasets with overlap = 0.75 when

splitting along first dimensions. 74

xi

List of Algorithms

1 Basic Regression Tree Construction Algorithm 9

2 MapReduce Regression Tree Algorithm - Main Method 23

3 MapReduce Regression Tree Algorithm - Map Phase of First MapReduce Round 24

4 MapReduce Regression Tree Algorithm - Reduce Phase of First MapReduce

Round . 26

5 MapReduce Regression Tree Algorithm - Map Phase of Second MapReduce

Round . 26

6 MapReduce Regression Tree Algorithm - Reduce Phase of Second MapReduce

Round . 27

7 MapReduce Regression Tree Algorithm - Prediction 27

8 Slope-changing Algorithm - Main Method . 30

9 Slope-changing Algorithm - Initialization . 31

10 Slope-changing Algorithm - Map Phase of First MapReduce Round 31

11 Slope-changing Algorithm - Reduce Phase of First MapReduce Round (Parzen

Window Classifier Version) . 37

12 Slope-changing Algorithm - Reduce Phase of First MapReduce Round (Fitness

Proportional Selection Version) . 38

13 Slope-changing Algorithm - Map Phase of Second MapReduce Round 38

14 Slope-changing Algorithm - Reduce Phase of Second MapReduce Round 39

15 Slope-changing Algorithm - Prediction . 40

xii

Preface

xiii

Acknowledgments

xiv

Chapter 1

Introduction

1.1 Motivation

The goal is approximating a non-linear regression model using piecewise linear models for

large-scale datasets. Regression models have many applications in real world among which

we can name trend line, finance, epidemiology, environmental science, etc. Big datasets are

everywhere these days, and bigger datasets would help us to find better models from the data.

The issue with big datasets is that they also would need a long time to be processed on a

single machine. When the dataset is very large (terabyte scale) even reading the content of

the dataset would take a very long time (a high-end machine with four I/O channels each

having a throughput of 100 MB/sec will require three hours to read a 4 TB data set! [12]).

For this reason we need to use parallel and distributed methods to process big datasets.

There are many options for parallel data processing. We have decided to use MapReduce

programming model as the distributed data processing framework. MapReduce is a program-

ming model introduced by Google in 2004, for processing large datasets [3]. We have chosen

MapReduce as the distributed data processing framework to use for the following reasons:

• MapReduce handles many of the issues with large-scale distributed data processing such

as distributed file system. Google File System (GFS) is the original file system it uses.

GFS makes all the data transfer and distribution on different cluster nodes transparent

to the programmer. The user simply copies a file on the cluster, and GFS decides how

the file to be distributed among cluster nodes, keeps track of the chunks of the file, and

also manages replication of chunks of file on different nodes for fault tolerance purpose.

• Fault tolerance is another thing that MapReduce takes care of. The programmer does

1

CHAPTER 1. INTRODUCTION 2

not need to be worried about resolving the problem of nodes’ failure. If a node fails,

MapReduce itself manages the problem and assigns its tasks to other cluster nodes.

• Code and data migration is also managed by MapReduce. All the mapper nodes in

the cluster run same map code on data. MapReduce takes care of delivering the code

to all mappers and running the code on nodes. The result of map round needs to be

shuffled among cluster nodes (delivered to reducers), and MapReduce takes care of this

data shuffling too. Reduce phase and code migration in this phase is also managed by

MapReduce framework.

• MapReduce simplifies solving a distributed data processing problem by introducing a

high level programming model for distributed data processing. It helps programmers

to concentrate on program logic and all the details and issues related to distributed

nature of the solution is managed by MapReduce. Although MapReduce restricts us

and reduces the flexibility in some ways, but it helps us to have a standard way of

describing distributed data processing algorithms.

• MapReduce is one of the common ways of solving distributed data processing problems

in industry these days.

Details about how MapReduce works is explained in section 2.2.

1.2 Problem Statement

We are handling a large-scale non-linear regression problem. Regression is a supervised learn-

ing technique in which the algorithm tries to find a model from a dataset to generate a

numerical prediction for future data items. We will call the numerical dependent variable

(target variable) y, and try to approximate its value as a function of other numerical values

x. Here x is a vector consisting of n numerical values x1, x2, . . . , xn, where n is number of

features (attributes) of each data item of the dataset.

y = f(x) + ε (1.1)

In above equation ε is the difference between actual and predicted value of target value. The

predicted value for y is f(x) and is indicated by ŷ symbol. There are different ways to handle

non-linear regression problem.

We intend to find a solution for large-scale datasets. Handling large-scale datasets could

be very slow if parallel and distributed data processing techniques and frameworks are not

CHAPTER 1. INTRODUCTION 3

used. Because of the reason mentioned in section 1.1 the programming model we have em-

ployed to handle large-scale datasets is MapReduce. When using MapReduce, the method

that is employed to solve the problem sequentially needs to be coupled and translated into

MapReduce programming model. Some details about how MapReduce works is explained in

section 2.2.

Designing an algorithm for MapReduce framework (map and reduce phases) entails issues

such as deciding about what process needs to be done by cluster nodes on their local piece

of data and what information they need to extract in order to cover the issue of not having

a global view of the data on each node of the cluster. The other challenge when designing

a MapReduce based algorithm is how the final result is aggregated. Generally one problem

could be handled by MapReduce in several different ways and choosing the best way to make

use of MapReduce capabilities is the main challenge. Since there is no communication between

different nodes during Map and Reduce phases, and the results only could be communicated

when the Map phase is done, choosing an effective strategy on extracting useful information

from partial views of different mappers from the partial data they have in hand, and making

use of this data in Reduce phase (or next MapReduce rounds) is a problem that needs to be

addressed.

1.3 Overview of Approach

In this work two different distributed algorithms for approximating non-linear regression

model of a dataset using piecewise regression is suggested. Both algorithms are suggested

for MapReduce framework.

The first algorithm is called MapReduce Regression Tree (MRRT) algorithm. This algo-

rithm is dividing the feature space into equal-size partitions (equal-size in terms of volume

and not number of data points in the partition). To form the partitions, the feature space is

divided into partitions along one dimension of the feature space. This dimension is selected

randomly or using a pre-processing method that is working on a sample of dataset. Data

items belonging to different subspaces are then sent to different reducers, and all reducers

construct regression tree models (in parallel) for the partition they have received. Although

a reducer technically needs only one partition of the feature space to generate the model, we

send left and right partitions of each partition to the reducer too (overlapping subspaces).

This way each reducer would receive three partitions instead of one partition (leftmost and

rightmost partitions of the dataset have only one neighbor and the corresponding reducer

would receive two partitions instead of three). Since we are sending extra information to each

CHAPTER 1. INTRODUCTION 4

reducer, the data that needs to be transferred in the network and processed in each machine

would increase. This redundancy has a good side-effect which is increase in accuracy of the

final model by decreasing prediction error of the data items that are located near the bor-

derlines. This algorithm uses a weighted prediction mechanism in order to increase accuracy.

Details of this algorithm is explained in section 3.1.

Second algorithm is called Slope-changing algorithm. In this algorithm dataset is dis-

tributed among cluster nodes in a random fashion. Every mapper has part of the dataset

at hand and finds a set of candidate split points in that part of dataset. Split points are

points that will be used to split the feature space into smaller subspaces. These candidate

split points include points with local maximum and minimum target value. Points that the

model’s slope changes sharply in those points are also selected by mappers as candidate split

points. All the candidate split points found by mappers are sent to a single reducer in order

to select the split point set from this set of candidate points. Two different methods are

suggested to make the selection of final split points from candidate split points. One method

is using Parzen Window Classifier, and the other method is fitness proportional selection.

After selecting the split point set, this set is sent to all mappers in the cluster. All mappers

use these split points to partition the data based on the subspaces formed by these split

points. All mappers then send the data points pertaining to a certain subspace to a certain

reducer. This way each reducer would receive all the data points of a certain subspace from

all mappers, and can construct a linear model for that subspace. This way a piecewise linear

model for all subspaces of the feature space is constructed. This piecewise linear model will

be used to predict the target value for future test items based on the subspace in which the

test item is located. Details of this algorithm is explained in section 3.2.

Both MRRT and Slope-changing algorithms divide the feature space into subspaces and

find models for each subspace, but they are dividing the feature spaces differently. MRRT

divides the space in equal-size subspaces, but size and number of subspaces in Slope-changing

algorithm might be different and is determined by split points chosen by the algorithm.

Another difference is that MRRT constructs regression tree models for subspaces, but Slope-

changing algorithm constructs linear models for subspaces. MRRT also uses overlapping

subspaces, but Slope-changing algorithm does not use overlapping subspaces.

1.4 Overview of Contributions

Because of the limitation of Slope-changing algorithm (that is discussed in section 4.5.1), it

is not applicable to high-dimensional datasets. For this reason we only list contributions of

CHAPTER 1. INTRODUCTION 5

MRRT algorithm:

• Overlapping subspaces (coupled with weighted prediction) not only solves the data

distributed-ness problem, but also helps to improve accuracy over the baseline (regres-

sion tree) algorithm. If the preProcess method is employed to choose the dimension

to split, MRRT improves the accuracy for 8 out of 10 synthetic datasets from 1.1% to

32.86% and for all three real datasets for 4.66%, 13.24%, and 22.73% respectively.

• MRRT algorithm shows to have close to linear speedup (for two out of four datasets

experimented) and near to optimum scalability for all datasets.

• Although MRRT’s prediction is done sequentially and not on a MapReduce framework,

it improves the prediction time by more than 80% comparing to regression tree algo-

rithm.

• MRRT could be used on a single machine, and in that case it improves the learning

time by 60% (in most cases) comparing to regression tree algorithm.

• MRRT needs to choose a dimension to split along. preProcessmethod we have proposed

for MRRT (to choose the dimension to splitp) increases accuracy of model for 11 out of

13 datasets comparing to model constructed by regression tree algorithm.

1.5 Overview of Chapters

In chapter 2 we will review the literature related to regression, piecewise regression and tree

regression. We also talk about MapReduce and also some large-scale problem that is solved

using MapReduce. Limitations of MapReduce and arguments about this limitations are also

discussed in this chapter. Chapter 3 presents details of algorithms we proposed for solving

the piecewise approximation of non-linear model within MapReduce. Next chapter presents

the empirical evaluation of the algorithms and compares them with the baseline (regression

tree) algorithm. Chapter 5 summarizes findings and presents the concluding remarks.

Chapter 2

Literature Review

In this thesis two distributed MapReduce-based algorithms for approximating large-scale non-

linear regression using piecewise regression are proposed. Two major parts of the problem are

approximating non-linear regression using piecewise regression, and MapReduce framework.

We will review the literature related to these two major subproblems in following sections.

2.1 Approximating Non-linear Regression Using Piece-

wise Regression

2.1.1 Linear Regression

Linear regression could be used when there is a linear (or roughly linear) dependency between

x and y (x and y are introduced in section 1.2). In this case the learning algorithm tries to

model y as a linear function of x:

y = β0 + β1x+ ε (2.1)

In above equation size of x and β1 vectors are equal to number of dimensions in the feature

space, and ε is the difference between actual and predicted value of target variable (error

term).We use ŷ symbol to indicate the predicted value of target variable by the model and we

have ŷ = β0 + β1x. The learning algorithms tries to learn β0 and β1 values (called weights)

from the training items in the dataset. When learning weights, the objective is to minimize

difference of actual and predicted values for all data items (as an example this difference could

be measured by minimizing sum of square of difference between actual and predicted target

6

CHAPTER 2. LITERATURE REVIEW 7

values):
n∑

i=1

(y(i) − ŷ(i))2 =

n∑
i=1

(y(i) − (β0 + β1.x
(i)))2 (2.2)

We use < x(k), y(k) > to indicate kth data item in the dataset.

2.1.2 Non-linear Regression via Piecewise Linear Regression

One of the advantages of linear regression is its simplicity, and one of its disadvantages is its

globality. When the relation between x and y is complex and non-linear, even the best possible

linear model would have a high average prediction error value. Partitioning the feature space

into smaller subspaces and constructing a model for each subspace of the feature space might

be helpful in finding a better model and reducing the error. Piecewise methods are using this

idea and find constant or linear models for each subspace of the feature space instead of one

global linear model.

A constant model for a subspace containing a set of data items like s1 = {< x(1), y(1) >

,< x(2), y(2) >, . . . , < x(n), y(n) >} would be calculated as following:

ŷ(s1) =
1

size(s1)

∑
k∈s1

y(k) (2.3)

and the prediction for any new data item that lies in this subspace would be ŷ(s1).

In most cases it is better to find a linear model for each subspace of the feature space. In

this case, equation 2.2 that is given in previous section is used by linear regression learning

algorithm to find a linear model for each subspace.

%
%

%

✏� �� ✏� ��
✏� ��

.

%
%

%

S
SS

�
�

�

T
TT




e
e
e

✏� ��

S
SS

x1  c1

x2  c2 x1  c3

x2  c4ŷ1 ŷ2 ŷ3

ŷ4 ŷ5

R3

-

6

R2

R1

R4

R5

c4

c2

x1

c1 c3

x2

Figure 5: A decision tree for a dataset with two explanatory variables(left),
and the corresponding partitioning of the feature space (right). For each
leaf ` and each corresponding region R` the estimate of the target value is
the average ŷ` of the observed y values within that region.

30

Figure 2.1: A regression tree (left), and the corresponding 2-dimensional feature space (right).
Each of tree nodes are corresponding to a subspace in feature space [19]

CHAPTER 2. LITERATURE REVIEW 8

Dividing the feature space into subspaces can be done in different ways. A simple way

of dividing the feature space into smaller subspaces is using equal-size subspaces. It also is

possible to let the algorithm decide on borderline of the subspaces. Regression tree that is

presented in next section, uses a recursive method to divide the feature space into subspaces.

Figure 2.1 depicts a regression tree and also shows how the feature space is divided into

smaller subspaces based on this regression tree. Leaves of the regression tree are models for

each subspace of the feature space (ŷi is a model for Ri).

2.1.3 Piecewise Regression with Regression Trees

Regression tree is a piecewise method that recursively partitions the feature space into smaller

subspaces. The tree itself consists of nodes and edges. Every node contains a simple condition,

e.g. if xi < 10 (i.e. if its ith feature’s value is smaller or bigger than 10), and one of the

branches is chosen based on the answer of current data item to this question. To find the

prediction for a new data item, tree is traversed starting from the root until we reach a leaf.

Leaves of regression tree contain a model like linear model or constant model.

Constructing regression tree is an iterative task. In each iteration a feature and a cor-

responding threshold value needs to be chosen by the algorithm. We call a pair of <

Feature, V alue > as a split point. Selecting split points could be a critical task when con-

structing piecewise models. When selecting a split point pair among different candidate split

point pairs, a metric is used to evaluate different trees corresponding to different split point

pairs. The tree and corresponding split point that performs better based on the metric is

chosen to be used in next iteration. Basic regression tree algorithm can use Sum of Squared

Errors (SSE) to evaluate a tree T [8]:

S =
∑

c∈leaves(T)

∑
i∈c

(y(i) − ŷ(c))2 (2.4)

where

ŷ(c) =
1

size(c)

∑
i∈c

y(i) (2.5)

is the predicted value for all data items landing in that leaf.

Algorithm 1 lists the basic algorithm for constructing regression tree. In this algorithm,

first all the data items of dataset are assigned to the root node (line 2). The ŷ(c) and SSE

values are then calculated for root node (lines 3-4). Afterward a repetitive task (lines 6-

32) is applied on each leaf of the tree and each leaf is populated with two children until

a certain condition is hold (lines 26-30). For each leaf of the tree all possible split pairs

CHAPTER 2. LITERATURE REVIEW 9

< Feature, V alue > are examined and the pair that reduces SSE of the leaf most is chosen

(lines 12-25). If the chosen pair reduces the SSE more than a threshold δ, then the node

is populated with two children, otherwise that leaf will be kept untouched (lines 26-31). If

number of data items of a node is less than a threshold q, that node also will be kept untouched

(lines 8-10).

Algorithm 1 Basic Regression Tree Construction Algorithm

1: procedure ConstructRegTree(dataset)
2: root.dataItems = dataset
3: root.ŷ(c) = 1

size(dataset)

∑
i∈dataset y

(i)

4: root.sse =
∑

i∈dataset(y
(i) − root.ŷ(c))2

5: queue.add(root)
6: while !queue.isEmpty do
7: node = queue.remove
8: if size(node.dataItems) < q then
9: continue

10: end if
11: bestSplitPair.sse =∞
12: for splitPair ∈ allSplitPairs do
13: left.dataItems = splitDataItems(node.dataItems, splitPair, left)
14: right.dataItems = splitDataItems(node.dataItems, splitPair, right)
15: left.ŷ(c) = 1

size(left.dataItems)

∑
i∈left.dataItems y

(i)

16: left.sse =
∑

i∈left.dataItems(y
(i) − left.ŷ(c))2

17: right.ŷ(c) = 1
size(right.dataItems)

∑
i∈right.dataItems y

(i)

18: right.sse =
∑

i∈right.dataItems(y
(i) − right.ŷ(c))2

19: if bestSplitPair.sse > left.sse+ right.sse then
20: bestSplitPair.splitPair = splitPair
21: bestSplitPair.sse = left.sse+ right.sse
22: bestSplitPair.left = left
23: bestSplitPair.right = right
24: end if
25: end for
26: if node.sse− bestSplitPair.sse > δ then
27: node.left = left
28: node.right = right
29: queue.add(left)
30: queue.add(right)
31: end if
32: end while
33: end procedure

One of the issues with basic algorithm for regression tree is using a greedy method to

select the feature and value to split. There are two problems with a greedy method to select

CHAPTER 2. LITERATURE REVIEW 10

the split points. First, since greedy methods make their decision based on a locally optimal

choice, their final model might be a suboptimal model in terms of accuracy. Second, when

number of dimensions and size of dataset is large, finding these split points (even greedily)

would have a very high runtime. We need to find methods to increase accuracy and decrease

the runtime.

Regression tree and piecewise linear regression are proposed when the dataset is not dis-

tributed. In the case when dataset is large, algorithms to generate regression model could be

very slow (splitting all data items of all leaf nodes into two subsets for all different pairs of

< Feature, V alue > is an expensive task for a high-volume high-dimensional dataset). Thus

for large-scale datasets, new technologies, techniques and algorithms needs to be used to per-

form the task more efficiently. Section 2.2 discusses about MapReduce that is the framework

we have used for distributed data processing.

2.1.4 Piecewise Linear Approximation of Time Series

Piecewise linear representation (PLR) is generally used to approximate time series with

straight lines (hyper planes). Piecewise linear representation is more efficient than other

modeling techniques in terms of storage, transmission and computation and has several ap-

plications in clustering, classification, similarity search, etc. [10].

Piecewise linear representation are also called Segmentation Algorithms (SA). Three dif-

ferent specification has been defined for SAs. For a time series T, find the best representation

that

• Includes only K segments,

• The error for each segment does not exceed a threshold, and

• The total error does not exceed a threshold.

A PLR can be either online or batch [10].

PLR algorithms can be divided to 3 different categories: bottom-up, top-down, and sliding-

windows. Bottom-up approach finds the approximation of small pieces of time series and find

the final solution by merging them. Top-down approach recursively divides the time series

until satisfaction of a stopping criterion [10, 13]. Sliding-windows grows a segment until the

error exceeds a threshold. Sliding windows starts from the first point of T and adds points

to it while sum of error is less than a threshold. At that point a segment is generated and

process continues to generate a new segment form the next point. Several optimization are

proposed for this algorithm: 1) adding a bigger value than 1 in each iteration of the process

CHAPTER 2. LITERATURE REVIEW 11

of finding one segment, 2) since the error is monotonically non-decreasing, methods such as

binary search can be used [10].

Top-down methods find good split points and split T into two segments. An approximate

linear model for each part is calculated and the error is calculated for each part. If error

is less than a threshold, model for that part is finalized, otherwise the algorithm recursively

repeats the process. Bottom-up methods start from smallest possible segments (totally n/2

segments). They find the cost of merging each pair of adjacent segments and merge the

adjacent pair that has the lowest cost. This process is repeated until the minimum cost of

merging is smaller than a threshold [10, 13].

Keogh et al. propose a new online algorithm called SWAB (Sliding-Window And Bottom-

up). SWAB uses a sliding buffer of size close to 6 segments and uses bottom-up on that frame.

After segmentation the leftmost segment is reported and the corresponding data is removed

from the frame and more data are read into the frame [10].

D. Lemire suggests that instead of having linear models for each interval of a time series,

we could have models of different degrees for different intervals [13]. Some intervals may

have constant models, some linear, etc.. The method is called adaptive because degree of

model in an interval is decided adaptively. The reason why adaptive method is suggested is

that piecewise linear models might locally over-fit the data by trying to find a linear model

for the data, while a constant model would fit the data better. Since time series datasets

could be very large, efficiency of algorithm is very important. The adaptive method proposed

in this paper tries to improve the quality of the model while keeping the cost of the model

construction same as top-down[11] method.

Different algorithms with different advantages and dis-advantages could be used for ap-

proximating time series [13]. Optimal adaptive segmentation uses dynamic programming to

find the best segmentation and thus is of high complexity (Ω(n2)). Top-down method on

the other hand selects the worst segment and divides it to two smaller segments iteratively

until the complexity of model reaches the maximum allowed complexity. Adaptive top-down

algorithm first applies top-down algorithm on time series, and then replace linear model seg-

ments with two constant model segments if the error can be reduced with this replacement.

Another version of adaptive top-down first constructs a top-down constant model and then

merges constant models in order to have linear models. The optimal algorithm is not prac-

tical because it takes a very long time (weeks) to generate results for a time series with one

million data points. The adaptive top-down is slightly slower than top-down algorithm, but

generating results of higher quality.

CHAPTER 2. LITERATURE REVIEW 12

2.1.5 Online Approximation of Non-linear Models

XCSF and LWPR are the two algorithms for online linear approximation of an unknown

function. These methods cluster the input space into small subspaces and find a linear model

for each subspace and use a weighted sum to find the final model. For this we need to

first structure the feature space into small subspaces in order to exploit the linearity of the

target function in each subspace, and then we need to find the linear models in each patch.

There are several solutions for the second step, but the first step is not straightforward.

XCSF is an evolutionary-based algorithm that uses GA[22], and LWPR (Locally Weighted

Projection Regression) is a statistics-based algorithm for function approximation for online

approximation of non-linear multi-dimensional functions incrementally [20].

Receptive Fields (RFs) is the notion used by LWPR for the ellipsoidal subspaces. XCSF

refers to subspaces as classifiers (another term for RF) [17] . Both algorithms has an empty

population of RFs at the beginning, and add new members to this population when a new

uncovered data item is received. An n-Dimensional ellipsoid that is not necessarily axes-

aligned can be represented by a positive semi-definite and symmetric matrix (D). Then the

squared distance of a data item (x) from the center (c) of this space can be defined as:

d2 = (x− c)T .D.(x− c) (2.6)

If this distance is zero, then the data item is placed on the surface of the RF. This way the

subspaces are found in both methods. A linear model for each subspace can be expressed as:

p(x) =
∑
k=1

nbk.xk + b0 (2.7)

One data item can be covered by several subspaces and in that case a weight combination of

linear models of those subspaces is considered and the model prediction for the input data

item [17, 22, 20].

LWPR assigns a gaussian activity weight to each subspace based on its distance to the data

item, and ignores those weights that are smaller than a threshold for the sake of performance.

This way closer subspace has more significant effect on final prediction comparing to farther

subspaces. XCSF, on the other hand, only assigns weight to subspaces with‘istance of less

than 1. Weights are proportional to inverse value of prediction error in XCSF [17, 22, 20].

Finding a linear model for each subspace is straightforward and can be done using least

squares methods. XCSF uses RLS (Recursive Least Squares), and LWPR uses incremental

partial least squares (incremental version of PLS) to find the linear model in a subspace [17,

CHAPTER 2. LITERATURE REVIEW 13

22, 20].

Learning the locality (which is the shape and location of receptive fields) is done by a steady

state genetic algorithm in XCSF, and by a stochastic gradient descent in LWPR [17, 22, 20].

In XCSF, each RF has an approximate value for its current prediction error which is used

to calculate its fitness for the GA. Fitness is shared among the RFs that cover same inputs.

Tournament selection is used for selection task of GA, and crossover, and mutation operators

are applied on the location of center, stretch and rotation which is defined by a matrix (D).

When the population reaches a maximum value, some RFs are deleted from crowded regions

of input space using a proportionate selection probability. During this process, RFs are tried

to be generalized by making their coverage area larger while keeping their accuracy sufficiently

large [17, 22, 20].

Center of subspaces are not changed in LWPR and the D matrix is changed (the size and

direction of the ellipsoids). This optimization is done by an incremental gradient descent

based on stochastic leave-one-out cross-validation. For this purpose first D is decomposed to

a triangular matrix and then is updated. The cost function is activity weighted error plus a

penalty term that is preventing the subspaces to shrink over iterations [17, 22, 20].

XCSF and LWPR are compared in [17], and for comparison purpose LWPR is tuned to hit

a low target error (by decreasing size of RFs, changing learning rate, and penalty value) that

is the target error hit by XCSF. Then XCSF’s max population size is changed to be roughly

equal to LWPR’s number of RFs [17, 22, 20].

2.2 MapReduce

MapReduce is a programming model for processing large datasets. Programs written based

on this programming model run on a cluster of nodes called MapReduce cluster. There are

two kind of nodes in such a cluster: mappers and reducers. Mappers run part of the program

called map procedure, and reducers run another part of the code called reduce procedure. All

mappers and reducers run same code on different data. Mappers (map procedure) read the

input data from hard disk of machine they are running on, and process the data to generate

intermediate result. The data that is received by mapper is assumed to be as pairs of <key,

value> (for example <filename, file content>, or <line number, content of the line>). Each

mapper processes its part of data and generates the result as pair of <key, value>. The input

<key, value> pair and output <key, value> pair might not have anything to do with each

other. For example when input <key, value> is <filename, file content> the output <key,

value> pair could be <word occurred most in the file, number of times the word occurred>.

CHAPTER 2. LITERATURE REVIEW 14

One mapper might generate many pairs of <key, value> with different keys and values.

Paris of <key, value> generated by mappers then are sent to reducers for the next phase

of process. <key, value> pairs are not sent randomly to reducers, and instead they are

partitioned among reducers based on the key value of the pairs. For example from all <key,

value> pairs that are generated by all mappers, those with key equal to key1 is sent to a

certain reducer.

Each reducer receives a group of <key, value> pairs generated by mappers and process

them in order to generate the final result. Since map and reduce phases are run in parallel

by all mappers, a large dataset that is distributed among cluster nodes is processed by the

MapReduce framework much faster than it is possible to process it on a single machine.

2.2.1 Why <key, value> Pairs?

When data is processed by mappers, we need a way to aggregate result generated by different

mappers. For example if the ultimate task is counting number of words starting with a, b, c,

and d in a huge set of text files, each mapper could generate the result for the part of data

it has locally, and we need a way to aggregate the result from all mappers. Having <key,

value> pairs helps us to request all mappers to send count of all words starting with a certain

character to a certain reducer in order to enable that reducer to have all partial results and

calculate the final result. For this purpose all mappers would generate a result like <a, count

of words starting with a in the text files a certain mapper has processed >, and all the results

having a as their key would be sent to a certain reducer [3].

The key concept is that the programmer is aware of the way mappers need to generate

result (pairs of <key, value>), and also aware of the way data is shuffled from mappers to

reducers, and he needs to decide how to use this programming model to solve the problem he

has at hand.

2.2.2 Is That All MapReduce Does?

So far we have talked about how MapReduce programming model helps us to solve data

processing problem in a parallel fashion. But it is not all a MapReduce implementation

offers us (Different MapReduce implementations are available among which we can named

Hadoop [12] which is an open source implementation). When you write a MapReduce code

you are done, and Hadoop (or any other MapReduce implementation) takes care of the rest of

problems. The framework sends the mapper procedure to all mappers, and reducer procedure

to all reducers. Then it asks the mappers to run the code on their local data and generate the

result based on what is specified in the code. After result generation, the framework takes

CHAPTER 2. LITERATURE REVIEW 15

care of the shuffling the data among reducers. After reducers receive the data, it asks them

to run the reducer procedure on the received <key, value> pairs.

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Figure 2.2: MapReduce Execution Overview [3].

A question here is how a programmer decides and copy the file on cluster nodes in order

to be processed by MapReduce framework? Programmer does not need to do such a task.

MapReduce framework has a distributed file system (Google File System or GFS and Hadoop

Distribute File System or HDFS in Hadoop implementation of MapReduce) that facilitates

this task. All you need is running the distributed file system and issuing a command like:

copy bigFile.txt on the cluster. Rest of the work is done by the framework. Another question

here is what if certain mapper fails in the middle of running? The answer is that MapReduce

framework takes care of the issue. When distributed file system copies the data on the

cluster, it replicates different chunks of data on different mappers (based on replication factor

indicated in configuration file by user) and when a certain mapper fails, its task would be

assigned to other mappers. MapReduce framework also takes care of other lower level tasks

CHAPTER 2. LITERATURE REVIEW 16

such as network communication. There are nodes in a MapReduce framework that their task

is bookkeeping. They keep track of cluster nodes, mappers, reducers, data replication, etc.

Figure 2.2 illustrates execution of a MapReduce task on a MapReduce cluster. User

program is distributed by master among worker nodes. Some of the worker nodes would work

as mappers and some as reducers. Data is read by mappers and then they run the mapper

procedure on the data. Intermediate data is generated, and then they are sent to reducer

nodes. Reducer nodes process the <key, value> pairs they have received and generate the

final result [3].

2.2.3 MapReduce for Clustering

One of the large-scale data processing that is data clustering. Several algorithms has presented

recently for different clustering algorithms on MapReduce framework. In this section we

review three clustering algorithm to see how they are using MapReduce power in order to

cluster data.

Zhao et al. are arguing that all previous researches on parallel k-means so far are suffering

from two problems [24]. First, they assume that all the data are in main memory, and second,

they are using a restricted programming model. For these two reasons, those works are not

applicable on peta-scale datasets. Since distance calculation (calculated n*k times in each

iteration where n is number of data points and k is number of clusters) is the most expensive

step of the algorithm, they try to exploit the parallelization of MapReduce to decrease this

cost. Map function assigns each data point to its closest center, and Reduce function updates

the centroids. There is one more function called Combine that aggregates the intermediate

results of Map functions. A global variable called centers includes list of all centers and is used

by all map tasks. Map tasks generate pairs of <ID of closest center, Data point>. Combine

method, aggregates the results of the same map task. It calculates the partial sum of the

data points assigned the same cluster. Output of this method is pairs of <Cluster index, Sum

of the data points in the cluster and their count>. The Reduce function aggregates sum of

all partial sums for each cluster, and calculates the new centroids. The output of Reduce

is pair of <Cluster ID, Vector containing coordinates of centroid>. The speedup they have

achieved for 4 machines is around 3 for the biggest dataset (8GB) which is a good speedup.

The speedup for bigger datasets is bigger too which is a good indication. The authors are not

talking about iterative nature of the algorithm and about how this issue is handled. They

also do not talk about accuracy of the method and only talk about speed-up, scale-up, and

size-up [24].

Ferreira Cordeiro et al. present an algorithm for very large multi-dimensional dataset

CHAPTER 2. LITERATURE REVIEW 17

clustering with MapReduce [7]. Since such a dataset doesn’t fit in one or several disks,

parallel processing is the only solution. In that case I/O and network cost are the two things

that needs to be balanced. Best of both World (BoW) is the solutions that the authors are

suggesting in this paper. They have worked on the largest real dataset ever in the database

subspace clustering (Twitter crawl > 12TB, and Yahoo! Operational data: 5 Petabytes - only

reading 1TB from a modern 1TB disk takes around 3h). The contribution of the paper is

combining sequential clustering algorithm with a parallelization method in an efficient way.

Sequential subspace clustering algorithms can be plugged to this solution and the system

would balance the I/O and network cost. The sequential algorithm that is plugged into the

parallel algorithm finds the beta-clusters in a hyper-rectangle shape in the multi-dimensional

space. Sequential subspace algorithm can be density-based or k-means-based [7].

I/O optimal version of the algorithm (ParC) reads the dataset one time and reduces the

I/O. Another algorithm SnI (sample and ignore) improves the network cost but reads the data

two times. Depending on number of reducers each of the two can be the winner. The BoW

is a combined algorithm that decides to use which of those algorithm based on number of

reducers, and keeps the cost as min(ParC, SnI) for any number of reducers. ParC partitions

(using one of these methods: random, address space, or arrival order) the dataset across

the cluster (mappers), finds beta-clusters in each partition (reducers), and finally merges the

clusters (a single machine). SnI, on the other hand, first samples the dataset (exploits the

skewed distribution of the data), and then clusters the sample using ParC ignoring the un-

sampled data items. This way SnI avoids processing of many of the data items that belong to

big clusters that are already sampled. SnI reads the data two times. In first read it samples

the data, and in second read it only maps the sampled data items and avoids other points.

The network cost will be reduced in a great amount by this technique. In sample step of the

algorithm mappers map each point by probability of Sr to a single reducer. That reducer then

clusters the data using the plugin clustering algorithm and passes the clusters description to

next phase. In ignore phase each mapper reads its partition again and ignores the data points

that fit into the clustering found in sample phase and send other data items to r reducers.

Those reducers cluster the data points using the plugin clustering algorithm and pass the

clustering description to one machine. That machine merges all the clusterings found in 2nd

phase to the clustering found in phase 1 [7].

Both ParC and SnI have their own benefits. ParC optimizes I/O by reading the data file

once, and SnI optimizes the network cost by reducing number of data points that needs to be

transferred over the network in cost of reading the data file two times. To take advantage of

the benefits of both of these methods we need a combined method that selects one of these

based on the cost. A cost-based optimization method is used to select the better algorithm

CHAPTER 2. LITERATURE REVIEW 18

adaptively. The cost formula uses file size, network speed, disk speed, startup cost, and

plugin cost to calculate the total cost for each algorithm. BoW algorithm first calculates

both costParC and costSnI and select the better one based on the parameters and calls it.

Experiments has been done to check the accuracy, scalability and performance of the cost-

based method. The authors have shown that the quality of the clustering matches the quality

of sequential clustering while its speed-up is close to linear. The cost-based method also has

been shown to be the best of both world in all cases [7].

Ene A. et al. have designed the first approximate version of metric k-center and k-median

algorithms for MapReduce [6]. They assumes that a set V of n data points and their cor-

responding distance is given and try to cluster the similar points into same clusters. The

output of the algorithm is k data points that is considered to be the center points of the k

clusters.The algorithms first sample the data (in a way that the sample represents all the

data well) in order to decrease the dataset size. The sampling method incrementally add new

points to the final sample set only if they are not already represented well by the final set.

Sampling is different for k-median and k-center due to their different nature. Sampling for

k-median needs more effort because it needs to consider each points distance from its cluster

center. A version of algorithm is presented in the paper that can be run on MapReduce [6].

The MapReduce version of sampling is an iterative algorithm in each iteration of which we

have three MapReduce operations. The first MapReduce operation partitions data arbitrarily

among machines (mappers), and then each reducer construct two sets (S:final set, and H from

which a pivot is selected). In next MapReduce step all the mappers pass the H and S sets to

a single reducer and that reducer finds the pivot point. In the last MapReduce step mappers

send pivot, S, one partition of R (remained data items that are not sampled yet), and the

distance matrix to the reducers and reducers get rid of the well represented points. This steps

are iterated until number of remaining points in the R falls under a certain threshold. K-center

tries to minimize the maximum distance of the cluster center and the points in that cluster,

while k-median tries to minimize sum of the distance of all the points in a cluster from the

cluster center (both problems are know to be NP-hard). K-center uses the sampling produced

by the sampling algorithm and mappers map all the points in the sampling along with their

pairwise distance to a reducer, and the reducer runs a simple local clustering algorithm. K-

median needs more information and its sample should have information about all the nodes

that are to be clustered. For each un-sampled point the closest sample point is selected and

its weight is increased by 1. In k-median first the sampling is done and then partitions of

the original dataset along with the sample and part of the distance graph is sent to reducers.

Each reducer finds weight of sample points partially. Then, in another MapReduce round the

partial weights are summed up. Last step is a simple clustering on the sample considering

CHAPTER 2. LITERATURE REVIEW 19

weight of each sample point [6].

2.2.4 MapReduce and Iterative Tasks

Many machine learning and data mining algorithms are working iteratively on data but

MapReduce is not well-suited for tasks with cyclic data flow. There are frameworks such

as Twister [5], Spark [23], and HaLoop [1] that are iterative. Dave et al. present a cloud-

based pattern for large-scale iterative data processing problems [2]. They have implemented

CloudClustering, as a case study, that tries to show how iterative data processing problems

can be handled on the cloud.

CloudClustering is the distributed version of k-means clustering algorithm, implemented

on Microsoft’s Windows Azure platform. They introduce a way to balance the performance-

fault tolerance trade-off (that is the main trade-off when solving iterative problems on the

cloud) using data affinity and buddy system. Some methods are using a central pool of state-

less tasks in order to handle the fault tolerance issue, but this could lead to low performance

because a cluster node might need to receive different parts of the data in different iteration

(i.e. there is no affinity between data and workers) [2].

Windows Azure handles fault-tolerance by means of reliable queues. When a worker takes

a task from the queue, the message becomes invisible and if it is not deleted after a timeout, it

will reappear in the queue. This way if a worker fails, the task will be done by another worker

node. One of the issues with the iterative tasks on the cloud is the stopping criterion. It can be

handled in two different ways in this problem. If no data point is changed among clusters from

one iteration to the next, we are done. This method needs to keep track of previous cluster

of each data point. The other method checks the maximum amount of centroid movement

and stops if it falls below a certain threshold. This method works on an read-only memory,

but can’t guaranty the convergence [2].

The proposed architecture is using the Windows Azure’s queuing system and includes one

master and a pool of worker nodes. Input dataset is stored centrally and is partitioned by

the master. The workers download a task containing the address to the corresponding part

of partition and the centroid list and perform the task. This method is working best in terms

of fault-tolerance but since data affinity is not considered the performance is not good in this

system. The other extreme is having one queue per worker that will solve the problem of

data affinity (master will assign same partition of data to same workers in each iteration),

but suffers from fault tolerance problem (there is not other worker to take over the current

task in case the worker fails). Buddy system is grouping workers in buddy groups and a queue

is shared among all members of each buddy group. Now size of the buddy group defines a

CHAPTER 2. LITERATURE REVIEW 20

balance between fault tolerance and performance [2].

2.2.5 Arguments about Using or not Using MapReduce

Schwarzkopf et al. have listed seven different assumptions and simplifications employed by re-

searchers in the cloud research that threatens the practical applicability and scientific integrity

of those researches [16].

One of the issues they have pointed out in their paper is unnecessary distributed paral-

lelism. Very large datasets and frameworks such as MapReduce have made researchers to

employ distributed parallelism more and more. Since the new high performance computing

frameworks offer a fascinating simplicity and handle complicated issues like communication,

synchronization, and data motion, a lot of people are willing to use these frameworks without

considering whether these frameworks are useful for the problem at hand or not. Frameworks

such as MapReduce reduce the engineering time needed to design a solution for a distributed

version of an algorithm, but they mostly increase the runtime. For this matter the speedup of

a program must be measured to show that the distributed solution outperforms the sequential

solution. Furthermore, we need to make sure that we need to distributed the data over several

machine even if we are sure that a parallel solution would be beneficial for the problem at

hand. They also point out that as Rowstron et al. have shown, with nowadays multicore

processors and huge amount of RAM we might not need to use a distributed solution for

many problems [15], and we would be able to make use of fast communication mechanisms

such as shared memory and also avoid data motion [16].

Another issue they have mentioned in their paper is forcing the abstraction. MapReduce is

designed to alleviated the I/O bottleneck of big data by distribution of data over several hard

disks. Time needed to process a job on a single machine is also assumed to be long. Some

solutions are iterating and generating many short-time MapReduce jobs while it is better

to have least number of jobs that are iteratively running on each system. Domain-specific

systems (for stream processing, iterative processing and graph processing) have also emerged

that seems to be a lot more justified that using the MapReduce for any problem [16].

Since many of Machine Learning and Data Mining algorithms are iterative, and MapRe-

duce is not inherently an iterative programming model, and some other algorithms does not fit

to this model for other reasons, many alternatives and extensions of MapReduce is provided

by different research/industrial groups in recent years. Some theoretical studies have been

done to show that Hadoop (an open source implementation of MapReduce) has limitations.

Empirical studies also have been done and frameworks such as HaLoop [1] and Twister [5]

are presenting a class of algorithms that Hadoop is not a good fit for, and try to extend the

CHAPTER 2. LITERATURE REVIEW 21

Hadoop and solve the problem more efficient than Hadoop, and off course they outperform

Hadoop at least when running that special algorithm. Jimmy Lin provides reasons why we

need to either revise current algorithms to be run on MapReduce or devise new algorithms

that follow MapReduce programming model. He suggests that since MapReduce is currently

the widely used solution for large scale data processing problems, we can get rid of the itera-

tive solution and try to use (or devise) alternative solutions that will fit MapReduce instead

of devising new frameworks for algorithms that MapReduce is ”good-enough”. He discusses

three classes of of problems to justify his claim: iterative graph algorithms (e.g., PageRank),

gradient descent (e.g., for training logistic regression classifier), and EM (e.g., for k-means,

and HMM training) [16].

Jimmy Line argues that extensions of Hadoop that support iterative constructs and thus

alleviate some problems, but the problem with all these frameworks is that they are not

Hadoop! It costs a lot for an organization to have another framework (other than Hadoop)

for only graph and iterative algorithms. A better solution would be trying to solve the four

above-mentioned problem by changing the algorithm in order to be runnable on Hadoop. If

MapReduce is performing better than an alternative that is used to solve that problem. That

does not mean that MapReduce needs to beat all the alternatives. For example MapReduce

performing a lot better than GIZA++ for word-alignment algorithm, and also is considered

an advance when used for k-means clustering [16]. The Hadoop stack is the standard and

widely used platform for large-scale data analysis. Any large-scale data analysis needs to

be able to process different types of structured and unstructured data and run different

types of algorithms (graph, text, relational data, ML, etc.). No single programming model

or framework can meet all the needs and be the best in terms of all the aspects such as

performance, fault tolerance, expressivity, simplicity, abstracting low level features such as

synchronization, etc.. No the question is: Dose adopting and deploying a new framework to

solve a problem worth (in terms of cost, time, generality of framework, having mastered HR

to use the framework, etc.) [14]?

Chapter 3

Approach

In this chapter we introduce two different piecewise regression algorithms. First algorithm is

called MapReduce Regression Tree (MRRT), and second one is called Slope-changing algo-

rithm. Both algorithms are trying to find a piecewise regression model for a dataset within

the MapReduce framework. MapReduce Regression Tree algorithm is a Regression Tree based

algorithm that can be used within the MapReduce framework. Slope-changing algorithm on

the other hand is trying to introduce a non-greedy method to find good candidate split points

and use this candidate set in order to find the final set of split points. Performance of these

two algorithms is analyzed and compared in chapter 4.

3.1 MapReduce Regression Tree

Algorithm 2 lists the pseudocode for MapReduce Regression Tree algorithm. This algorithm

partitions the feature space to smaller subspaces, but constructs a regression tree model

(instead of a linear model in Slope-changing algorithm) for each subspace. The generated

regression tree models are used to predict the target value of new data items.

Unlike Slope-changing algorithm that selects the split points based on the logic that maxi-

mum, minimum and slope-changing points are good candidates, this algorithm is not choosing

the split points based on any heuristic, and the feature space is not divided into subspaces

along different dimensions. The feature space is divided to subspaces of equal size (in terms

of volume of the subspace and not number of data items in each subspace), and it is divided

into smaller subspaces along one dimension of the feature space. This dimension is chosen

randomly or using the preProcess method. The preProcess method is retrieving a sample of

the dataset randomly (in our experiments we used 10% of each dataset) and runs the piecewise

22

CHAPTER 3. APPROACH 23

Algorithm 2 MapReduce Regression Tree Algorithm - Main Method

1: function MR-Regression-Tree-Learn
2: dimToSplit = preProcess(dataset)
3: rangeV alues = Map1(dimToSplit) . All mappers find min and max value of the
4: . dimension that is being split
5: splitPoints = Reduce1(rangeV alues, dimToSplit, nMappers) . Split points are

specified
6: . based on dimension size and number of mappers
7: Map2(splitPoints, dimToSplit) . Data is shuffled among reducers
8: models = Reduce2() . Each reducer finds the model for the received data
9: end function

Regression Tree algorithm on all different dimensions of the dataset. One piecewise regression

tree model is generated for each dimension of the dataset. The model is then tested against a

validation set and the dimension corresponding to the dimension that has the least RMSE on

validation set is chosen as the dimension to split the dataset in MapReduce Regression Tree

algorithm along.

Figure 3.1: Dataset distribution among cluster nodes with overlap to decrease borderline data
points prediction error

When dividing a feature space to subspaces, models constructed for two subspaces that

are next to each other might have different predictions for a data point that is located on the

borderline. It is same for data points that are located in one subspace, but are close to the

borderline. For these data points, the neighbor model might have a better prediction than

the actual model that the data point is located in. For this reason, smoothening methods try

decrease the problem by using a weighted average of predictions of neighboring models for

CHAPTER 3. APPROACH 24

data points close to the borderline. Number of these models are two in a two dimensional

feature space, and might be more in a n dimensional feature space based on the location of

the data item (the data item might be close to a borderline in one dimension, and not in

another dimension).

Since we are using a distributed method to solve the regression problem, we have more

resources at hand and we might be able to afford a little bit of redundant calculation in

order to increase the accuracy of the model. Based on this logic and the problem explained

about borderline data points prediction, we decided to have overlapping subspaces and let

each mapper have more data than what it needs in order to construct the model. Figure 3.1

depicts how 7 partitions of dataset that are partitioned along x axis are assigned to 7 map-

pers. All cluster nodes except first and last one receives three partitions of the dataset. All

cluster nodes receive left and right partitions of the partition they are trying to construct the

model for (we call it main partition, and call the left and right partition neighbor partitions).

The reason that first and last nodes receive only two partitions instead of three is that their

corresponding main partition has just one neighboring partition. Distributing dataset this

way would let the system to construct the model based on 3 partitions but only predict the

target value for the test items that are located in their main partition. This way we will

not have any borderline data item and thus we will not need to use prediction smoothening

methods that is used in Slope-changing algorithm.

Algorithm 3 MapReduce Regression Tree Algorithm - Map Phase of First MapReduce
Round
1: function Map1(dimToSplit)
2: for all Mappers do
3: . dataset is local part of dataset on the node that this mapper is running
4: minV alue = +∞
5: maxV alue = −∞
6: for all dataPoint ∈ dataset do
7: minV alue = min(dataPoint[dimToSplit],minV alue)
8: maxV alue = max(dataPoint[dimToSplit],maxV alue)
9: end for

10: end for
11: send < 1, < minV alue,MaxV alue >>
12: . By indicating key as 1 all information is sent to one reducer
13: end function

Figure 3.2 depicts different overlap factors when overlapping subspaces on cluster nodes.

When overlap factor is 1, each node would receive its own subspace in addition to two neigh-

boring subspaces that are as big as its own subspace. When overlapping factor is 0.5, size of

CHAPTER 3. APPROACH 25

Figure 3.2: Different overlap factors of subspaces on cluster nodes

neighboring subspaces that each node receives, is half of size of its own subspace. In case of

overlapping factor of 0, no overlapping exists.

Now that we have discussed the concepts behind how MapReduce Regression Tree algo-

rithm works, let us explain each line of algorithm 2 briefly. The preProcess method selects

what dimension to select to partition the dataset along. Then first round of MapReduce

is started. In map phase of first MapReduce round, each mapper finds range of the data

items (max, min) in the portion of dataset that mapper owns. These information are sent

to one reducer. Reducer would receive rangeV alues, and nMappers (number of mappers),

and would decide what portions of dataset should be sent to each mapper. In map phase of

second round of MapReduce, all mappers receive the splitPoints information and would send

the data items they have to two or three mappers (we know that each partition of the dataset

would be sent to several mappers due to overlapping). In reduce phase of second MapReduce

round, all the reducers would have two or three partitions of the dataset. They construct a

regression tree for the portion of dataset they have received. Each of this phases is explained

in following sections.

3.1.1 Map1: Finding the Min and Max of Dimension that Is Being

Split

Algorithm 3 lists the steps of this phase of the first MapReduce round. All mappers process the

portion of the dataset they own and find the minimum and maximum value of the dimension

CHAPTER 3. APPROACH 26

Algorithm 4 MapReduce Regression Tree Algorithm - Reduce Phase of First MapReduce
Round
1: function Reduce1(rangeV alues, dimToSplit, nMappers)
2: minV alue = min(rangeV alues.minV alues) . min value of dimToSplit dimension
3: maxV alue = max(rangeV alues.maxV alues) . max value of dimToSplit dimension
4: stepSize = (maxV alue−minV alue)/nMappers
5: . stepSize in dimToSplit dimension when partitioning the dataset
6: splitPoints[1].start = minV alue . start and end of the partition for
7: splitPoints[1].end = minV alue+ 2 ∗ stepSize . first mapper is calculated differntly
8: for i = 2, nMappers− 1 do
9: splitPoints[i].start = minV alue+ (i− 2) ∗ stepSize

10: splitPoints[i].end = minV alue+ (i+ 1) ∗ stepSize
11: end for
12: splitPoints[nMappers].start = minV alue+ (nMappers− 2) ∗ stepSize
13: splitPoints[nMappers].end = minV alue+ nMappers ∗ stepSize
14: . start and end of the partition for last mapper is calculated differntly
15: send splitPoints to all mappers . To be used by mappers of next round
16: end function

that is supposed to be split. All the mappers then send this minimum and maximum values

to the same reducer. This is the reason the key value for the emitted < key, value > pair is

1 for all mappers.

Algorithm 5 MapReduce Regression Tree Algorithm - Map Phase of Second MapReduce
Round
1: function Map2(splitPoints, dimToSplit, nMappers)
2: for all Mappers do
3: for dataPoint ∈ dataset do
4: for i = 1, nMappers do
5: if splitPoints[i].start < dataPoint[dimToSplit] < splitPoints[i].end then
6: send < i, dataPoint > to corresponding reducer
7: end if
8: end for
9: end for

10: end for
11: end function

3.1.2 Reduce1: Finding Split Points Along the Dimension that Is

Being Split

Algorithm 4 lists the reduce phase of first MapReduce round. In this algorithm all the

maximum and minimum values sent by all mappers used to find the maximum and minimum

CHAPTER 3. APPROACH 27

value of the dimension that is being split. Using these two values, range of the dimension is

found and stepSize of split points along that dimension is found by dividing range to number

of mappers. Now start and end values for each mapper on dimension that is being split is

found and stored in splitPoints array. All the mappers would have a partitions as big as

triple of size of stepSize, except the partitions whose main partition is first or last partition

of the dataset. Those two partitions would only have two partitions.

Algorithm 6 MapReduce Regression Tree Algorithm - Reduce Phase of Second MapReduce
Round
1: function Reduce2(dataPoints)
2: Input: dataPoints: data items sent to this reducer
3: for all Reducers do
4: models[i] = treeRegressionModel(dataset)
5: end for
6: end function

3.1.3 Map2: Shuffling the Data Among Cluster Nodes

The split points found in Reduce1 phase are used in this phase to shuffle the data. Algorithm 5

lists how the data is shuffled among cluster nodes in this phase. Each mapper sends each data

item in its local portion of dataset to 2 or 3 mappers. The data points that are located in first

or last partition of the feature space would be sent to two reducers, and all other data points

would be sent to three reducers. This would cause to have more redundancy in the amount

of the data that is transferred in the network, but would solve the problem of borderline data

item’s target value prediction, and would increase the accuracy of the model also.

Algorithm 7 MapReduce Regression Tree Algorithm - Prediction

1: function MR-Regression-Tree-Test(models, dataPoint)
2: mainModel = findModel(dataPoint,models)
3: leftModel = findLeft(mainModel,models)
4: rightModel = findRight(mainModel,models)
5: ŷ = 1

2 .predict(mainModel, dataPoint)
6: ŷ = ŷ + 1

4 .predict(leftModel, dataPoint) + 1
4 .predict(rightModel, dataPoint)

7: end function

CHAPTER 3. APPROACH 28

3.1.4 Reduce2: Constructing the Tree Regression Models for Each

Subspace

In this phase each mapper constructs a tree regression model for the data it has received from

the mappers. Although this tree is constructed based on the data from three partitions, it

only is used for prediction the target value for only the middle partition. In the simulation

of the MapReduce that we have done in Matlab, RegressionTree class of Matlab library is

used for modeling. fit method of this class constructs a regression tree with binary splits.

predict method of the same class is used for prediction.

3.1.5 Using the MRRT Model to Predict

To predict the target value for a new data point using MapReduce Regression Tree algorithm,

we use algorithm 7. This algorithm first finds the main model that should be used to predict

the target value for data point. It then finds the neighbor models of the main model and uses

all three models to predict the target value of the new data point. The weight that are used

for weighted prediction are 1
2 for the main model and 1

4 for the neighbor models.

3.2 Slope-changing Algorithm

Slope-changing algorithm is a distribute algorithm that finds split points in a non-greedy way

by help of many mappers. These split points are used to split the feature space into smaller

subspaces. Data points in each subspace of the feature space is then sent to a different cluster

node and each node generates a linear model for that subspace. When predicting the target

value for a new data item using the constructed piecewise linear model, the corresponding

subspace for that test item is first found, and then the corresponding linear model is used to

predict the target value of the test item.

3.2.1 Choosing Good Split Points

This algorithm introduces a non-greedy approach for selecting split points. The reason behind

trying to choose split points in a non-greedy way is that, greedy methods are just looking at

what locally is the best choice and try to generate a globally optimum solution. We know that

this might not lead to the optimum solution. As another reason, since the data is distributed

among different nodes of a cluster, no single machine has access to all the data in the dataset,

thus we need a method that makes each machine to extract some information from their

partial subset of dataset, and use the extracted information to generate a set of good split

CHAPTER 3. APPROACH 29

points. It is worth mentioning that MapReduce and its corresponding distributed file system

does not guaranty that data is distributed among cluster nodes in any special order, thus we

might assume that data is distributed randomly among cluster nodes.

Figure 3.3: Bad split points causes bad piecewise linear models and higher prediction error

Figures 3.3 and 3.4 illustrate the difference between choosing good and bad split points. In

both figures a, b, c, d, e, f are the split points that among each pair or points a linear model is

fit. The curve line is the actual model, the vertical dashed lines are split points, and straight

dashed lines are the piecewise linear models. As it can be seen, figure 3.3 has high prediction

error in most points due to not choosing good split points. The point with highest error is m

which has a very high prediction error. On the other hand, piecewise linear approximation

in figure 3.4 is closer to real model because of choosing better split points. The point with

highest prediction error in this model is n, and the point with highest prediction error on the

left half of this model is m. The reason we have a better piecewise approximated model in

figure 3.4 comparing to figure 3.3 is that the maximum and minimum points in the model

is considered and they are chosen as split points. If we look at the left and right half of

figure 3.4 more carefully we notice that left half has a lower average prediction error although

right half is using the maximum and minimum points as its split points but left half is not

using the minimum point as a split point. We can conclude that there are points other than

maximum and minimum points that are also important. Those points are points on which

we have higher changes in the slope of the model. Slope-changing points generaly include

maximum and minimum points, but points other than maximum and minimum (in which the

slope is changing sharply befor and after the point) also could be slope-changing points. Left

half of figure 3.4 uses b and c as split points which are points with high change in slope of left

and right part of the model at those points.

CHAPTER 3. APPROACH 30

Figure 3.4: Good split points helps to have better piecewise linear models and lower prediction
error.

3.2.2 Overview of the Algorithm

The dataset is assumed to be very large and also assumed to be distributed in a random way

among cluster nodes. Two rounds of MapReduce is needed to generate the piecewise linear

model. In the first MapReduce round split points are extracted and these split points are

used in second MapReduce round to redistribute the dataset among cluster nodes. Afterward

each cluster node would find a linear model for the portion of data it receives in the second

MapReduce round.

Algorithm 8 Slope-changing Algorithm - Main Method

1: function Slope-changing-Learn
2: Initialize(dataset,m, r, p)
3: candidates = Map1 . candidate split points are extracted by each mapper
4: splitPoints = Reduce1(candidates) . split points are chosen among candidate split

points
5: Map2(splitPoints) . data is shuffled among mappers based on split points
6: models = Reduce2() . each reducer finds the model for the received data
7: end function

Algorithm 8 shows the pseudocode for Slope-changing algorithm. The Map phase (Map1)

of first MapReduce round is done in parallel by all cluster mappers in order to find candidate

split points. These candidate split points found by each mapper are all sent to one reducer in

the shuffle phase of the first MapReduce round. Next the Reduce phase of first MapReduce

round (Reduce1) is run and generates the final split points set using the candidate split points

received from all mappers. In map phase of second MapReduce round (Map2), all the nodes

map each data item to a key based on the split points. This way all the points in a grid-cell

of the grid (specified by the split points) will be sent to the same reducer. In reduce phase of

this MapReduce round (Reduce2), each reducer would have all the data points pertaining to

CHAPTER 3. APPROACH 31

a grid-cell of the grid, and would be able to simply generate the linear model for that grid-cell.

Details of each of these four phases are explained in following sections.

Algorithm 9 Slope-changing Algorithm - Initialization

1: function Initialize(dataset, m, r, p)
2: nDim = dataset.numOfDims . Database dimension
3: nMappers = m . Number of mappers
4: nReducers = r . Number of reducers
5: minPointsPerCell = nDim+ 3 . Minimum number of data points in each grid-cell
6: end function

3.2.3 Map1: Finding Candidate Split Points

As it is explained in section 3.2.1, maximum, minimum and slope-changing points in a model

are good candidate split points. If all the data is available on a single machine, we could

find all candidate split points by searching the whole dataset and feature space exhaustively.

This might work, but is not an efficient way to do the task. As a more efficient way to find

this set of points, we can use a randomized way and use hill-climbing method to find most of

these points. In this case we might not find all the candidate split points, but we will end up

having a candidate set using a more efficient algorithm.

Algorithm 10 Slope-changing Algorithm - Map Phase of First MapReduce Round

1: function Map1
2: for all Mappers do
3: . dataset is local part of dataset on the node that this mapper is running
4: grid = Gridify(dataset)
5: candidates.maxPoints = findMaxPoints(grid, dataset)
6: candidates.minPoints = findMinPoints(grid, dataset)
7: candidates.slopeChangings = findslopeChanging(grid, dataset)
8: end for
9: send < 1, candidates >

10: . By indicating key as 1 all candidate split points are sent to one reducer
11: end function

One way to find a data point with local maximum of target value in the dataset is to

choose a random data point, and then find k of its nearest neighbors. Then use these k

nearest neighbors and find the one with highest target value. Repeating the same procedure

for the new maximum point would end up a case that the maximum point would not change

anymore. In that case we have found a data point with local maximum of target value. In

the extreme case when k is very large, we would end up finding global maximum. When k is

CHAPTER 3. APPROACH 32

small, we would end up finding local maximum points. If k = 1 then we will end up the very

local maxima that is the randomly selected point. There are two problems with this method.

First finding k nearest neighbor would need additional data structures such as K-Dimensional

Tree (KD tree), and also time to construct and search this data structure. Second problem

with this method is finding a proper value for k, and we know that same value of k would not

work best for every dataset.

To find the points with maximum and minimum target value in a more efficient way, we

can bucket the data points in cells of a grid. Then we can start from a random data point,

and find the cell containing that data point. Afterward we find the neighbor cells of that

cell and find the data point that has the highest target value among all data points in all

neighboring cells. We repeat this step for the last maximum data point until the maximum

data point is not changing anymore.

Figure 3.5: Finding the data points with maximum target value by gridifying data points and
using a initial random seed

Gridifying the Feature Space

When we gridify the data points we need to decide about how big the grid-cells need to be.

For this purpose we first need to decide on how many data points we would like to have in

CHAPTER 3. APPROACH 33

each grid-cell in average. In our experiments we have chosen to have number of dimensions

of dataset + 3 data points in each grid-cell. The reason for this decision is that we need at

least number of dimensions + 1 data points in each grid-cell in order to be able to find a

linear regression model for the data points in that grid-cell. But we know that it is the least

possible number of data points and having more data points would help to have a model of

higher quality. Based on this logic we have used following equations in order to find the grid

split points in each mapper:

x =
nDim

√
size(dataset)

2 ∗ nDim (3.1)

stepSize =
maxPerDim(dim)−minPerDim(dim)

x
(3.2)

In above equations nDim is number of dimensions in the dataset, size(dataset) is number

of rows in the portion of dataset a certain mapper owns. x is total number of grid-cells

in the grid. maxPerDim(dim) and minPerDim(dim) are calculated for each dimension of

the dataset and are the maximum and minimum value for that feature (dimension) of the

dataset. If we start from minPerDim(dim) and add multiples of stepSize to it until we reach

to maxPerDim(dim), we will find all the borderlines of the grid-cells for that dimension.

Finding Maximum Minimum Candidate Split Points

Figure 3.5 illustrates the randomized method for finding these points. A gaussian mixture

model (indicated by contour map) is the actual model in this figure. Black dots in the figure

are the data points among which we are trying to find data points with local maximum target

value using a randomized method explained above. The data is first gridified (dashed green

lines are the borderlines for grid-cells) based on the explained logic, and then a random data

point is chosen. The initial random data point is indicated by a blue star and is located in

cell (10, 85). Next, algorithm finds all neighboring grid-cells of the grid-cell containing the

initial data point. In case of two dimensional feature space, every cell has four neighboring

cells. Four neighbors of this cell are highlighted by green color. Target value of all the data

points in these four cells are compared with the target value of current maximum data point

(currently the initial random data point) and the data point with highest target value is

chosen. This data point is located in right cell of the current cell in figure 3.5, and the data

point is highlighted by red color and is connected to the original data point by a blue line.

This process is repeated for the new data point. Other blue lines connecting red data points

are showing the next maximum data points and the final maximum data point is located

in cell (35, 73). When the current maximum data point is this data point, finding the four

neighboring cells and comparing the current maximum with the data points in those cells will

CHAPTER 3. APPROACH 34

not change the maximum data point anymore. This way finding one local maximum target

value is done and we can repeat the same process to find more local maximum data points.

Finding the minimum candidate split points is done in a similar way as maximum candidate

split points, except we choose the data points with lowest target value among all data points in

the neighboring cells. Method calls findMaxPoints(grid, dataset) and findMinPoints(grid, dataset)

in algorithm 10 are calling methods that are finding maximum and minimum data points in

the same way explained above.

Finding Slope-changing Candidate Split Points

Finding the slope-changing points in findslopeChangings(grid, dataset) method call of al-

gorithm 10 is also done using a randomize method. We first explain the method for a

2 − dimensional feature space and then would extend it to an n − dimensional feature

space. We first randomly choose if we want to find a high slope-changing point in x or y

direction. Suppose x direction is chosen. Now we randomly choose one of the rows of the

grid-cell depicted in figure 3.5 (assume row r is chosen randomly). We start from the first cell

in that row and calculate the following formula for all grid-cells of the row in an array, say

slope:

slopei =
ȳi,r − ȳi−1,r
x̄i,r − x̄i−1,r

(3.3)

In this equation ȳi,r is the average target value of all the data points in grid-cell with

coordinates (i, r). This way we find the slope of a line connecting the data points in two

neighboring grid-cells using the average values of target value and x. Now we can use the

calculated values in slope array in order to find out how the slope of the model before and

after a cell is changing. We cannot simply calculate the difference of the slope value found for

the left and right of a cell, because in high degrees (for example > 88◦) the degree difference

of 1◦ would cause to have a very big slope change, while the same change in degree for small

degrees (for example < 45◦) would cause a very smaller change in slope. For this reason we

need to find the corresponding angle to a slope value and find the change in angle before and

after a cell in order to decide if the change is significant or not. Here you see that we are not

using hill-climbing as we did for maximum and minimum. Hill-climbing would not work for

slope-changing points, because having a change in slope on the right of a cell would not tell

us anything about future changes in slope in that direction. We keep list of all the grid-cells

that the slope change of their right and left cell is bigger than a threshold (the threshold we

have used in our experiment is 15◦) and pass the average value of all the data points of those

grid-cells as candidate split points to the reducer. We also have assigned a quality to each

candidate slope-changing point. A slope-changing point that the difference of slope on its

CHAPTER 3. APPROACH 35

right and left is higher, would have a higher quality.

The explained method above would be repeated several times in each mapper and each

time we would select a row or a column (in the 2 − dimensional feature space) and find all

the candidate split points in that row or column. In n − dimensional feature space instead

of choosing a row or a column, a dimension is chosen randomly and random numbers are

generated for all other dimensions. Those values for other dimensions are kept constant and

the only value that is changing is the value for the chosen dimension. Same method as

explained above is used to find the slope for that dimension and the candidate data points

are chosen accordingly.

Using Several Mappers to Find Candidate Split Points

In a MapReduce based algorithm, data is not all on one machine and different machines has

different parts of data at hand. In this case we can find a set of candidates for each mapper

using the same method explained above. After finding this set of candidate split points in

each mapper, all the candidate data points are sent to one reducer. The process to find a set

of split points from this candidate set, would be described in next section.

We need to point out here that although the randomized method of candidate selection

would not be able to find as many as candidate data points as exhaustive method, but in

this case that we use a lot of mapper to find candidate split points in parallel, it is very

likely that some mappers find some candidate data points from parts of the feature space

that other mappers do not find candidate points from that part of the feature space because

of the nature of the randomize method used. This way the union set of all candidate split

point sets of all mappers would be more likely to include all possible candidate split points.

It also is possible that the union set includes many candidate split points for a small portion

of the feature space, because many mappers have found candidate split points for that area.

In this case the next phase (Reduce1) would solve the problem.

Algorithm 10 lists the process explained in this section. Each mapper would work on its

local part of the dataset and gridify it in a grid first. Next it finds maximum, minimum and

slope-changing candidate points. Finally each mapper sends the generated set of points to

the reducer. Since all the candidate split points needs to be sent to same reducer the key for

the key-value pair of the result of mapper is indicated as 1 for all mappers.

3.2.4 Reduce1 : Generating a Split Point Set from Candidate Set

Now we have all the candidate split points and would like to choose a subset of these candidate

points. Since different mappers might have found maximum, minimum, and slope-changing

CHAPTER 3. APPROACH 36

points that belong to same maximum, minimum and slope-changing points in the real model,

we need to remove some of the candidate split points that are redundant and different mappers

have found them only because of having a subset of data points in the dataset. Since the

population of the candidate split points in some parts of the feature space might be high,

we need to use a method to merges candidate split points in highly populated areas, and

also try to select split points from those areas. We assume that if several mappers have

found candidate split points in a small subarea of the feature space, those small subareas

are important areas and potentially good places to have split points. Based on this logic, we

have used two different methods for selecting split points that are explained in two following

sections.

Figure 3.6: Using Parzen Window Classifier to find areas with many candidate split points [18]

3.2.4.1 Selecting Split Points Using Density Estimation

To take the highly populated areas into account, we can use a method similar to Parzen

Window Classifier [4] to find the areas with high density of candidate split points, and chose

points from those areas as the split points. We use a gaussian kernel with a kernel spread of

two times of the distance between closest candidate split points. After calculating the density

estimation at all candidate split points, all the points with an estimated value which is a

local maximum in its neighborhood are chosen as a split point. Figure 3.6 shows how Parzen

CHAPTER 3. APPROACH 37

Window Classifier works. In this image the dashed gaussian curves are centered at each data

point. Data points themselves are shown by a small line on the x axis. The solid curve is

sum of all dashed curve and shows us which points on x axis is more populated. This density

estimation technique is applied separately on images of all candidate split points on different

axes. The reason is that performing the density estimation on different axes separately is

more efficient and the outcome would be same if we perform the density estimation on all

axes, and then map the outcome on each axes.

Algorithm 11 Slope-changing Algorithm - Reduce Phase of First MapReduce Round (Parzen
Window Classifier Version)

1: function Reduce1(candidSplitPoints)
2: for each dim of the dataset do . for each dimension of the dataset
3: splitPoints[dim] = []
4: candidSplitP ts = candidSplitPoints[dim]
5: for i = 1, size(candidSplitP ts) do
6: candidSplitP ts[i].density = pwcEstimate(candidSplitP ts[i], candidSplitP ts)
7: end for
8: for i = 1, size(candidSplitP ts) do
9: if candidSplitP ts[i].density > candidSplitP ts[i− 1].density then

10: if candidSplitP ts[i].density > candidSplitP ts[i+ 1].density then
11: splitPoints[dim].add(candidSplitP ts[i])
12: end if
13: end if
14: end for
15: end for
16: send splitPoints to all mappers . To be used by mappers of next round
17: end function

Algorithm 11 list the code to apply Parzen Window Classifier to extract the split set

from candidate split points set. The first for loop is calculating the density estimation of all

the data points in the candidate set on each of the candidate split points. Next we choose

the candidate split points that are bigger than their neighbors (are local maximum in their

neighborhood), and add them to list of split points. This list split points is used in next round

of MapReduce in order to partition the data among mappers and find the linear model for

each subspace of the feature space constructed by this split points.

3.2.4.2 Selecting Split Points Using Fitness Proportional Selection

As explained in section 3.2.3 different slope-changing points are assigned different quality

values based on the amount of slope change we have in the left and right side of the point.

Algorithm 11 only uses the density to select the split points. In another word, algorithm 11

CHAPTER 3. APPROACH 38

only considers quantity of the candidate split points to choose the split points and is not

considering the quality of split points. This algorithm intends to consider both quality and

quantity when choosing split points from the candidate set. We assume that the slope-

changing points with higher quality are better candidate as split points.

Algorithm 12 Slope-changing Algorithm - Reduce Phase of First MapReduce Round (Fitness
Proportional Selection Version)

1: function Reduce1(candidSplitPoints, n) . n is number of split points we would like
to select for each dimension

2: for each dimension of the dataset do
3: splitPoints[dim] = []
4: for i = 1, n do
5: point = randFitnessProportional(candidSplitPoints, candidSplitPoints.fitness)
6: splitPoints[dim].add(point)
7: end for
8: end for
9: send splitPoints to all mappers . To be used by mappers of next round

10: end function

Fitness proportional selection algorithm is a randomized way of selecting split points that

considers both quality and quantity. It gives the points with higher fitness value (quality)

higher chance to be selected, and moreover highly populated areas would have more chance

of having candidates to be selected in the final set of split points. In case of this version,

we need to decide about number of split points that we would like to be chosen for each

axis. These numbers are found using same equation as equation 3.1. The only difference

is that size(dataset) would be size of the actual dataset, and not size of local dataset of a

certain mapper. Algorithm 12 lists the pseudocode for this version of split point selection,

and again this algorithm needs to be run for each dimension separately. In this algorithm

randFitnessProportional receives the candidate split points and their corresponding fitness

value, and returns a point randomly proportional to fitness values.

Algorithm 13 Slope-changing Algorithm - Map Phase of Second MapReduce Round

1: function Map2(splitPoints)
2: for all Mappers do
3: for dataPoint ∈ dataset do
4: subSpace = findSubspaceID(dataPoint, splitPoints)
5: send < subSpace, dataPoint > to corresponding reducer
6: end for
7: end for
8: end function

CHAPTER 3. APPROACH 39

3.2.5 Map2 : Shuffling the Data Points Based on Split Points

After finding the split points in first round of MapReduce, map phase of second round of

MapReduce is run by all mappers. All mappers read the local part of the dataset they have

and find the proper subspace each data item belongs to. All the data items belong to a certain

subspace should be send to a certain mapper. These data items might be distributed among

all mappers (we explained before that MapReduce distributed file system does not guaranty

distribution of a file in any order), and all mappers would send the data items pertaining to

a certain subspace to the same reducer. Algorithm 13 lists the pseudocode for this operation

that needs to be done by all mappers.

Algorithm 14 Slope-changing Algorithm - Reduce Phase of Second MapReduce Round

1: function Reduce2(dataPoints)
2: for all Reducers do
3: dataset = data items sent to this reducer and are in subspace i
4: models[i] = linearRegressionModel(dataset)
5: end for
6: end function

3.2.6 Reduce2 : Finding the Linear Model for Each Subspace

Each of the reducers or second round of MapReduce receives the data items pertaining to a

certain subspace of the feature space. Since the subspaces are limited by split points found

in first MapReduce phase, we assume that each subspace contains data items that could be

modeled by a linear model. The data points are used to find the linear regression model for

each subspace. The algorithm for finding the linear regression model of these data points in

each subspace could be any linear regression algorithm. In our MapReduce simulation that

is done using Matlab, we have used regress library method to find linear regression model.

If number of subspaces is more than number of reducers, some reducers need to compute the

linear regression model for more than one subspace. Because of data sparsity in the dataset,

it also is possible that some subspaces of the feature space do not have enough data points to

construct the linear regression model. In this case we do not construct a model for that cell

and use the neighboring models to predict the target value of a data item that sits in that

cell. Algorithm 14 lists the pseudocode for this phase.

CHAPTER 3. APPROACH 40

Algorithm 15 Slope-changing Algorithm - Prediction

1: function Slope-changing-Test(models, dataPoint)
2: model = findModel(dataPoint,models)
3: if model 6= null then
4: ŷ = predict(model, dataPoint)
5: else
6: models = findNeighboringModelsFor(dataPoint,models)
7: if models 6= null then
8: ŷ = predict(models, dataPoint)
9: else

10: ŷ = globalConstantV alue
11: end if
12: end if
13: end function

3.2.7 Using the Slope-changing Model to Predict

Algorithm 15 lists the test method of the model generated by Slope-changing algorithm. Pre-

diction is performed for a new data point. The data item is used to extract the corresponding

model. We know that based on feature values of a data item, it might land in a certain sub-

space of the feature space. Finding that subspace means that we have found the corresponding

model to predict the target value of the test item. It is probable that the corresponding model

of that subspace is not generated by the Slope-changing algorithm due to not having enough

data items in that subspace when generating the model (it might be cause because of the

data scarcity in that part of the feature space, or having a very small subspace of the feature

space because of the closeness of the split points). In this case the neighboring models of that

subspace is extracted and used to generate a prediction for that data items. It is unlikely,

but probable, that all of those neighboring subspaces also do not have model due to same

problems mentioned before. In this case a global constant value (average value of all the data

items in the dataset) is used as the prediction for the test item.

3.2.7.1 Smoothening the prediction

When creating a model for one cell of the grid, the prediction for data points on the borders

of the cells could be done with each of the models that share the border. When the data point

is close to the border, it also is possible that the neighbor model has a better prediction then

the model of the grid-cell containing the data point. For this reason we use a smoothening

method for the data points near the border of the cells. If a data point is in the 1
4 distance of

the border (1
4 of the length of the grid-cell in that dimension), we use the neighbor model in

that dimension to smoothen the prediction. In this case the prediction would be the weighted

CHAPTER 3. APPROACH 41

average of main model (by 2
3 weight), and neighboring model (by 1

3 weight).

Chapter 4

Empirical Evaluation

In this chapter we will evaluate performance of proposed algorithms we discussed in chapter 3.

We first define the evaluation criteria we will use to compare these algorithms in section 4.1

and afterward we will describe the synthetic and real datasets on which the experiments are

performed in section 4.2. Results of the experiments are provided and analyzed in section 4.4

and 4.5.

4.1 Evaluation Criteria

To measure the performance of algorithms, we try to answer to the following questions:

• What is the accuracy of distributed algorithms and what is the effect of distributed

processing on model accuracy?

• What is the speedup of the distributed algorithms comparing to when they are run on

a single machine?

• How does distributed algorithms perform when size of the dataset is increasing? Are

they more scalable than sequential algorithms?

We use three different measurements to measure the results when trying to answer above

questions.

42

CHAPTER 4. EMPIRICAL EVALUATION 43

4.1.1 Accuracy

We use RMSE to measure accuracy of an algorithm. RMSE is calculated using the following

equation [21]:

RMSE =

√√√√ 1

n

n∑
i=1

(εi)2 (4.1)

In above equation εi is the difference between the actual and predicted value of target

value (it is introduced in section 2.1.1) for ith data item in the test. To measure the RMSE

of an algorithm on a test set, we first construct the regression tree or piecewise regression

model by training the corresponding algorithm on training set. Afterward we use a test set

(containing data items that has not been used in training phase) to measure the RMSE of

the algorithm. As it is obvious in equation 4.1, RMSE is measured by calculating the squared

root of average of sum of square of difference of the predicted target value by model and the

actual target value of data item in the test set.

4.1.2 Speedup

In this case we aim to find out how faster an algorithm running on a MapReduce cluster with

64 mappers and n reducers constructs a regression model for a dataset compared to when

same algorithm is run on a single machine. This metric is measured as following:

speedupn =
tseq
tmr

(4.2)

In above equation tmr is the time needed to construct the regression model on a MapRe-

duce cluster and tseq is the time needed to construct the regression model on a single machine.

Same algorithm that is used to generate the MapReduce model is also used to generate the

model on a single machine. In our simulation, we run the simulated MapReduce version of

the distributed algorithm on a single machine too (all map and reduce phases are run se-

quentially on a single machine). To measure the runtime of map (reduce) phase we measure

the maximum time of all the mappers (reducers) in the map (reduce) phase. Time overhead

in data communication between map and reduce phases is not estimated in our simulation.

Therefore, our speedup results are overestimates and can be considered the upper bound of

speedup we can achieve in practice. For both single machine and MapReduce run of the

program we measured and use wall clock time to calculate the speedup.

CHAPTER 4. EMPIRICAL EVALUATION 44

4.1.3 Scalability

It is one of the most important metrics to measure quality of distributed algorithms. In our

experiments scalability tells us how our algorithms perform when size of a dataset that is used

as the training set increases. When measuring scalability we need to fix number of nodes in

the cluster and change size of the training set. This way by looking at changes in time needed

to construct the model by two different algorithms we would be compare their scalability.

4.2 Overview of Datasets

4.2.1 Real Datasets

The real datasets are borrowed from UCI Machine Learning repository. The borrowed dataset

that our datasets are generated from is called IHEPC (Individual Household Electric Power

Consumption) [9]. This dataset contains 2,075,259 data items and 9 features. We have chosen

randomly 4,111 data items (out of all data items in the dataset) as test set, and rest of data

items are considered as training set.

This dataset has some missing values (nearly 1.25% of the rows) for which we have used

average value of all data items from beginning of the dataset to the missing value, as its value

(average value of same feature in other data items is used to populate a missing feature).

Table 4.1: Summary of Real Datasets
Dataset Model Type Axes Predicted Feature Training size Test size

IHEPC1 [9]
Real Dataset 9

sub metering 3
2,071,148 4,111IHEPC2 [9] sub metering 2

IHEPC3 [9] sub metering 1

Although the original dataset has 9 features (including target feature), we have dropped

the first feature (date feature) due to its irrelevance to the target feature. Thus the dataset

includes 8 features from which one is target feature. Second feature of the dataset (time

feature) which is time of the day in hh : mm : ss is also converted to an integer which is equal

to number of minutes passed from midnight. For example value 17 : 24 : 05 is converted to

1044 (only hour and minute is considered and second is dropped).

Three features of this dataset called sub metering 1, sub metering 2, and sub metering 3

could be used as the target value of the dataset to predict. Thus we decided to use this dataset

to generate three datasets called IHEPC1, IHEPC2, and IHEPC3, by target features

sub metering 3, sub metering 2, and sub metering 1 correspondingly. Information about

CHAPTER 4. EMPIRICAL EVALUATION 45

the real datasets are summarized in table 4.1. We will use dataset name (first column of the

table) to refer to each of these datasets in results and analysis sections.

Table 4.2: Summary of Synthetic Datasets
Dataset Model Type Axes Training size Test size

ptoy10d1 Polynomial 10

100,000 1,000

ptoy10d2 Polynomial 10
ptoy20d1 Polynomial 20
ptoy20d2 Polynomial 20
ttoy10d1 Trigonometry 10
ttoy10d2 Trigonometry 10
ttoy20d1 Trigonometry 20
ttoy20d2 Trigonometry 20
gtoy10d1 Gaussian Mixture 10
gtoy10d2 Gaussian Mixture 10
ttoy10d3 Trigonometry 20 1,000,000 1,000

4.2.2 Synthetic Datasets

We have generated 11 different synthetic datasets. We used three different class of mod-

els (Polynomial, Trigonometry, and Gaussian Mixture) to generate 10 and 20 dimensional

datasets. Each of the generated datasets has 100,000 training items and 1,000 test items.

One of the 20-dimensional trigonometry datasets has 1,000,000 training items, but still has

1000 test items in its test set. This dataset used same model as ttoy10d2, but only has more

data items in its training set. Summary of the information about these datasets is presented

in table 4.2. First column of this table includes the datasets’ names that will be used to refer

them in results and analysis sections. The functions used to generate these synthetic datasets

is listed in appendix A.

4.3 Overview of Experiments

All experiments are performed on a MacBook Air machine with Intel Core i5 processor and

4GB of DDR3 Ram and SSD hard drive. The machine runs Mac OS X 10.7.5. Three

algorithms are analyzed and compared in this chapter:

• Regression Tree algorithm that is running sequentially on a single machine referred

as baseline algorithm in experiments. We compare the accuracy results of Slope-

changing and MRRT algorithm with this algorithm. It also is used in scalability, speedup

and prediction speed analysis. We also compare the MRRR(*S*) algorithm with the

CHAPTER 4. EMPIRICAL EVALUATION 46

baseline algorithm. MRRT(*S*) is explained in the following paragraph (here * is a

wildcard character).

• MapReduce Regression Tree algorithm (MRRT) simulated in Matlab is the other

algorithm. In case of this algorithm the code for mappers and reducers are run sequen-

tially and the highest time among mappers and reducers is considered as the map and

reduce time (mappers are run in parallel when running on a real MapReduce frame-

work). As described in section 2.2, in real implementations of MapReduce framework

(such as Hadoop), data are shuffled among machines between map and reduce phases.

This shuffling needs communication time that we are unable to measure in a simulated

version of algorithms. Thus we will use tcom to indicate communication time needed for

shuffling when we present and discuss the results.

We experiment different versions of MRRT algorithm. Each version could be a combina-

tion of Weighted, Overlapped, and Sequential features. These features of the algorithm

are described in section 3.1. The weighted version uses prediction of neighboring mod-

els in addition to prediction of the main model in order to predict the target value. In

overlapped version, subspaces of the feature space are overlapped in order to decrease

the borderline data points’ prediction. Sequential version is when we run the algorithm

on a single machine instead of a MapReduce cluster. These different features could be

combined in an experiment. For example MRRT(WO) means a version of MRRT that

uses overlapped subspaces of the feature space to construct the model, and also gener-

ates a prediction that is a weighted average of prediction of the model for the subspace

that data points is located in, and prediction of the neighboring models of that model.

• Slope-changing Algorithm simulated in Matlab is the third algorithm we analyze in

this chapter. This algorithm also need shuffling time that is not possible to measure

in a simulated version of the algorithm, thus we use tcom to indicate communication

time in this algorithm. The estimated time for this algorithm is also measured like

MapReduce Regression Tree algorithm by considering highest map and highest reduce

time in map and reduce phases. This algorithm is not currently scalable enough to

work on datasets with dimensions more than 5, thus we do not compare this algorithm

with the MRRT algorithm that works on high-dimensional datasets. This algorithm is

compared to baseline algorithms.

We would perform different experiments in order to analyze accuracy, speedup, and scal-

ability of different algorithms. We also run some experiments in order to compare different

versions of MRRT algorithm.

CHAPTER 4. EMPIRICAL EVALUATION 47

4.4 MRRT Experiment Results

4.4.1 Number of Dimensions to Split Along

Dividing the feature space into subspaces can be done in different ways. We could divide

it along one dimension, or divide it along different dimensions simultaneously. For example

for a 2-dimensional feature space, we could divide the feature space into smaller rectangular

subspaces (dividing along both dimensions of the feature space) or we could divide it only along

one dimension and generate parallel strips of subspaces in the feature space (see figure 4.1).

Since one model is constructed for each of feature space’s subspaces, the way we divide the

feature space would affect the quality of model. In this experiment we try to find out whether

dividing along one dimension or dividing along several dimensions would generate a model of

higher quality.

Figure 4.1: Splitting the feature space to subspaces.

This experiment is done on all synthetic and real datasets. To perform the experiment first

divided the feature space of each dataset along first dimension and measured learning time

and also accuracy of generated model over the test set. Next we divided the feature space

of each dataset along first and second dimensions (two dimensions) simultaneously. Number

of cluster node is fixed to 64 for both division methods of this experiment. We used neither

overlapped nor weighted version of the MRRT algorithm in both cases.

CHAPTER 4. EMPIRICAL EVALUATION 48

Table 4.3: Comparing accuracy and learning time of MRRT when dividing the feature space
along one dimension versus two dimensions on synthetic datasets. As it can be seen, none
of the methods for dividing the feature space is superceeding the other one and there is no
obvious reason to prefer one over the other one based on this experiment. The learning time
of algorithms in both methods is also similar.

One Dimension Two Dimensions
Dataset MRRT RMSE Learning Time MRRT RMSE Learning Time
gtoy10d1 46511.14 0.28 38366.02 0.28
gtoy10d2 39614.44 0.29 25655.23 0.27
ptoy10d1 23.83 0.35 23.31 0.26
ptoy10d2 303.71 0.46 283.01 0.31
ttoy10d1 345.23 0.32 381.87 0.39
ttoy10d2 118.50 0.30 122.99 0.31
ptoy20d1 13.69 0.44 14.30 0.37
ptoy20d2 147.48 0.23 159.60 0.23
ttoy20d1 800.41 0.58 780.07 0.45
ttoy20d2 576.87 0.48 603.22 0.43

4.4.1.1 Result on Synthetic Datasets

Table 4.3 exhibits the result of this experiment on all synthetic datasets. As it can be seen

each method wins in 5 out of 10 datasets. The learning time is also similar in both methods.

And thus we could conclude that splitting the feature space over several dimensions might

not have a major advantage over splitting along one dimension.

Table 4.4: Comparing accuracy and learning time of MRRT when dividing the feature space
along one dimension versus two dimensions on real datasets. As it can be seen, Two Di-
mensions split wins in accuracy and One Dimension split wins in learing time. The accuracy
difference is not a major difference, but the learning time difference is significant.

One Dimension Two Dimensions
Dataset MRRT RMSE Learning Time MRRT RMSE Learning Time
IHEPC1 3.83 4.70 3.76 49.43
IHEPC2 2.89 3.26 2.78 26.13
IHEPC3 3.19 2.71 3.12 7.63

4.4.1.2 Result on Real Datasets

Table 4.4 lists result of this experiment on real datasets. We expect the results be similar

because these three datasets are copy of each other except the change in their target feature

(see section 4.2). Considering this we see that splitting along first two dimensions wins in

all three cases, but not by a significant difference. On the other hand splitting along one

CHAPTER 4. EMPIRICAL EVALUATION 49

dimensions wins on learning time by a significant difference. We are thinking of two reasons

for why we observe a significant difference in learning time.

Since the accuracy is higher and learning time is also higher, we can assume that the models

constructed in two dimensions split version might be more complex than models constructed

by one dimension split version. For this reason learning time is higher and consequently

accuracy is higher.

The other reason for having a large learning rate might be the way data is shuffled among

nodes of MapReduce cluster. Since we want to be able to split the feature space along as many

as dimensions that we want simultaneously, we need to implement this feature recursively. If

we implement it iteratively we need to have as many as number of dimensions we would like

to split along nested loops. Since the code needs to work for datasets with different number

of dimensions, either we need to generate the code dynamically on the fly at runtime when

number of dimensions to split along is specified, or have a recursive code. We have used

the latter choice, and thus we think it affects the learning time of the two dimensions split

method. We need to point out that learning time is not significantly different in the same

experiment we had for synthetic datasets. The reason is that all the synthetic datasets are

of size 100,000 data items while real datasets include around 2,000,000 data items. Thus the

problem shows itself in the real dataset experiment and not in synthetic dataset experiment.

4.4.1.3 Summary

Based on the result in two preceding subsections, we assume dividing along one dimensions is

preferable to dividing along several dimensions at the same time for the following reasons, and

we would split the feature space along only one dimension in other experiments we perform:

• When dividing the feature space along several dimensions we do not have full control

over number of final subspaces, because final number of subspaces is multiplication of

number of split points we have chosen along each dimension. On the other hand when

we divide the feature space along one dimension, we can simply generate as many as

subspace we need. The former method would make the load balancing a challenging

task. For example assume we have n node for constructing the final model for each

subspace, but number of subspaces is slightly more than number of nodes. In this case

some nodes need to perform the model construction task two times and thus this will

affect the total runtime of the MapReduce round which is equal to: max(map-time of all

nodes) + communication time + max(reduce-time of all nodes). If one node runs two

map or reduce tasks, then it will increase the MapReduce time not for a minor amount.

• Recursive implementation of the part of the MapReduce program in which we want to

CHAPTER 4. EMPIRICAL EVALUATION 50

split the data among nodes in order to deliver data items in each subspace of the feature

space to a certain node (in order to construct the model for that subspace), might have

a negative effect on learning time when dataset size is large.

• In either synthetic and real dataset experiment we have not observed a major difference

in accuracy of the model.

4.4.2 Overlapping Subspaces and Neighbor-weighted Predictions

Figure 4.2: Summary of MRRT versions

We could have four different MRRT versions based on overlapping/non-overlapping sub-

spaces, and weighted/un-weighted prediction. Figure 4.2 depicts these four different versions.

When presenting MapReduce Regression Tree in section 3.1, we talked about overlapping

subspaces. If we divide the feature space with no overlap, no each data item would be given to

two nodes of the cluster, but with overlapping we deliberately let the subspaces overlap and

some data items to be given to more than one node. We intuitively know that overlapping

would help to increase the accuracy of generated model, but at the same time would have a

negative effect on learning time. We would run experiments to verify whether our intuition is

correct or not. This way we would compare two different versions of MMRT which are MRRT

and MRRT(O).

After the model is generated, predicting the target value for a new data item could be done

simply by retrieving the corresponding model and making the prediction. The alternative is

using using the neighboring models of the main model corresponding to the date item and

use all models to predict the target value. A simple choice for using the main model and two

neighboring model to predict the target value is calculating a weighted average by weights of

CHAPTER 4. EMPIRICAL EVALUATION 51

0

15000

30000

45000

60000

0 0.25 0.5 0.75 1.0 1.25 1.5

gtoy10d1

RM
SE

 v
al

ue

Overlap Amount

0

10000

20000

30000

40000

0 0.25 0.5 0.75 1.0 1.25 1.5

gtoy10d2

RM
SE

 v
al

ue

Overlap Amount

0

7.5

15.0

22.5

30.0

0 0.25 0.5 0.75 1.0 1.25 1.5

ptoy10d1

RM
SE

 v
al

ue

Overlap Amount

0

100

200

300

400

0 0.25 0.5 0.75 1.0 1.25 1.5

ptoy10d2
RM

SE
 v

al
ue

Overlap Amount

0

87.5

175.0

262.5

350.0

0 0.25 0.5 0.75 1.0 1.25 1.5

ttoy10d1

RM
SE

 v
al

ue

Overlap Amount

100.0

107.5

115.0

122.5

130.0

0 0.25 0.5 0.75 1.0 1.25 1.5

ttoy10d2

RM
SE

 v
al

ue

Overlap Amount

Figure 4.3: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 10-dimensional
datasets (gtoy10d1, gtoy10d2, ptoy10d1, ptoy10d2, ttoy10d1 and ttoy10d2) datasets with
different overlap values when dividing along first dimension.

CHAPTER 4. EMPIRICAL EVALUATION 52

2 for main model and 1 for each neighboring model (when dividing the feature space along

one dimension only). Intuitively we could say that using weighted prediction at least would

decrease the prediction error for data items that are close to the split point borderline, but

we need to very this intuition by an experiment. By performing this experiment we would

compare MRRT and MRRT(W) to each other.

There is another possiblity for learning and prediction which is having a combined version

of algorithm that uses both subspace overlapping and weighted prediction. Since both of

these methods are partially trying to help with data items that are close to the split point

borderline, it is not obvious if combining these two features would help to improve accuracy

or not. We need to run an experiment to find out the answer to this question. By performing

this experiment we would have the result for all four different versions of MRRT (MMRT,

MRRT(O), MRRT(W), MRRT(WO)), and would be able to decide and choose the best one

among them.

We run the following experiment to answer all above questions. We change the overlapping

factor from 0 to 1.5 by step size of 0.25, and would calculate the RMSE of MRRT(O), and

MRRT(WO). This way we also have calculated RMSE of MRRT and MRRT(W) when overlap

is 0, and we would be able to compare these four algorithm. To run the experiment we fixed

number of nodes in the cluster to 64, and run the experiment on all synthetic and real datasets.

Results of this experiment is illustrated in two following subsections.

4.4.2.1 Result on Synthetic Datasets

Figures 4.3 and 4.4 depicts result of experiment for all 10 dimensional and 20 dimensional syn-

thetic datasets. As it can be seen in these two figures in 8 out of 10 datasets, the MRRT(WO)

is below or equal to MRRT(O). This means that for all datasets except ptoy20d1 and ptoy20d2

MRRT(WO) has lower RMSE than MRRT(O) and thus weighted combination of WO has

lower RMSE than O. If we look at the the RMSE on the y axis of the figures, where overlap-

ping is 0, we observe again that weighted version has lower RMSE than un-weighted version

for 8 datasets (Table 4.5 represents parts of the results depicted in figures 4.3 and 4.4 that is

related to 0 overlapping in tabular format). This means that MRRT(W) is performing better

than MRRT. No the only remaining question is if MRRT(WO) is performing better than or

equal to MRRT(W). The answer to this question can be found by checking if there on points

weighted line if diagrams that have RMSE lower or equal to the start point of same line. The

answer is yes, and we see that at overlap around 0.75 and 1 we have RMSE lower than or

equal to overlap 0 point of the weighted line in 8 out of 10 datasets. Thus we conclude that

the MRRT(WO) has lowest RMSE among these four versions of MRRT algorithm.

CHAPTER 4. EMPIRICAL EVALUATION 53

0

10

20

30

40

0 0.25 0.5 0.75 1.0 1.25 1.5

ptoy20d1

RM
SE

 v
al

ue

Overlap Amount

0

125

250

375

500

0 0.25 0.5 0.75 1.0 1.25 1.5

ptoy20d2

RM
SE

 v
al

ue

Overlap Amount

0

225

450

675

900

0 0.25 0.5 0.75 1.0 1.25 1.5

ttoy20d1

RM
SE

 v
al

ue

Overlap Amount

0

175

350

525

700

0 0.25 0.5 0.75 1.0 1.25 1.5

ttoy20d2

RM
SE

 v
al

ue

Overlap Amount

Figure 4.4: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 20-dimensional
datasets (ptoy20d1, ptoy20d2, ttoy20d1 and ttoy20d2) datasets with different overlap values
when dividing along first dimension.

Table 4.5: Comparing accuracy of MRRT(W) and MRRT both with no overlap. As it can be
seen the MRRT(W) algorithms works bettern than MRRT on most datasets.

Dataset MRRT RMSE MRRT(W) RMSE
gtoy10d1 46511.14 37135.21
gtoy10d2 39614.44 30333.90
ptoy10d1 23.83 17.27
ptoy10d2 303.71 221.72
ttoy10d1 345.23 280.44
ttoy10d2 118.50 114.02
ptoy20d1 13.69 33.02
ptoy20d2 147.48 400.87
ttoy20d1 800.41 652.79
ttoy20d2 576.87 480.99

CHAPTER 4. EMPIRICAL EVALUATION 54

Using weighted version would increase the prediction time, and using overlapping would

increase the learning time. By looking at the diagrams we notice that we will not be able to

have better RMSE in non-weighted version comparing to weighted version. Thus we cannot

ignore the the weighted feature of the algorithm, but it can be observed that weighted non-

overlapped version could be a good choice for many cases.

0

0.975

1.950

2.925

3.900

0 0.25 0.5 0.75 1.0 1.25 1.5

IHEPC1

RM
SE

 v
al

ue

Overlap Amount

Figure 4.5: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on IHEPC1 real
dataset with different overlap values when dividing along first dimension.

4.4.2.2 Result on Real Datasets

Figure 4.5 depicts result of overlapping subspaces and weighted prediction for IHEPC1 real

dataset. As it is obvious all the analysis for the synthetic datasets in previous subsection is

valid for real dataset also. The overlapping value with lowest RMSE for this dataset is 0.75.

4.4.2.3 Summary

MRRT(WO) version of algorithm is the one with the lowest RMSE on 8 out of 10 synthetic

datasets and also on IHEPC1 real dataset. The overlapping value with lowest RMSE error

is also around 0.75 and 1. We have chosen 0.75 as the overlapping value for our following

experiments.

4.4.3 Comparing the Accuracy of MRRT and the Baseline Algo-

rithm

Although main goal of implementing an algorithm for MapReduce framework is increasing

speed for large datasets, but it would be nice if the devised algorithm achieves both high

CHAPTER 4. EMPIRICAL EVALUATION 55

accuracy and high speed. The question here is how often MRRT algorithm will achieve higher

accuracy than baseline algorithm on test set. To answer this question we run an experiment

in which we fix number of nodes in the cluster to 64, and overlapping factor to 0.75. Then

we run the MRRT(WO) algorithm on all synthetic datasets and also all real datasets. Then

we calculated the highest possible improvement in RMSE and also number of dimensions

that might help us to achieve a RMSE lower than baseline algorithm. We also calculated the

expected value of MRRT(WO)’s RMSE to show what would be the expected value of RMSE

in case a random dimension is chosen to split the dataset along. These numbers would help

us to answer to the raised question.

Table 4.6: Comparing accuracy of Weighted Overlapping MapReduce Regression Tree and
baseline algorithm on 10-dimensional synthetic datasets. Numbers in the table are RMSE
values. MRRT(WO) algorithm always performs better than baseline algorithm, when splitting
the feature space is done along one dimension and if the dimension to split is chosen properly.

Dataset: gtoy10d1 gtoy10d2 ptoy10d1 ptoy10d2 ttoy10d1 ttoy10d2

Baseline RMSE: 37985.11 27691.92 10.61 112.82 298.8 119.3

MRRT(WO)
RMSE when
split along
dimension:

1 37566.29 21912.22 14.93 175.36 267.33 110.04
2 40205.10 35617.12 14.80 172.23 332.59 108.07
3 32009.29 20059.11 10.82 122.49 300.70 106.75
4 40952.27 20766.81 14.49 171.50 334.25 109.10
5 31812.41 25576.34 9.32 96.90 338.11 107.12
6 37887.38 27875.03 15.52 179.55 317.81 107.28
7 45558.38 26696.26 15.17 161.38 255.21 108.36
8 35921.19 27483.59 13.61 177.81 321.46 107.05
9 43081.88 18591.08 9.45 102.84 294.35 110.34
10 33530.82 25113.43 9.17 99.08 264.81 107.07

Max Improvement: 16.3% 32.9% 13.6% 14.1% 14.6% 10.5%
Avg Improvement: 0.3% 9.8% -20.0% -29.3% -1.3% 9.4%

Count2: 6 8 3 3 4 10
Expected value3: 37852.50 24969.10 12.73 145.91 302.66 108.12

4.4.3.1 Result on Synthetic Datasets

Tables 4.7 and 4.7 list the RMSE of baseline algorithm on test set of different datasets, and

also RMSE of models constructed by MRRT(WO) when feature space is divided to subspaces

along each dimension of all 10 and 20 dimensional synthetic datasets on test set. It could be

observed that it is possible to decrease RMSE achieved by baseline algorithm by a minimum

of 10.2% (for ttoy10d2 dataset) and a maximum of 32.9% (for gtoy10d2 dataset).

2Number of Dimensions giving better RMSE than Regression Tree algorithm (out of 10)
3Expected value of RMSE for MRRT(WO)

CHAPTER 4. EMPIRICAL EVALUATION 56

Table 4.7: Comparing accuracy of Weighted Overlapping MapReduce Regression Tree and
baseline algorithm on 20-dimensional synthetic datasets. Numbers in the table are RMSE
values. MRRT(WO) algorithm always performs better than baseline algorithm, when splitting
the feature space is done along one dimension and if the dimension to split is chosen properly.

Dataset: ptoy20d1 ptoy20d2 ttoy20d1 ttoy20d2

Baseline RMSE: 10.20 106.29 733.20 582.96

MRRT(WO)
RMSE when
split along
dimension:

1 9.60 86.43 649.71 490.82
2 10.26 92.45 624.76 496.87
3 9.86 91.43 687.27 524.25
4 9.81 92.63 696.12 546.04
5 10.04 90.26 678.56 509.32
6 10.21 92.66 670.53 537.87
7 9.74 86.99 678.85 554.68
8 10.65 97.20 631.24 554.62
9 10.96 115.77 679.03 562.4
10 10.29 95.77 627.24 548.81
11 10.25 94.89 653.55 550.88
12 10.32 94.00 595.96 486.74
13 9.81 96.47 682.69 546.26
14 10.42 95.44 665.98 546.35
15 9.75 91.15 681.24 525.63
16 9.95 97.25 674.28 556.59
17 10.51 89.61 676.80 558.21
18 11.02 99.73 609.81 556.44
19 10.51 93.55 644.86 512.29
20 8.99 93.14 667.54 553.13

Max Improvement: 11.9% 18.7% 18.7% 16.5%
Avg Improvement: 0.5% 11.2% 10.1% 8.1%

Count4: 9 19 20 20
Expected value5: 10.153 94.52 655.27 539.25

CHAPTER 4. EMPIRICAL EVALUATION 57

There is no dataset for which the MRRT(WO) algorithm cannot improve the baseline

algorithm’s RMSE, if the dimension to split along is chosen properly. We will introduce a

method for choosing the dimension along in section 4.4.4. Expected value of RMSE in 7

out of 10 datasets is less than baseline algorithm’s RMSE. It means that if the dimension to

split along is chosen randomly in 7 out of 10 cases the expected RMSE is less than baseline

algorithm. For ttoy20d1 and ttoy20d2 20 dimensional datasets, MRRT(WO) achieves lower

RMSE on test set than baseline algorithm if the feature space is divided on subspace on any

dimension. That means that there is no way for baseline algorithm to achieve higher accuracy

than MRRT(WO). For ptoy20d2 20 dimensional dataset this value is 19 out of 20 dimensions.

MRRT(WO) would achieve higher accuracy for ttoy10d2 10 dimensional dataset also on any

dimension.

Table 4.8: Comparing accuracy of MRRT(WO) and baseline algorithm on real datasets.
Numbers in the table are RMSE values. MRRT(WO) algorithm always performs better than
baseline algorithm, when splitting the feature space is done along one dimension and if the
dimension to split is chosen properly.

Dataset: IHEPC1 IHEPC2 IHEPC3

Baseline RMSE: 3.55 3.08 2.79

MRRT(WO)
RMSE when
split along
dimension:

1 3.08 2.43 2.46
2 3.24 2.38 2.74
3 3.29 2.67 2.66
4 3.26 2.60 2.82
5 3.32 2.47 2.37
6 3.56 2.84 3.07
7 3.55 2.87 2.90

Max Improvement: 13.24% 22.73% 15.05%
Avg Improvement: 6.2% 15.3% 2.6%

Count4: 6 7 4
Expected value5: 3.33 2.61 2.72

4.4.3.2 Result on Real Datasets

Table 4.8 lists the RMSE of baseline algorithm and also RMSE of MRRT(WO) on all models

constructed by splitting along each dimension of IHEPC1, IHEPC2, and IHEPC2 real

datasets. It could be observed that it is possible to decrease RMSE achieved by baseline

algorithm 13.24% (for IHEPC1 dataset), 22.73% (for IHEPC2 dataset), and 15.05% (for

4Number of Dimensions giving better RMSE than Regression Tree algorithm (out of 20)
5Expected value of RMSE for MRRT(WO)
4Number of Dimensions giving better RMSE than Regression Tree algorithm (out of 20)
5Expected value of RMSE for MRRT(WO)

CHAPTER 4. EMPIRICAL EVALUATION 58

IHEPC3 dataset). There is no dataset on which the MRRT(WO) algorithm cannot improve

the baseline RMSE if the dimensions to split along is chosen properly. Expected value of

RMSE for all real datasets is also less than baseline algorithm’s RMSE. MRRT(WO) would

have a lower RMSE than baseline algorithm for dataset IHEPC2 if any dimension is chosen

to split along. Same thing happens for 6 out of 7 dimensions of IHEPC1.

4.4.3.3 Summary

If we consider expected value of RMSE for MRRT(WO) algorithm for all synthetic and real

datasets, we observe that in 7 out of 10 synthetic datasets and all real datasets the expected

value of RMSE would be less than baseline algorithm’s RMSE, and in case of one synthetic

dataset (ttoy10d1) the expected value of RMSE is roughly equal to baseline algorithm’s

RMSE. It means that for 77% of datasets the expected value of RMSE by MRRT(WO) is less

than baseline algorithm’s RMSE, and in 84.5% of datasets it is less than or equal to baseline

algorithm’s RMSE.

It also worth mentioning that even in case of two synthetic datasets that MRRT(WO) does

not have a lower expected RMSE, it is possible to achieve 13.6% and 14.1% improvement in

RMSE if the dimension to split along is chosen properly. Next session we introduce a method

for choosing the best dimensions to split along.

4.4.4 Choosing the Dimension to Split Along

When we divide the feature space along one dimension, MRRT algorithm’s accuracy would

depend on the dimension we choose to split along. Running the algorithm as many as number

of dimensions in the dataset is not the preferable way of finding out which dimension is better

to split along. As another solution we could select a small sample of dataset (for example

10% of data items in the dataset), and run the MRRT algorithm on the sample to see what

dimension of the sample would lead to a model with highest accuracy. The same dimension

might be the dimension with lowest RMSE to split along on the original dataset. This

assumption seems reasonable, but we need to run experiments to verify if the assumption is

valid.

In this experiment we inspect how accuracy of the model constructed using original dataset

would change when dividing the feature space along different dimensions. Same procedure is

applied on a sample of size 10% of the original dataset to see how model accuracy changes

when dimension to split changes. This way we would be able to see if there is any relation

among accuracy of models constructed based on original dataset and model constructed based

on sample dataset. This experiment would show how helpful is the preProcess method

CHAPTER 4. EMPIRICAL EVALUATION 59

0

22500

45000

67500

90000

1 2 3 4 5 6 7 8 9 10

gtoy10d1

RM
SE

Dimension to split along

0

12500

25000

37500

50000

1 2 3 4 5 6 7 8 9 10

gtoy10d2

RM
SE

Dimension to split along

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

ptoy10d1

RM
SE

Dimension to split along

0

125

250

375

500

1 2 3 4 5 6 7 8 9 10

ptoy10d2
RM

SE

Dimension to split along

0

125

250

375

500

1 2 3 4 5 6 7 8 9 10

ttoy10d1

RM
SE

Dimension to split along

0

75

150

225

300

1 2 3 4 5 6 7 8 9 10

ttoy10d2

RM
SE

Dimension to split along

Figure 4.6: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 10 dimensional
datasets with overlap = 0.75, when splitting along differnt dimensions.

CHAPTER 4. EMPIRICAL EVALUATION 60

introduced in section 3.1.

This experiment is performed on all synthetic datasets and the all real datasets. Number

of cluster nodes is fixed to 64, and overlapping factor is set to 0.75 in all experiments. The

experiment runs the MRRT algorithm on each dataset as many time as number of dimensions

in each dataset.

4.4.4.1 Result on Synthetic Datasets

Figures 4.6 and 4.7 shows result of this experiment on 10 and 20 dimensional synthetic

datasets. The purple and red lines are results of running MRRT(O) and MRRT(WO) on

original datasets. Black and green lines are result of running MRRT(O) and MRRT(WO) on

sample of size 10% of datasets. To see if the run on sample is helping to find the dimension

with lowest RMSE to split, we need to see if the lowest RMSE value on sample dataset is

matching the lowest RMSE value on dataset itself (for each algorithm; i.e purple and black

lines need to be compared to each other and red and green lines to each other).

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ptoy20d1

RM
SE

Dimension to split along

0

175

350

525

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ptoy20d2

RM
SE

Dimension to split along

0

225

450

675

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ttoy20d1

RM
SE

Dimension to split along

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ttoy20d2

RM
SE

Dimension to split along

Figure 4.7: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on 20 dimensional
datasets with overlap = 0.75, when splitting along differnt dimensions.

CHAPTER 4. EMPIRICAL EVALUATION 61

Except diagrams for gtoy10d1 and gtoy10d2 in figures 4.6 and 4.7 that could be read

as no relation between sample RMSE and dataset RMSE, all other diagrams offer that if we

choose a dimension with low sample RMSE to split the feature space of original dataset along,

we would have a low RMSE. Although diagrams could give us a high level overview of this

relation, but we need more precise information to be able to judge if sampling could help with

choosing the best dimension to split along. Tables 4.9 and 4.10 give more information in this

regard.

Table 4.9: Dimensions with lowest RMSE on synthetic datasets and rank of same dimension
on samples using MRRT(O) and MRRT(WO) algorithms.

MRRT(O) MRRT(WO)

Dataset
Dim with lowest
RMSE on dataset

Rank of the Dim
on sample

Dim with lowest
RMSE on dataset

Rank of the Dim
on sample

gtoy10d1 5 2 5 2
gtoy10d2 9 3 9 1
ptoy10d1 5 3 10 1
ptoy10d2 10 1 5 1
ttoy10d1 7 2 7 2
ttoy10d2 1 1 3 3
ptoy20d1 9,20 1,8 20 4
ptoy20d2 1 13 1 5
ttoy20d1 12 1 12 1
ttoy20d2 1 2 12 1

Table 4.9 answers the following question: If we have the result of running the algorithms

on sample of datasets, how many dimensions we need to run the algorithm for on real dataset

to make sure that we get the lowest possible RMSE. This table lists dimensions with lowest

RMSE on synthetic datasets and rank of same dimension on samples using MRRT(O) and

MRRT(WO) algorithms. For example for gtoy10d1 dataset dimension 5 would lead to lowest

RMSE using MRRT(O) algorithm and same dimension would have the second lowest RMSE

(among all dimensions) when MRRT(O) algorithm is performed on the sample of the dataset

(with size 10% of size of original dataset). Ignoring ptoy20d2 dataset, this table suggests that

the dimension that results in the lowest RMSE on original dataset is among 3 dimensions

that results in lowest RMSE on sample for 10 dimensional datasets and among 5 dimensions

that results in lowest RMSE on sample for 20 dimensional datasets.

What if we do not want to achieve the best possible RMSE, and just want to get an

1If the dimension with 3rd or 4th lowest value of RMSE on sample (dims 5, 20 respectively) is selected to
split along on real dataset, RMSE on real dataset would be 10.04 and 8.99 respectively

2If the dimension with 2nd lowest value of RMSE on sample (dims7) is selected to split along on real
dataset, RMSE on real dataset would be 86.99

CHAPTER 4. EMPIRICAL EVALUATION 62

Table 4.10: Dimensions with lowest RMSE on sample of synthetic datasets and RMSE of
dataset when divided along same dimension using MRRT(WO) algorithm.

MRRT(WO)

Dataset
Dim with lowest
RMSE on sample

RMSE of the Dim
on dataset

Baseline RMSE Improvement

gtoy10d1 1 37566.29 37985.11 1.10%
gtoy10d2 9 18591.08 27691.92 32.86%
ptoy10d1 10 9.17 10.61 13.57%
ptoy10d2 5 96.90 112.82 14.11%
ttoy10d1 10 264.81 298.8 11.38%
ttoy10d2 1 110.04 119.3 7.76%
ptoy20d1 9 10.961 10.20 -7.45%
ptoy20d2 9 115.772 106.29 -8.92%
ttoy20d1 12 595.96 733.20 18.72%
ttoy20d2 12 486.74 582.96 16.51%

RMSE near or lower that baseline RMSE? Table4.10 is answering another question. It lists

the dimensions the achieves lowest RMSE on on test set along RMSE of same dimensions

on original dataset. As the last column of this table exhibits, The RMSE of this dimension

would be less than RMSE of baseline algorithm in 8 out of 10 datasets, and in two remaining

datasets, the RMSE is acceptable, but if we are not satisfied with that result we only need

to try 1 more dimension (2nd rank dimension on sample) for ptoy20d2 dataset to achieve

18.16% performance over the baseline algorithm, and 2 or 3 more dimensions (3rd and 4th

rank dimensions on sample) for ptoy20d1 dataset to achieve 1.57% and 11.86% performance

over the baseline algorithm respectively.

Two more observations could be made from diagrams in figures 4.6 and 4.7. First observa-

tion is that although a 10% sample is going to be more sparse comparing to original dataset,

but the MRRT(WO) yet shows to have lower RMSE than MRRT(O). One might expect that

since the data is more sparse, using the neighboring models to help in prediction might not

lead to decreasing the RMSE, but these diagrams show that it might not be the case. Second

observation is that for some datasets such as ttoy10d2, ptoy20d1, and ptoy20d2 model for all

dimensions would lead to close RMSE values.

4.4.4.2 Result on Real Datasets

Figure 4.8 depicts result of this experiment on IHEPC1, IHEPC2, and IHEPC3 real

datasets. As it could be seen in diagrams, here samples again could suggest what dimen-

sions would result in lower RMSEs.

Tables 4.11 and 4.12 also offer same information as tables 4.9 and 4.10 offer for synthetic

CHAPTER 4. EMPIRICAL EVALUATION 63

0

1.5

3.0

4.5

6.0

1 2 3 4 5 6 7

IHEPC1

RM
SE

Dimension to split along

0

1.25

2.50

3.75

5.00

1 2 3 4 5 6 7

IHEPC2

RM
SE

Dimension to split along

0

1.5

3.0

4.5

6.0

1 2 3 4 5 6 7

IHEPC3

RM
SE

Dimension to split along

Figure 4.8: Analyzing accuracy of MRRT(O) and MRRT(WO) algorithms on IHEPC1 real
datasets with overlap = 0.75, when splitting along differnt dimensions.

Table 4.11: Dimensions with lowest RMSE on real datasets and rank of same dimension on
samples using MRRT(O) and MRRT(WO) algorithms.

MRRT(O) MRRT(WO)

Dataset
Dim with lowest
RMSE on dataset

Rank of the Dim
on sample

Dim with lowest
RMSE on dataset

Rank of the Dim
on sample

IHEPC1 1 1 1 1
IHEPC2 1 4 2 1
IHEPC3 5 6 5 3

CHAPTER 4. EMPIRICAL EVALUATION 64

datasets. For real datasets if we chose the dimension that has achieved lowest RMSE on sam-

ple, we always would achieve a lower RMSE comparing to baseline algorithm and improvement

would be between 4.66% and 22.73%.

Table 4.12: Dimensions with lowest RMSE on sample of real datasets and RMSE of dataset
when divided along same dimension using MRRT(WO) algorithm.

MRRT(WO)

Dataset
Dim with lowest
RMSE on sample

RMSE of the Dim
on dataset

Baseline RMSE Improvement

IHEPC1 1 3.08 3.55 13.24%
IHEPC2 2 2.38 3.08 22.73%
IHEPC3 3 2.66 2.79 4.66%

4.4.4.3 Summary

Based on experiments we had on synthetic and real datasets in preceding subsections, preProcess

method that uses a sample of dataset to determine the dimension with lowest RMSE is match-

ing the dimension with lowest RMSE in the original dataset in most cases, and could reduce

the cost of dimension selection comparing to naive method of running the algorithm on all

dimensions of the original dataset in order to chose the dimension with lowest RMSE.

4.4.5 Prediction Time

When having a single regression tree model for the whole dataset (baseline algorithm), the

tree would be bigger than trees constructed by MRRT algorithm that construct regression

tree model for subspaces of the dataset. For this reason traversing the tree and consequently

the test time might be different in two algorithms. In this experiment we measure the time

needed to predict the target value for all data items in the test set using models generated by

each algorithm to see which model is predicting faster, and how faster it is.

In this experiment we changed number of nodes in the cluster and evaluated the result for

32, 64, 96, 128, and 256 nodes in the cluster. Overlap factor is fixed to 0.75 (this parameter

does not affect prediction time). The experiment is done on ttoy20d3 dataset that includes

1,000,000 data items in training set and 1,000 data items in test set. The reason that number

of cluster nodes is changed is that different number of nodes would affect number of subspaces

in the feature space, and size of each subspace consequently. Thus we would have more smaller

regression trees instead less bigger trees (and in the extreme case one huge tree in baseline

algorithm) when number of nodes increases. We expect to have lower prediction time for

MRRT algorithms than baseline. Since MRRT(WO) uses 3 models to predict the target

CHAPTER 4. EMPIRICAL EVALUATION 65

Table 4.13: Comparing prediction time of MRRT(O), MRRT(WO) and baseline algorithm
on 20-dimensional ttoy20d3 synthetic test set containing 1000 test items on different size of
clusters. MRRT(WO) and MRRT(O) algorithms reduce prediction time by more than 80%
comparing to baseline algorithm in all cases.

Baseline MRRT(O) MRRT(WO)

Pred. Time Number of nodes Pred. Time Improvement Pred. Time Improvement

194.79

32 16.94 91.30% 33.95 82.57%
64 8.61 95.58% 16.58 91.49%
96 6.73 96.54% 13.23 93.21%
128 5.49 97.18% 10.53 94.59%
160 5.22 97.32% 10.49 94.61%
192 3.75 98.07% 6.92 96.45%
224 3.15 98.38% 6.60 96.61%
256 3 98.46% 5.79 97.03%

value, and MRRT(O) uses 1 model to predict the target value, we expect that learning time

of MRRT(O) be less than MRRT(WO). It is worth mentioning that the prediction time for

MRRT algorithms is not done in parallel and is done on a single machine.

4.4.5.1 Result on Synthetic Datasets

Table 4.13 lists result of this experiment for ttoy20d3 synthetic dataset. As expected predic-

tion time of baseline algorithm for 1,000 test items is 194.79 seconds and maximum time for

MRRT(WO) is 32.79 seconds and it is when the model is constructed using 32 nodes. The

lowest prediction time of MRRT(WO) algorithm is 6.06 seconds for all 1,000 test items and

it is when the model is constructed using 256 nodes.

4.4.5.2 Result on Real Datasets

Table 4.14 lists result of this experiment on all three real dataset. Prediction time of base-

line algorithm is improved by more than 80% for all datasets and all cluster sizes. Again,

improvement for MRRT(O) is more than MRRT(WO) due to less calculations during predic-

tion. Prediction time for 256 node cluster size is improved more than 95% while it is improved

for 32 node cluster size for more than 80%.

4.4.5.3 Summary

Although prediction time of MRRT algorithms is done sequentially, we observe a high im-

provement in prediction time comparing to baseline algorithm. This improvement is more

than 80% for all real datasets and the experimented synthetic dataset. The improvement

CHAPTER 4. EMPIRICAL EVALUATION 66

Table 4.14: Comparing prediction time of MRRT(O), MRRT(WO) and baseline algorithm on
real datasets’ test sets containing 4111 test items on different size of clusters. MRRT(WO)
and MRRT(O) algorithms reduce prediction time by more than 80% comparing to baseline
algorithm in all cases.

Baseline MRRT(O) MRRT(WO)

Dataset Time Num of nodes Time Improvement Time Improvement

IHEPC1 1266.40

32 123.81 90.22% 244.83 80.67%
64 63.76 94.97% 126.56 90.01%
96 40.64 96.79% 80.90 93.61%
128 34.33 97.29% 68.67 94.58%
160 26.00 97.95% 51.07 95.97%
192 22.33 98.24% 44.44 96.49%
224 19.76 98.44% 38.75 96.94%
256 17.09 98.65% 33.46 97.36%

IHEPC3 979.40

32 75.26 92.32% 148.85 84.80%
64 39.53 95.96% 78.17 92.02%
96 28.12 97.13% 54.70 94.41%
128 22.36 97.72% 44.46 95.46%
160 17.90 98.17% 36.31 96.29%
192 17.20 98.24% 33.27 96.60%
224 16.42 98.32% 31.43 96.79%
256 14.84 98.48% 28.71 97.07%

IHEPC3 351.28

32 29.45 91.62% 58.78 83.27%
64 17.17 95.11% 32.40 90.78%
96 13.70 96.10% 26.06 92.58%
128 11.33 96.77% 22.10 93.71%
160 10.08 97.13% 19.00 94.59%
192 8.73 97.51% 16.40 95.33%
224 8.35 97.62% 16.27 95.37%
256 7.59 97.84% 15.71 95.53%

CHAPTER 4. EMPIRICAL EVALUATION 67

is more when cluster size is bigger, and less when cluster size is smaller. It is because the

regression tree constructed by smaller clusters (due to bigger size of subspaces) are bigger.

4.4.6 Speedup of MRRT Algorithm

An ideal parallel program is a program that uses the resources most, and decrease the runtime

to 1
n of runtime on a single machine (here n is number of nodes in the cluster). When the

program is I/O intensive, runtime might decrease even to a value less than 1
n of runtime on

a single machine. The question is how MRRT performs in this regard?

This experiment measures speedup of MRRT algorithm by fixing the data set size and

changing number of nodes in the cluster. After measuring the learning time on each setting,

we compare them with runtime of the same algorithm on a single machine. By dividing these

values we would calculate the speedup the algorithm and see if speedup is as big is number

of nodes in the cluster or not.

0

75

150

225

300

32 64 96 128 160 192 224 256

MRRT(WO) and MRRT(O) Speedup

Sp
ee

du
p

Number of nodes in the cluster

Figure 4.9: Speedup of MRRT(O) and MRRT(WO) algorithms in log scale and linear scale on
ttoy20d3 dataset with overlap = 0.75 when splitting along the first dimensions. The runtime
of same algorithms on a single machien is 2609.6 seconds.

4.4.6.1 Result on Synthetic Datasets

Learning time of MRRT(O) and MRRT(WO) is same. They both overlap the subspaces

and their subspace size for same cluster size and dataset is same. Thus the speedup values

presented in this section is valid for both algorithms. Figure 4.9 depicts speedup of MRRT

CHAPTER 4. EMPIRICAL EVALUATION 68

algorithm when running on different cluster sizes. The green line is the linear speedup refer-

ence line, and the speedup of algorithm is roughly same as linear speedup. The left diagram

depicts the speedup in log scale and the right diagram depicts it in linear scale. For this

dataset with 1,000,000 data items and 20 dimensions the MRRT algorithm achieves roughly a

linear speedup, but ee believe that the speedup could be higher if the dataset size was larger.

0

75.0

150.0

225.0

300.0

32 64 96 128 160 192 224 256

MRRT(WO) and MRRT(O) Speedup

Sp
ee

du
p

Number of nodes in the cluster

0

75.0

150.0

225.0

300.0

32 64 96 128 160 192 224 256

MRRT(WO) and MRRT(O) Speedup

Sp
ee

du
p

Number of nodes in the cluster

0

75

150

225

300

32 64 96 128 160 192 224 256

MRRT(WO) and MRRT(O) Speedup

Sp
ee

du
p

Number of nodes in the cluster

Figure 4.10: Speedup of MRRT(O) and MRRT(WO) algorithms in log scale and linear scale
on all IHEPC1, IHEPC2, and IHEPC3 real datasets respectively with overlap = 0.75 when
splitting along the first dimensions.

4.4.6.2 Result on Real Datasets

Figure 4.10 depicts the log scale and linear scale diagrams for speedup on all three real

datasets. As we pointed out before since the MRRT algorithm is I/O intensive, we observe a

close to linear speedup for IHEPC1 and IHEPC2 algorithms. The speedup for IHEPC3 is

CHAPTER 4. EMPIRICAL EVALUATION 69

sub linear on the other hand.

4.4.6.3 Summary

MRRT algorithm achieves a close to linear speedup in 2 of 3 real datasets and also synthetic

dataset. We believe that if the dataset size is larger, then the speedup of the algorithm would

stand out better.

4.4.7 Scalability of MRRT Algorithm

In this experiment we are trying to find out which of the MRRT(WO), MRRT(WOS),

and baseline algorithms scales better when dataset size is large. MRRT(WOS) is same is

MRRT(WO) except we assume that it runs on a single machine and all the map and reduce

phases of all subspaces is run by the same machine sequentially. The reason for measuring

the scalability of this version of MRRT is that we would like to see if the MRRT is only useful

for parallel setting or it also could be used when we need a sequential algorithm.

To run this experiment we keep number of nodes in the cluster constant and change

number of data items in the datasets and observe how runtime of each algorithm changes

(how scalable is the algorithm).

1

10

100

200000 400000 600000 800000 1000000

Scalability of different algorithms

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t (

lo
g

sc
al

e)

Number of Dataitems in Dataset

0

5

10

15

20

200000 400000 600000 800000 1000000

Scalability of different algorithms

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t

Number of Dataitems in Dataset

Figure 4.11: Analyzing scalability of baseline, MRRT(WO) and MRRT(WOS) algorithms on
ttoy20d3 datasets with overlap = 0.75 when changing the dataset size from 50,000 items to
1,000,000 data itmes.

4.4.7.1 Result on Synthetic Datasets

Figure 4.11 depicts how learning time of baseline, MRRT(WO), and MRRT(WOS) algorithm

changes when number of data items is changed from 50,000 to 100,000, 200,000, 400,000, and

CHAPTER 4. EMPIRICAL EVALUATION 70

1,000,000. The linear scale-up reference line is also depicted in this figure. This line shows

how a reference algorithm that its runtime increases linearly with its input size would perform.

The result is depicted in both log scale and linear scale formats to show the difference more

clearly. As it can be seen in the figure MRRT(WO)’s scale up is close to linear, while baseline

algorithm’s scale up is far from linear.

Comparing MRRT(WOS) and baseline algorithm’s scalability would help us to see if

MRRT(WOS) is a good candidate to be used when we need a sequential algorithm to be run

on a single machine. It can be observed in the figure that although runtime of MRRT(WOS)

for small number of data items is slightly more than baseline algorithm, but it scales better

than baseline algorithm, and its runtime would be less than baseline algorithm when dataset

size is large, and we expect that the difference would increase when the dataset size increases

for a large amount.

4.4.7.2 Result on Real Datasets

Figure 4.12 depicts same information as explained in previous subsection for all three real

datasets. Here number of data items is changed from 103,557 to 207,115, 414,230, 828,459,

and 2,071,148. Although number of data items in real dataset is more than number of data

items in synthetic dataset (for same experiment in previous subsection), but dimensionality

of dataset is 20 in synthetic dataset and is 7 here. Thus total size of datasets in each step is

roughly same. The linear scale-up reference line is depicted in this figure too, and the result

is depicted in both log scale and linear scale formats to show the difference more clearly.

As it can be observed in the figure MRRT(WO) and MRRT(WOS)’s scalability are close

to optimum scalability in case of all three real datasets (IHEPC1, IHEPC2, and IHEPC3),

while baseline algorithm’s scale up is O(n2).

As in case of synthetic experiment, runtime of MRRT(WOS) for small number of data

items is slightly more than baseline algorithm, but it scales better than baseline algorithm,

and its runtime would be less than baseline algorithm when dataset size is large, and we

expect that the difference would increase when the dataset size increases for a large amount.

We could conclude with this result that MRRT(WOS) is a good replacement to be used when

we need a sequential algorithm to be run on a single machine instead of baseline algorithm.

4.4.7.3 Summary

Experiments on synthetic and real datasets suggest than MRRT’s learning time is scaling

roughly close to linear with dataset size. That means that the bigger the the dataset size, the

better the performance of the algorithm. This is what we need for large scale datasets.

CHAPTER 4. EMPIRICAL EVALUATION 71

1

10

100

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC1

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t (

lo
g

sc
al

e)

Number of Dataitems in Dataset

0

3.75

7.50

11.25

15.00

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC1

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

20
%

 d
at

as
et

Number of Dataitems in Dataset

1

10

100

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC2

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t (

lo
g

sc
al

e)

Number of Dataitems in Dataset

0

2.75

5.50

8.25

11.00

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC2
Le

ar
ni

ng
 T

im
e

fo
r d

at
as

et
 /

Le
ar

ni
ng

 ti
m

e
of

 b
as

e
da

ta
se

t

Number of Dataitems in Dataset

1

10

100

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC3

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t (

lo
g

sc
al

e)

Number of Dataitems in Dataset

0

12.5

25.0

37.5

50.0

414,230 828,459 1,242,689 1,656,918 2,071,148

Scalability of different algorithms on IHEPC3

Le
ar

ni
ng

 T
im

e
fo

r d
at

as
et

 /
Le

ar
ni

ng
 ti

m
e

of
 b

as
e

da
ta

se
t

Number of Dataitems in Dataset

Figure 4.12: Analyzing scalability of baseline, MRRT(WO) and MRRT(WOS) algorithms on
IHEPC1, IHEPC2, and IHEPC3 real datasets with overlap = 0.75 when changing the
dataset size from 103,557 items to 2,071,148 data itmes.

CHAPTER 4. EMPIRICAL EVALUATION 72

Comparing scalability of MRRT(WOS) and baseline algorithm also shows that MRRT(WOS)’s

scalability is higher than baseline algorithm and thus MRRT(WOS) algorithm would be faster

than baseline algorithm when the dataset is larger.

4.4.8 Could MRRT Be Used as a Sequential Algorithm?

We know that MRRT’s accuracy results is valid for both sequential and parallel version of

the algorithm (i.e. MRRT(WOS), and MRRT(WO) would have same RMSE values on same

dataset). In section 4.4.3 we experimented if MRRT algorithm can achieve a RMSE lower

than baseline algorithm, and results were promising. Moreover we presented a method (that

could be used in sequential setting) by which the best dimensions to split along could be

chosen in an effective way (see section 4.4.4). In section 4.4.5 also we showed that MRRT

algorithm’s prediction time is lower than baseline algorithm by more than 80% improvement.

There we discussed that the prediction is assumed to be performed on a single machine for all

data items in the dataset. In section 4.4.7 we also observed that MRRT(WOS) scales better

than baseline algorithm when dataset size is lager.

1

10

100

1000

10000

32 64 96 128 160 192 224 256

Runtime of MRRT(WO)

Ru
nt

im
e

in
 s

ec
on

ds
 (l

og
-s

ca
le

)

Number of nodes in the cluster

Figure 4.13: Comparing runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on
ttoy20d3 dataset with overlap = 0.75 when splitting along first dimensions.

In this section we run one more experiment to answer this question that if MRRT(WOS)

could be used in as a sequential algorithm. The experiment in this section compare runtime

of MRRT(WO), MRRT(WOS) and baseline algorithms when dataset size is fixed and num-

ber of nodes in the cluster changes. Although we know from results in section 4.4.7 that

CHAPTER 4. EMPIRICAL EVALUATION 73

MRRT(WOS) scales up is higher than baseline algorithm when dataset size is increasing, but

we would like to show the runtime difference when dataset size is fixed and number of nodes

is changing.

Table 4.15: Comparing learning time of MRRT(WOS) and baseline algorithm on 20-
dimensional ttoy20d3 synthetic dataset on different number of subspaces. MRRT(WOS)
always perform better than baseline algorithm although it also has better accuracy.

Baseline MRRT(WOS)

Learning Time Number of nodes Learning Time Improvement

2609.57

32 1042.33 60.06%
64 836.15 67.96%
96 828.62 68.25%
128 823.53 68.44%
160 911.25 65.08%
192 721.88 72.34%
224 706.52 72.93%
256 700.10 73.17%

4.4.8.1 Result on Synthetic Datasets

Figure 4.13 depicts runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on ttoy20d3

dataset. Although this experiment is not for comparing MRRT(WO)’s runtime, but compar-

ing its runtime with other two algorithms shows how faster this algorithm is than the other two

algorithms. Comparing MRRT(WOS) and baseline algorithms shows that MRRT(WOS)’ run-

time is smaller than baseline algorithm in all cases. The other observation is that MRRT(WOS)’s

runtime is decreasing when number of cluster nodes is increasing although size of dataset is

not changing. Table 4.15 also compares learning time of MRRT(WOS) and baseline algo-

rithms in a numerical way. The results are same as results shown in figure 4.13, but in a

numeric format.

Table 4.16 compares accuracy of MRRT(WOS) and baseline algorithms and shows that

its accuracy is also not affected negatively by increasing number of nodes in the cluster same

as its runtime.

4.4.8.2 Result on real datasets

Figure 4.14 depicts runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on all

three real datasets. Comparing MRRT(WOS) and baseline algorithms confirms the results on

synthetic dataset and we see that MRRT(WOS)’s runtime is smaller than baseline algorithm

in all cases except two case when number of cluster nodes is 32. The other observation about

CHAPTER 4. EMPIRICAL EVALUATION 74

Table 4.16: Comparing accuracy of MRRT(WOS) and baseline algorithm on 20-dimensional
ttoy20d3 synthetic datasets on different number of subspaces when dataset is divided into
supspaces along first dimension. MRRT(WOS) algorithm’s RMSE is lower than baseline
algorithm in all cases.

Baseline MRRT(WOS)

RMSE Number of subspaces RMSE Improvement

541.87

32 457.56 15.56%
64 443.68 18.12%
96 449.71 17.01%
128 448.71 17.19%
160 449.69 17.01%
192 468.19 13.60%
224 471.16 13.05%
256 469.49 13.36%

1

10

100

1000

10000

32 64 96 128 160 192 224 256

Runtime of MRRT(WO)

Ru
nt

im
e

in
 s

ec
on

ds
 (l

og
-s

ca
le

)

Number of nodes in the cluster

1

10

100

1000

32 64 96 128 160 192 224 256

Runtime of MRRT(WO)

Ru
nt

im
e

in
 s

ec
on

ds
 (l

og
-s

ca
le

)

Number of nodes in the cluster

1

10

100

1000

32 64 96 128 256 Untitled 1 Untitled 2 Untitled 3

Runtime of MRRT(WO)

Ru
nt

im
e

in
 s

ec
on

ds
 (l

og
-s

ca
le

)

Number of nodes in the cluster

Figure 4.14: Comparing runtime of MRRT(WO), MRRT(WOS) and baseline algorithm on
IHEPC1, IHEPC2, and IHEPC3 real datasets with overlap = 0.75 when splitting along
first dimensions.

CHAPTER 4. EMPIRICAL EVALUATION 75

synthetic dataset is also confirmed here and we see that MRRT(WOS)’s runtime is decreasing

when number of cluster nodes is increasing (size of dataset is not changing). This decrease

is significant in some cases. For example for IHEPC1 dataset, the runtime of MRRT(WOS)

is 2
3 of runtime of baseline algorithm when number of cluster nodes is 32, but it reduces to

around 1
3 when number of nodes in the clusters is increased to 256 (with fixed dataset size).

Table 4.17 also depicts same information as figure 4.14 but in numeric format and shows that

runtime improvement percentage increases when number of nodes in the cluster increases.

Table 4.17: Comparing learning time of MRRT(WOS) and baseline algorithm on real datasets
on different number of subspaces. MRRT(WOS) algorithm’s learning time is always less than
baseline algorithm except in one case when number of subspaces is 32.

Baseline MRRT(WOS)

Dataset Learning Time Number of subspaces Learning Time Improvement

IHEPC1 1788.09

32 963.28 46.13%
64 801.90 55.15%
96 688.59 61.49%
128 624.59 65.07%
160 623.86 65.11%
192 612.51 65.75%
224 612.66 65.74%
256 564.36 68.44%

IHEPC2 974.66

32 571.03 41.41%
64 481.69 50.58%
96 445.01 54.34%
128 434.61 55.41%
160 427.00 56.19%
192 419.31 56.98%
224 428.89 56.00%
256 439.17 54.94%

IHEPC3 212.89

32 231.20 -8.60%
64 205.13 3.65%
96 204.55 3.92%
128 208.41 2.10%
160 199.57 6.26%
192 198.70 6.67%
224 192.18 9.73%
256 196.52 7.69%

Table 4.18 confirms the result with synthetic dataset and shows that accuracy of MRRT(WOS)

is also not affected negatively by increasing number of nodes in the cluster when experimenting

real datasets.

CHAPTER 4. EMPIRICAL EVALUATION 76

Table 4.18: Comparing accuracy of MRRT(WOS) and baseline algorithm on three real
datasets on different number of subspaces when dataset is divided into supspaces along first
dimension. MRRT(WOS) algorithm’s RMSE is lower than baseline algorithm in all cases,
and it mostly decreases with increasing number of subspaces.

Baseline MRRT(WOS)

Dataset RMSE Number of subspaces RMSE Improvement

IHEPC1 3.55

32 3.40 4.23%
64 3.13 11.83%
96 3.29 7.32%
128 3.21 9.58%
160 3.31 6.76%
192 3.29 7.32%
224 3.34 5.92%
256 3.28 7.61%

IHEPC2 3.08

32 2.69 12.66%
64 2.43 21.10%
96 2.68 12.99%
128 2.62 14.94%
160 2.83 8.12%
192 2.69 12.66%
224 2.61 15.26%
256 2.82 8.44%

IHEPC3 2.79

32 2.71 2.87%
64 2.46 11.83%
96 2.63 5.73%
128 2.86 -2.51%
160 2.75 1.43%
192 2.81 -0.72%
224 2.85 -2.15%
256 2.75 1.43%

CHAPTER 4. EMPIRICAL EVALUATION 77

4.4.8.3 Summary

In this subsection we overviewed parts of preceding experiments that could be related to

using MRRT as a sequential algorithm. Accuracy, prediction time, learning time, sensitivity

of accuracy and learning time to number of cluster nodes, scalability, and speedup are features

that summarized and experimented in this section and confirmed that MRRT(WOS) is over-

performing baseline algorithm in most cases. This suggests that MRRT(WOS) algorithm is

not only could be used in a parallel fashion, but also could be used as a sequential algorithm

on a single machine.

4.5 Slope-changing Experiments Results

4.5.1 Slope-changing Algorithm Limitation

Slope-changing algorithm finds split points on all dimensions of the dataset. That means that

if we have d dimensions, and s split points on each dimension, we would have sd subspaces.

This is 531,441 when d = 12 and s = 3 which is a very big number for a 12 dimensional

dataset. If we want to have even 5 data points in each subspace, we would need 2, 657, 205

data items (n). That is n ≥ sd ∗ k data item is needed in order to have k data points in

each cell. Changing number of dimensions to 15, would restrict number of data points to

71,744,535. As you have noticed it is even when we have considered a low number of split

points for each dimensions. In a dimension with this number of split points finding Slope-

changing points is not useful. Because of this limitation, Slope-changing algorithm is not

working for high dimensional datasets and we need to work on it to see how we can improve

this problem.

For this reason we are not running big dataset experiments on this algorithm and we would

not be able to run experiment on speedup and scalability. We only compare its accuracy and

runtime to baseline algorithm. The dataset w used to experiments in this section are four

datasets listed in table 4.19. All of the datasets

Table 4.19: Summary of synthetic datasets
Dataset Model Type Axes Training size Test size

gtoy10d1 Gaussian Mixture 2

100,000 1,000
gtoy10d2 Gaussian Mixture 2
ptoy20d1 Polynomial 2
ttoy20d2 Trigonometry 2

CHAPTER 4. EMPIRICAL EVALUATION 78

4.5.2 Comparing Accuracy of Slope-changing Algorithm to Baseline

Algorithm

This experiment compares accuracy of Slope-changing algorithm and baseline algorithm. Both

algorithms are run on four datasets and RMSE error on test set is calculated. Number of

mappers for Slope-changing algorithm is set to 64, and number of reducers is set to 1. Due to

randomness of one step of the Slope-changing algorithm, result might change from one run to

another, thus the experiment is run 10 times for Slope-changing algorithms and the average

values are used for comparison.

Results of this experiment is listed in table 4.20, and as it can be seen, baseline algorithm

performs better than both Slope-changing algorithms, and Slope-changing(PWC) performs

better than Slope-changing(FPS). The reason for low accuracy of Slope-changing algorithm

is that some split points are selected very close to each other and some far from each other.

For this reason some subspaces of the feature space is very large and some are very small.

There is no problem with subspaces that their size is not very big or small. Small subspace

would not have any data points and when predicting if a data point lands into that subspace

there would be no model for that subspace and thus neighboring model would be used for

prediction. In the worst case if neighboring subspaces are also not available, then the global

average of the target value for the training set is used as the predicted value of test item.

For this reason very small subspaces generally would lead to a high prediction error. Big

subspaces also would have high prediction error. The reason is that when s subspace is big,

a linear model with high accuracy would not fit in that subspace and thus prediction error

would be high.

Table 4.20: Comparing accuracy of slope-changing algorithm (PWC and FPS versions) and
baseline algorithm on four datasets.

Baseline Slope-changing Algorithm

Dataset RMSE FPS RMSE PWS RMSE
gtoy2d1 79.52 231.12 85.226
gtoy2d2 62.98 243.79 92.30
ptoy2d1 1.64 9.15 1.95
ttoy2d1 7.64 34.46 10.40

CHAPTER 4. EMPIRICAL EVALUATION 79

4.5.3 Comparing Runtime of Slope-changing Algorithm to Baseline

Algorithm

This experiment compares learning time of Slope-changing algorithm and baseline algorithm.

Both algorithms are run on four datasets and RMSE error on test set is calculated. Number

of mappers for Slope-changing algorithm is set to 64, and number of reducers is set to 1. Due

to randomness of one step of the Slope-changing algorithm, result might change from one

run to another, thus the experiment is run 10 times for Slope-changing algorithms and the

average values are used for comparison.

Results of this experiment is listed in table 4.20, and we expected, Slope-changing algo-

rithms runs faster than baseline algorithm and Slope-changing(FPS) runs faster better than

Slope-changing(PWC). The reason why FPS version runs faster than PWC is that, FPS use

a randomized method to choose among split points that is of linear complexity in number of

split points. On the other hand PWS needs that density estimation is calculated for every

candidate split point. This needs to calculate share of each candidate split point in density

of every other candidate split point which is of quadratic complexity in number of candidate

split points.

Table 4.21: Comparing learning time of slope-changing algorithm (PWC and FPS versions)
and baseline algorithm on four datasets.

Baseline Slope-changing Algorithm

Dataset Learning Time FPS Learning Time PWS Learning Time
gtoy2d1 7.26 0.05 0.48
gtoy2d2 14.85 0.04 0.42
ptoy2d1 14.73 0.05 0.83
ttoy2d1 17.23 0.04 0.53

Chapter 5

Concluding Remarks

5.1 Summary of Findings

• MRRT algorithm reduces the prediction time significantly (more than 80%) comparing

to baseline algorithm.

• Proposed preProcess method is helping to reduce expected valud of MRRT’s RMSE to

less than baseline algorithm’s RMSE for 10 out 13 datasets.

• Weighted prediction of MRRT algorithm helps to increase accuracy comparing to base-

line algorithm for most datasets.

• Overlapping subspaces (coupled with weighted prediction) not only solves the data

distributed-ness problem but also helps to improve accuracy comparing to baseline al-

gorithm

• MRRT Improves the prediction time by more than 80%.

• MRRT could be used on a single machine, and in that case it improves the learning

time by 60% (in most cases) comparing to baseline algorithm, and it also shows to be

of close to linear scalability (comparing to baseline algorithm which is far from linear

scalability).

5.2 Possible Improvements

• When splitting the feature space along one dimension, each subspace would have only

two neighbors and a weighted average by weights of 2, 1, 1 (main model and two

80

CHAPTER 5. CONCLUDING REMARKS 81

neighbors respectively) is returned as predicted value. There are possibilities that other

weight combination works better for different datasets. Maybe a preprocessing step

would help to determine a good combination for weights in order to increase the accuracy

of algorithm. We also observed in experiments that accuracy of MRRT(W) is lower than

unweighted MRRT for two datasets. This means that weighted method for prediction

might sometimes have negative effect. Again a preprocess method might help with

answering this question, and the algorithm would be able to decide if it should use

weighted prediction or not.

• When talking about number of dimensions to split, we only compared two cases of

splitting along one dimension or two dimensions. More experiments could be done in

future to asses the effect of splitting on more dimensions on accuracy of generated model

and also learning time. If it is found that splitting along several dimensions is better

than splitting along one dimension, using weighted method of prediction would be more

challenging, because we will have 2d neighbors for each subspace where d is number of

dimensions to split along.

• We have suggested the preProcess method to find the best dimension to split along.

What could be other ways to find best dimension to split along? How about if we decide

that splitting along several dimensions is better? How would we select those dimensions

to split along in this case?

• More experiments needs to be done and more datasets needs to be used to find out

why weighted prediction decreases accuracy of prediction for two datasets. We think

that maybe a partially weighted prediction might be useful and increase the accuracy

of MRRT algorithm for all datasets. By partially weighted we mean we could decide on

what neighbors would increase prediction accuracy and what neighbors would decrease

it. This way a preprocess method would help in increasing accuracy of MRRT.

• When using overlapped subspaces, we chose overlap of .75 to 1 based on the experiments.

We believe that overlap amount is a dataset dependent feature, and finding a way to

tune overlap amount for a dataset by a preprocess method could be a future work.

• We only tested the MRRT algorithm by three real datasets. Testing the algorithm with

more real datasets, and dataset with higher number of dimensions (synthetic or real)

would test the quality of algorithm more accurately.

• The algorithms presented in this work are compared only to Regression Tree algorithm

implemented in Matlab library. It would be nice to compare it with other regression

CHAPTER 5. CONCLUDING REMARKS 82

algorithms.

• We proposed a method for preprocessing and finding the best dimension to split. The

experiments showed that this method works and is able to suggest the best dimension

to split in most cases, but we did not run experiments about cost of this preprocess

method and it could be done in future works.

Appendix A

Synthetic Datasets Details

• ptoy10d1:

y = (2x21 + x22 − x33 − 3x24 + 2x35 − x6 + 2x27 − 5x28 + 2x39 + 2x310)/102 + 20

• ptoy10d2:

y = (2x21 − x22 − x33 + 3x4 + 2x35 + 5x6 + 22x27 − 5x28 + 2x39 + 2x310)/103 + 100

• ttoy10d1:

y = 250.sin(x1) + 40.cos(x2) − 150.sin(x3) + 100.cos(x4) + sin(x5) + 100.cos(x6) −
500.sin(x7) + 40.cos(x8)− 200.sin(x9) + 300.cos(x10) + 20

• ttoy10d2:

y = 250.sin(x1)+40.cos(x2)−15.cos(x3)+100.cos(x4)+25.sin(x5)+cos(x6)−50.sin(x7)+

cos(x8) + sin(x9) + 30.cos(x10) + 50

• ptoy20d1:

y = (2x21 + x32 − x33 − 3x24 + 2x35 + x6 + 22x27 − 5x28 + 2x79 + 2x310 + 2x211 + x212 − 2x13 −
3x414 + 21x215 + x316 + 2x417 − 15x318 + 21x419 + 2x520)/106

• ptoy20d2:

y = (x31 − 2x42 − x23 − 3x34 + 2x25 + 2x6 + 22x27 − 5x28 + 2x79 + 2x310 + x211 − x212 − 2x13 +

83

APPENDIX A. SYNTHETIC DATASETS DETAILS 84

3x314 + 2x215 + x316 + x317 − 15x318 + 21x319 + x520)/106

• ttoy20d1:

y = 250.sin(x1) + 400.cos(x2)− 150.sin(x3) + 10.sin(x4) + 25.sin(x5) + 100.cos(x6)−
5.sin(x7) + 400.cos(x8) − 20.sin(x9) + 301.cos(x10) + 250.sin(x11) + 400.cos(x12) −
150.sin(x13) + 10.sin(x14) + 25.sin(x15) + 100.cos(x16) − 5.sin(x17) + 400.cos(x18) −
20.sin(x19) + 301.cos(x20) + 200

• ttoy20d2:

y = 350.sin(x1) + 300.cos(x2)−250.cos(x3) + 100.sin(x4) + 215.sin(x5) + 100.sin(x6)−
52.sin(x7)+40.cos(x8)−23.cos(x9)−31.cos(x10)+123.sin(x11)−400.cos(x12)−150.sin(x13)+

101.cos(x14) + 251.sin(x15) + 10.cos(x16)− 51.sin(x17) + 40.cos(x18) + 200.sin(x19) +

31.cos(x20) + 200

• ttoy20d3: Same equation as ttoy20d2, but number of data items is different.

• gtoy10d1: A mixture model of three gaussians with means:

m1 = [5, 8, 5, 9, 10, 7, 12, 11, 8, 8]

m2 = [9, 19, 10, 10, 13, 14, 14, 16, 11, 2]

m3 = [15, 3, 7, 8, 1, 4, 4, 6, 12, 12]

m4 = [5, 13, 7, 8, 11, 4, 14, 6, 2, 12]

and variances:

s1 = 

15 0 0 0 0 0 0 0 0 0

0 18 0 0 0 0 0 0 0 0

0 0 13 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 12



APPENDIX A. SYNTHETIC DATASETS DETAILS 85

s2 = 

15 0 0 0 0 0 0 0 0 0

0 19 0 0 0 0 0 0 0 0

0 0 11 0 0 0 0 0 0 0

0 0 0 12 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 12


s3 = 

15 0 0 0 0 0 0 0 0 0

0 18 0 0 0 0 0 0 0 0

0 0 13 0 0 0 0 0 0 0

0 0 0 12 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 12


s4 = 

17 0 0 0 0 0 0 0 0 0

0 19 0 0 0 0 0 0 0 0

0 0 15 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 12 0

0 0 0 0 0 0 0 0 0 19


• gtoy10d2: A mixture model of four gaussians with means:

APPENDIX A. SYNTHETIC DATASETS DETAILS 86

m1 = [5, 8, 5, 3, 10, 4, 15, 5, 8, 8]

m2 = [8, 9, 10, 10, 13, 14, 14, 16, 5, 2]

m3 = [11, 5, 5, 5, 5, 5, 5, 5, 5, 5]

m4 = [15, 15, 15, 15, 15, 15, 15, 15, 15, 15]

and variances:

s1 = 

11 0 0 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0 0 0

0 0 13 0 0 0 0 0 0 0

0 0 0 12 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 12


s2 = 

12 0 0 0 0 0 0 0 0 0

0 9 0 0 0 0 0 0 0 0

0 0 18 0 0 0 0 0 0 0

0 0 0 15 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 16 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 16 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 12



APPENDIX A. SYNTHETIC DATASETS DETAILS 87

s3 = 

13 0 0 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0 0 0

0 0 17 0 0 0 0 0 0 0

0 0 0 12 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 0 0 18


s4 = 

17 0 0 0 0 0 0 0 0 0

0 9 0 0 0 0 0 0 0 0

0 0 15 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 14 0 0 0 0

0 0 0 0 0 0 15 0 0 0

0 0 0 0 0 0 0 14 0 0

0 0 0 0 0 0 0 0 12 0

0 0 0 0 0 0 0 0 0 19



Bibliography

[1] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop: Efficient

iterative data processing on large clusters. Proceedings of the VLDB Endowment, 3(1-

2):285–296, 2010.

[2] Ankur Dave, Wei Lu, Jared Jackson, and Roger Barga. Cloudclustering: Toward an

iterative data processing pattern on the cloud. In Parallel and Distributed Processing

Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages

1132–1137. IEEE, 2011.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. Wiley-

interscience, 2012.

[5] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy

Qiu, and Geoffrey Fox. Twister: a runtime for iterative mapreduce. In Proceedings of

the 19th ACM International Symposium on High Performance Distributed Computing,

pages 810–818. ACM, 2010.

[6] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 681–689. ACM, 2011.

[7] Robson Leonardo Ferreira Cordeiro, Caetano Traina Junior, Agma Juci Machado Traina,

Julio López, U Kang, and Christos Faloutsos. Clustering very large multi-dimensional

datasets with mapreduce. In Proceedings of the 17th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 690–698. ACM, 2011.

[8] David J Hand, Heikki Mannila, and Padhraic Smyth. Principles of data mining. MIT

press, 2001.

88

BIBLIOGRAPHY 89

[9] Georges Hebrail and Alice Berard. Individual household electric power consumption

data set, UCI machine learning repository, 2012. "http://archive.ics.uci.edu/ml/

datasets/Individual+household+electric+power+consumption".

[10] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for

segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE Interna-

tional Conference on, pages 289–296. IEEE, 2001.

[11] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting time series:

A survey and novel approach. Data mining in time series databases, 57:1–22, 2004.

[12] Chuck Lam. Hadoop in action. Manning Publications Co., 2010.

[13] Daniel Lemire. A better alternative to piecewise linear time series segmentation. SIAM

Data Mining, 2007.

[14] Jimmy Lin. Mapreduce is good enough? if all you have is a hammer, throw away

everything that’s not a nail! Big Data, 2012.

[15] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly, Greg O’Shea, and Andrew

Douglas. Nobody ever got fired for using hadoop on a cluster. In Proceedings of the 1st

International Workshop on Hot Topics in Cloud Data Processing, page 2. ACM, 2012.

[16] Malte Schwarzkopf, Derek G Murray, and Steven Hand. The seven deadly sins of cloud

computing research. HotCloud, June, 2012.

[17] Patrick O Stalph, Jérémie Rubinsztajn, Olivier Sigaud, and Martin V Butz. A compara-

tive study: Function approximation with lwpr and xcsf. In Proceedings of the 12th annual

conference companion on Genetic and evolutionary computation, pages 1863–1870. ACM,

2010.

[18] Wikipedia The Free Encyclopedia. Image, "http://en.wikipedia.org/wiki/File:

Comparison_of_1D_histogram_and_KDE.png". [Online; accessed 28-March-2013].

[19] Dennis van Heijst, Rob Potharst, and Michiel van Wezel. A support system for predicting

ebay end prices. Decision Support Systems, 44(4):970–982, 2008.

[20] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An o (n)

algorithm for incremental real time learning in high dimensional space. In Proceedings of

the Seventeenth International Conference on Machine Learning (ICML 2000), volume 1,

pages 288–293, 2000.

"http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption"
"http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption"
"http://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png"
"http://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png"

BIBLIOGRAPHY 90

[21] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae)

over the root mean square error (rmse) in assessing average model performance. Climate

Research, 30(1):79, 2005.

[22] Stewart W Wilson. Classifiers that approximate functions. Natural Computing, 1(2-

3):211–234, 2002.

[23] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Sto-

ica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, pages 10–10, 2010.

[24] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on mapre-

duce. In Cloud Computing, pages 674–679. Springer, 2009.

	Abstract
	Preface
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Overview of Approach
	Overview of Contributions
	Overview of Chapters

	Literature Review
	Approximating Non-linear Regression Using Piecewise Regression
	Linear Regression
	Non-linear Regression via Piecewise Linear Regression
	Piecewise Regression with Regression Trees
	Piecewise Linear Approximation of Time Series
	Online Approximation of Non-linear Models

	MapReduce
	Why <key, value> Pairs?
	Is That All MapReduce Does?
	MapReduce for Clustering
	MapReduce and Iterative Tasks
	Arguments about Using or not Using MapReduce

	Approach
	MapReduce Regression Tree
	Map1: Finding the Min and Max of Dimension that Is Being Split
	Reduce1: Finding Split Points Along the Dimension that Is Being Split
	Map2: Shuffling the Data Among Cluster Nodes
	Reduce2: Constructing the Tree Regression Models for Each Subspace
	Using the MRRT Model to Predict

	Slope-changing Algorithm
	Choosing Good Split Points
	Overview of the Algorithm
	Map1: Finding Candidate Split Points
	Reduce1: Generating a Split Point Set from Candidate Set
	Map2: Shuffling the Data Points Based on Split Points
	Reduce2: Finding the Linear Model for Each Subspace
	Using the Slope-changing Model to Predict

	Empirical Evaluation
	Evaluation Criteria
	Accuracy
	Speedup
	Scalability

	Overview of Datasets
	Real Datasets
	Synthetic Datasets

	Overview of Experiments
	MRRT Experiment Results
	Number of Dimensions to Split Along
	Overlapping Subspaces and Neighbor-weighted Predictions
	Comparing the Accuracy of MRRT and the Baseline Algorithm
	Choosing the Dimension to Split Along
	Prediction Time
	Speedup of MRRT Algorithm
	Scalability of MRRT Algorithm
	Could MRRT Be Used as a Sequential Algorithm?

	Slope-changing Experiments Results
	Slope-changing Algorithm Limitation
	Comparing Accuracy of Slope-changing Algorithm to Baseline Algorithm
	Comparing Runtime of Slope-changing Algorithm to Baseline Algorithm

	Concluding Remarks
	Summary of Findings
	Possible Improvements

	Synthetic Datasets Details
	Bibliography

