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Abstract

Title: Semantically-Driven Search Techniques for Learning Boolean Program Trees

Author: Nicholas Charles Miller

Principal Advisor: Philip K. Chan, Ph.D.

Genetic programming has been around for over 20 years, yet most implementations are still

based on sub-tree crossover and node mutation, in which structural changes are made that

manipulate the syntax of programs. However, it is not clear why manipulating program syntax

should have any desirable effect on program behavior (or semantics). One sub-field of genetic

programming which has gained recent interest is semantic genetic programming, in which pro-

grams are evolved by manipulating program semantics instead of program syntax. A semantic

GP (SGP) implementation exists that operates on program semantics through composition of

sub-programs, but has the drawback that the evolved programs are large and complex. This

paper will propose two new algorithms, SGP+ and SDPS, that aim to search the semantic

space of programs in a more effective manner than the existing SGP algorithm. Experimental

results on “deceptive” Boolean problems show that programs created by the SGP+ and SDPS

algorithms are 3.8 and 32.5 times smaller than SGP respectively, while still maintaining accu-

racy as good as, or better than, SGP. Additionally, a 17.6% improvement in program accuracy

was observed for several high-arity Boolean problems.
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Chapter 1

Introduction

Genetic programming (GP) has been around for well over 20 years, and sub-tree crossover

remains the most widely used recombination operator. This type of genetic programming,

popularized by John Koza [4], represents a program as a tree, and crossover works by swapping

sub-trees. This is an operation on the structure (or syntax) of the program.

The reason for swapping sub-trees is not entirely clear or justified. Why should swapping

one part of a random program with another part of a different random program create a better

offspring program? There are no guarantees that swapping program syntax will have a desirable

effect on program semantics. In short, there is no rigorous schema theory on the building blocks

in genetic programming, such as there is with genetic algorithms [10]. In reality, the relationship

between program syntax and program behavior, or semantics, is a complex one. Even minor

changes to program syntax can have drastic changes to program semantics. This relationship

is also sometimes referred to as the genotype-phenotype mapping.

Most of the syntax-modifying GP algorithms are of the generate-and-test variety. In other

words, they focus on randomly generating a new program by modifying syntax of existing

programs and then test how well the behavior matches the desired behavior. Stated another

way, there exists some desired program behavior in a semantic space, and traditional GP

operates on programs in a syntax space with the hope that the generated program will have

semantics that are close to the desired semantics in the semantic space. Because the mapping

between syntax space and semantic space is often very complex, this generate-and-test approach

may not work well for all types of problems.

There has been an increased interest in semantically-driven genetic programming in recent

years as an alternative to syntax-based GP representations[13]. The goal is to perform a more

1



CHAPTER 1. INTRODUCTION 2

direct search in semantic space, as opposed to an indirect search via the complicated syntax-

semantic mapping. The goal for this paper is the same, but will not be strictly limited to genetic

programming, but rather to semantically-aware search techniques in general. Furthermore,

the focus will be on solving “deceptive” problems, which are problems with a particularly

complicated syntax-semantic mapping, as these are the types of problems in which traditional

GP falls short.

Boolean problems will be the focus of this paper, though the ideas proposed are exten-

sible to other domains (e.g. regression). Potential applications of Boolean function learning

are optimization of FPGA combinatorial logic, electronic design automation (EDA), discrete

classification problems, or any problem that can be expressed in truth table form.

1.1 Problem Statement

Given a set of n input-output pairs (or instances) T = {(x1, y1), . . . , (xn, yn)}, the problem is

to find a model, or hypothesis, h : X→ Y that interpolates all known input-output pairs:

∀(xi, yi) ∈ T, h(xi) = yi (1.1)

This is essentially the problem of supervised machine learning. Each input xi ∈ T is a vector

of attributes and each output yi is a single value, sometimes referred to as the class for discrete

domains. The focus of this paper is on the Boolean problem domain, so the input space

(domain) is X = {0, 1}n and the output space (codomain) is Y = {0, 1}. The restriction to the

Boolean domain is done primarily for simplicity of implementation and analysis, but the ideas

apply equally well to other domains.

The space of hypothesis functions, H, is the space of all possible Boolean program trees.

An example of a Boolean program tree is shown in Figure 1.1.

OR

AND

a NOT

b

AND

b NOT

a

Figure 1.1: Example of a program tree in H

This tree is an example of the 2-input odd-parity (a.k.a. 2-input XOR) function, which

returns 1 if there are an odd number of 1s in the input vector xi. To preserve space, trees



CHAPTER 1. INTRODUCTION 3

will sometimes be represented by their corresponding S-expression, for example (OR (AND a

(NOT b)) (AND b (NOT a))).

As is the case with most supervised learning, the goal is to find a model that is both simple,

comprehensive in prediction of instances in T , and generalizes well to unseen instances that are

not in T .

1.2 Overall Approach

The focus will be on constructing models by directly utilizing program tree semantics, or

behavior. The semantics of a program tree h′ can be expressed as a vector Y ′ corresponding to

the output of the tree for each xi ∈ T . For example, if h′ were the program tree (OR x1 x3),

then the semantics of h′ would be the output of the tree for each input case in T . This can be

visualized in truth table form as in Table 1.1.

Table 1.1: Example of program semantics for hypothesis function h′ = (OR x1 x3)

x1 x2 x3 y′ = h′(xi)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Here, each row corresponds to an instance in T and the final column represents the seman-

tics of h′ (e.g. 01011111). Bitstrings will be used as a notational convention for semantics

throughout this paper.

The notion of semantic space will be used throughout. This is the multidimensional hyper-

space of semantic vectors Y ′. The number of dimensions is equal to the number of input-output

pairs in T . The semantics of a hypothesis program h′ can be represented as a single point in

this space, as can the target semantics Y from T . The problem of model construction then

becomes a search for a suitable hypothesis program h′ in this semantic space. Also note that

a single point can correspond to many different possible hypotheses. That is, there may be

more than one program tree that can produce the semantics represented by a point. Using the

example from Table 1.1, a program with equivalent semantics would be (NOT (AND (NOT

x1) (NOT x2))) and would be represented by the same point in semantic space.

Two distinct approaches will be taken to search for a suitable h′. The first is based on the
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semantic composition of programs. In other words, new programs are created by composing two

sub-programs with an associated Boolean operator. An example of this type of composition is

shown in Figure 1.2. The semantics are shown above each node to convey that it is the semantics

Figure 1.2: An example of program tree composition

that are being composed. Also note that each of the inputs have associated semantics as well.

These correspond to the input columns in the truth table.

The second type of approach taken will be based on the decomposition of program semantics.

This approach starts with the desired output (a.k.a. the target semantics) and recursively

decomposes the target into distinct sub-targets, creating a kind of divide-and-conquer approach.

An example of this type of decomposition is provided in Figure 1.3.

Figure 1.3: An example of semantic program tree decomposition
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Composition of programs is a “bottom-up” type of approach. Starting from some base set of

trivial programs (i.e. leaves), progressively larger and more complicated programs are built via

composition. When the program exhibits the desired semantics the algorithm terminates with

the final compositional operator acting as the program root. In contrast, the decomposition

of semantics is a “top-down” type of approach, where the program tree is built one node at a

time, starting from the root and ending at the leaves. When the sub-target semantics match

the semantics of an input variable, the sub-tree terminates in a leaf.

The compositional approach will be implemented as a genetic programming algorithm. It is

similar in nature to a randomized beam search for programs in semantic space, where the beam

width is the size of the population and the randomization comes from the stochastic nature

of the selection, crossover, and mutation operators. The decompositional approach will be

implemented as a hill-climbing greedy search, where semantic sub-target designations are made

using heuristics. In contrast to genetic programming where multiple programs are considered,

the greedy search will only operate on a single program.

Many of the Boolean problems discussed are deceptive in nature. In the context of GP,

deceptive means that the search may be deceived if there is not a clear path in the search

space from a promising individual to the individual that solves the problem. Stated informally,

the fitness landscape is rocky and the path to the goal is unclear. These types of problems

are prone to reduced population diversity, as locally optimum solutions begin crowding the

population. The Boolean parity problems are deceptive in nature, because minor changes to

program structure can result in drastic changes in program fitness, which impedes the search

from moving in a potentially promising direction. Solving these types of problems will be the

primary focus of this paper.

1.3 Overview of Contributions

• An improved semantic GP algorithm (SGP+) is proposed that searches semantic space

directly. It is an improved version of the existing SGP algorithm, and is more selective in

choosing parents for recombination so that offspring programs will be closer to the target

program in semantic space.

• A greedy search-based algorithm is proposed, called Semantic Decomposition for Program

Search (SDPS), that navigates semantic space by creating semantic sub-problems. The

key idea is to minimize the number of branches by using heuristics to choose sub-problems

that minimize the semantic distance to the program tree leaves (i.e. inputs).

• Experimental results show a significant reduction in final program size compared to the
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existing SGP algorithm. For the deceptive Boolean parity problems, the program output

by SGP+ is 3.8 times smaller than SGP, on average. For SDPS, the average program size

is 32.5 times smaller than SGP.

• Experimental results show SGP+ and SDPS exhibit a significant 17.6% improvement in

classification accuracy for high-arity deceptive Boolean problems.

• The proposed algorithms exhibit better generalization to unseen instances than the ex-

isting SGP algorithm on 4 out of 5 tested UCI classification problems.

1.4 Overview of Chapters

This paper is divided into five main chapters, including this one. Chapter 2 provides a brief

overview of past research in the field of semantic search. This includes the sub-fields of se-

mantic novelty, semantic genetic programming, and semantic modularity and decomposition.

Chapter 3 introduces two algorithms - SGP+ and SDPS - that are designed to be improvements

on existing semantic algorithms. Chapter 4 presents the results of experiments on synthetic

and real-world classification problems and provides some analysis and interpretation of results.

Finally, Chapter 5 summarizes results, draws conclusions, and discusses potential areas of im-

provement and future research.



Chapter 2

Related Work

This chapter will provide a brief history of related research in the field of semantically-inspired

program search techniques. The first few sections discuss existing techniques and models for

solving Boolean problems. The remainder of the chapter is dedicated to prior research in the

field of semantic search. The final section includes a detailed description of the SGP algorithm,

from which the SGP+ algorithm proposed in Chapter 3 will be based upon.

2.1 Boolean Simplification Techniques

It is important to note that there exist many different Boolean simplification algorithms and

techniques. Among the most well-known are heuristic techniques such as Karnaugh maps and

the Quine-McClusky algorithm. Also, Espresso is a popular software package for performing

logic minimization. These algorithms have good heuristics, and can often produce near-optimal

Boolean simplification for small- to moderately-sized Boolean functions. However, one limita-

tion of these techniques is that they only work in the Boolean domain. In other words, they

cannot be extended to other domains (e.g. regression). These existing methods are useful as a

baseline for comparison for the effectiveness of the algorithms proposed in this paper.

2.2 Classification Models

The model chosen is a program tree, where each of the internal nodes represents a Boolean

function and the leaves are the program inputs. This is a fairly non-restrictive model, as the

tree can grow in any direction and to any depth. Contrast this with the model created by the

ID3 algorithm (for example), and the potential utility of this model becomes clear, as depicted

7
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in Figure 2.1. In this case, the decision tree model is restricted to be a disjunction of Horn

Figure 2.1: (a) Decision tree model created by ID3 for the 3-input odd parity problem. (b)
Program tree model for the same problem.

clauses (i.e. If-Then rules for each path), whereas the program tree model is potentially more

flexible/less restricted, which can result in a more compact and efficient representation.

2.3 Syntactic Search vs. Semantic Search

There are several key distinctions between program search in syntactic space and semantic

space. First, syntactic search explores the space of program representations whereas semantic

search explores the space of program behaviors. Second, a single point in the syntactic space

represents a syntactically unique program, and corresponds with a single point in the semantic

space (i.e. a program only has one behavior). In semantic space, a single point represents a

semantically unique program, and has multiple corresponding points in syntactic space (i.e.

behavior can be represented by multiple different syntactically-unique programs). Finally, and

perhaps most importantly, the syntactic space is infinite whereas the semantic space is finite

for discrete domains (i.e. there are only so many unique program behaviors). This means that

semantic search should be easier for discrete problems because of the smaller space.

In syntactic space search, programs are manipulated by changing the syntax of programs.

For example, changing the operator at an intermediate node in the tree, or performing sub-

tree crossover between different trees. The key point is that only the syntax and structure of

the program are changed directly, and any effect these have of the semantics of the tree will

be indirect. This usually results in a generate-and-test methodology, where program syntax

is manipulated and program semantics are checked for accuracy. In contrast, semantic space

search focuses on manipulating programs by changing the behavior of trees directly. This is

more difficult than syntax-based manipulations because in general it is not known how changing
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the semantics of a tree will affect the syntax of the tree. There are multiple ways to address

this difficulty, such as utilizing a small library of known programs or combining programs so as

to multiplex their outputs. Both of these techniques will be used in Chapter 3.

2.4 Semantic Novelty

The idea of semantic novelty was introduced in [9]. This paper is focused on searching for

novel genetic programs in an effort to promote diversity and reduce overfitting in deceptive

problem domains. Rather than guiding the evolution using an objective fitness function, they

guide solely based on program novelty (i.e. how different the behavior is from other programs

in the population). They motivate this idea by pointing out that natural evolution continually

produces novel forms and is more open-ended in that it does not necessarily have a final objec-

tive. In this sense, it is a divergent search. They propose a novelty metric to replace the fitness

function which will reward programs with more novelty. The metric is computed based on the

behavior (or phenotype) of an archive of programs, and programs are added so as to penalize

future programs exhibiting similar behavior. The calculation consists of measuring the distance

of a program from other programs in semantic space (i.e. the sparseness of a program in the

space of unique behaviors). This “novelty score” is calculated as the average distance to the k

nearest neighbors (from the archive) in semantic space.

ρ(x) =
1

k

k∑
i=0

dist(x, µi) (2.1)

The higher the value, the more sparse the region is, and the more likely the program is novel.

Programs from a particular generation are added to the archive with uniform probability, which

they claim works better than adding only high-novelty programs because it allows further

exploration of a local subspace. The authors also claim that although novelty search is general

enough to be applied to any domain, it works best when the fitness landscape is deceptive

and the domain restricts the number of possible program behaviors. If there are only so many

possible program behaviors, then the novelty search may stumble upon the target function.

Their results indicate that the novelty search had a higher success rate than standard GP

and exhibited smaller program sizes (i.e. less bloat) than the fitness-based or random search

approaches. The reduction in program bloat is hypothesized to be due to the fact that bloat

would be maladaptive to novel programs. In other words, bloat can be thought of as a “guard”

against change, which is used to preserve high-fitness individuals in fitness-oriented evolution.

But this “guard” is not present in novelty search because it is rewarded solely for change.

In [2] it was pointed out that sometimes the search for novelty alone is not enough. This
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paper compares traditional objective-based fitness functions with novelty-based (i.e. no objec-

tive) fitness functions. Additionally, they show how novelty search can be used in traditional

objective-based search to sustain diversity. The takeaway from this paper is that using novelty

as the sole criterion for selection results in high behavioral diversity, but not necessarily im-

proved overall fitness. By combining novelty with objective fitness, better solutions are found.

In [3], different methods for promoting semantic diversity in genetic programming are inves-

tigated. By introducing a new crossover operator that promotes unique program behaviors in

a population, a significant improvement in success rate was observed over a range of different

problem types. The first part of the paper measures structural, behavioral, and fitness diversity

using a standard tree-based GP. Results showed that for most problems, structural diversity is

preserved and actually increasing at each generation. Behavioral diversity on the other hand

always decreased with each generation. This makes intuitive sense because later generations

will typically have members with many introns (i.e. “dead code”) that produce structurally

diverse programs, but which exhibit identical program behavior. To improve behavioral diver-

sity, a two-step process is used - (1) establish sufficient diversity in the initial population, and

(2) maintain diversity in each generation with a new diversity-promoting crossover operator.

For the second step, crossover is modified to repeat until a unique individual has been created,

with some maximum number of attempts.

The search for novelty continues in [12], where deceptive problems are solved with a multi-

objective evolutionary algorithm designed to promote both behavioral diversity within the pop-

ulation as well as behavioral novelty overall. Results showed that utilizing behavioral diversity

and behavioral novelty improves the evolution of neural networks and is similar in performance

to the well-known NEAT algorithm.

2.5 Semantic Genetic Programming

In [10], an investigation is made into the nature of semantic building blocks in genetic pro-

gramming. This paper analyzes the effects of the crossover operator in genetic programming

on the semantics of the resulting program. They find that the majority of crossovers operations

produce programs that are semantically identical to the parent programs, resulting in no move-

ment towards the final objective. Their experiments are performed in the context of Boolean

problems, but should generalize to other domains (e.g. symbolic regression). The authors begin

by stating that subtree crossover involves two distinct components - the subtree to be replaced

as well as the context, which is the rest of tree not including the subtree. This decomposes the

problem of describing the semantic impact of crossover to describing the semantics of subtrees,

the semantics of contexts, and their interactions after crossover is performed. The semantics of
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subtrees are fairly straightforward. Given all possible inputs, determine the resulting outputs.

This completely encompasses the semantic behavior of a subtree. For example, the tree (AND

x y) could be semantically described by the string 0001. This semantic string can be thought

of as the final vertical column in a truth table. The semantics of contexts are a little more

complicated, as they must take into account the parent operator of the subtree removed, the

parent semantics obtained by removing the subtree, and the subtree semantics of any other

arguments to the parent operator (see Figure 2.2). An example of a tree with fully specified

Figure 2.2: Example of components needed for calculating tree context (from [10])

sub-tree semantics and context semantics is provided in Figure 2.3. As a simpler example of

fixed semantic context, consider the tree (AND # false), where # is a removed subtree. In

this case, the value output by the tree will always be false, regardless of the sub-tree at #.

This means that any crossover that occurs within the sub-tree rooted at # will have no effect.

The authors analyze crossover as it is applied to several different even-parity problems. During

evolution, they track three primary metrics

• The proportion of fixed contexts. Out of all possible contexts in all population members,

how many are fixed.

• Construction likelihood. The probability of constructing the target program via subtree

crossover.

• Proportion of compatible contexts. Out of all possible contexts in all population mem-

bers, how many are compatible with the target program. A context is compatible if all
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Figure 2.3: Example of fully-specified tree semantics and context (from [10])

semantically fixed positions match the corresponding position in the target program.

Their results indicate that for easy problems, the percentage of compatible contexts is nearly

100%. However, for harder problems, the compatible contexts level off indicating they are stuck

in local optima and that it is unlikely that crossover will break out of it. Additionally, they

found a strong correlation between the percentage of compatible contexts with the probability

of constructing the target. This indicates that having the correct context is critical to the

success of the search, and most likely more important than the choice of the subtree itself.

Finally, they report that the percentage of fixed contexts generally doesn’t change much over

time, and that it is always over 60%. This means that crossover with randomly chosen subtrees

will result in no semantic change 60% of the time, which is an alarming result. The idea of

program context will be revisited in Chapter 3.

Various methods have been proposed for utilizing program semantics in genetic program-

ming to counteract the inefficiencies discovered in [10]. For example, in [14], a semantically-

aware crossover operator is created in order to approximate the Gaussian Q-Function, for which

no closed form currently exists. To begin, the authors introduce Sampling Semantics (SS) for

determining the semantics of a sub-tree. SS is a set of values obtained by evaluating the sub-

tree on inputs corresponding to a sequence of points from training data. Next, they define

Sampling Semantics Distance (SSD) between two sub-trees. For two SSs U and V (obtained

using identical input sequences), the SSD is calculated as the mean absolute difference between

corresponding values in U and V. Finally, these are tied together to form the Most Semantic
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Similarity based Crossover (MSSC). In essence, the idea is to perform crossover between two

parents such that small semantic changes are made. In MSSC, this is done by randomly se-

lecting N crossover point (i.e. sub-tree) pairs from the parents and calculating SSD of each

pair. The pair of parents that produces the smallest SSD value is chosen for crossover. In

other words, the parents with the most semantically similar (but not equivalent) sub-trees are

chosen, and then crossover proceeds as normal. Their results demonstrated that they were able

to evolve approximations that were better than the best known human-made approximation in

3 out of 50 runs. With standard crossover, a better approximation was never found.

In [7], an investigation is made into the semantic similarities and differences between a ran-

dom sampling of programs. In particular, they analyze the variety of tasks solved (semantic

diversity), the complexity of tasks solved, as well as the modularity of programs that solve a par-

ticular task. The concept of a program is formalized and implemented in a simple programming

language (Push) for simplicity of analysis, but the results should generalize well to programs

in general. To begin, they define a program as a finite set of instructions that, when executed,

will change the contents of memory. Before execution, memory contains the program inputs,

and after execution, the program outputs. Additionally, intermediate memory contents during

execution are also considered. To generalize to all programs (not just a particular program),

they use the concept of memory state, which is a finite set of memory contents (i.e. multiple

“copies” of memory, each with different contents). Before execution, state s0 represents the set

of all possible inputs, which is the starting point for all programs. During execution, new states

are reached by executing an instruction, which changes the memory contents for each of the

possible inputs. A program trace is a path through these memory states, starting from s0 and

ending in state s, which is the set of outputs generated by the program for all possible inputs.

State s is also defined as the task solved by a program whose trace ends in s. Additionally,

multiple programs may end in state s, meaning that they solve the same task. Furthermore,

programs may reach the same intermediate memory states both between programs, and within

a single program. Figure 2.4 provides a visualization of this process. Rather than try to solve

benchmark problems or analyze a suite of existing programs, they randomly generate programs

and observe the different tasks solved, or the program semantics. They define three measures

of programs:

1. Semantic diversity - Number of unique tasks solved by a population of programs

2. Internal semantic diversity - Number of unique memory states reached during execution

of a single program

3. Task complexity - The minimum number of execution steps to reach a task s amongst all

programs
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Figure 2.4: Example of program traces (from [7])

The author uses these metrics in three different experiments to analyze program complexity,

program diversity profiles, and program modularity. For the first experiment on program

diversity and complexity, their results indicate that for programs limited to a small number of

instructions, semantic diversity levels off. Likewise, if a high number of instructions is allowed,

the semantic diversity curve is steeper. These results seem consistent with intuition, as longer

programs are allowed to explore larger portions of the semantic space. Finally, they found that

nearly all tasks had complexity less than 20 (i.e. required no more than 20 instructions) and

that the majority of tasks had complexity of 10. These results indicate that the length of the

program has an ideal number of instructions needed to solve the problem, where less will be

unable to solve the task and more will be unnecessary. The second experiment investigates

diversity profiles, or how the semantic diversity of all programs changes during execution.

Before doing that, they formalize the idea of modularity. For a set of programs that solve a

task, if all of the tasks pass through a memory state s′, then the problem is said to modular,

in that it could be split into two independent subtasks, one from s0 to s′, and another from

s′ to s. This can be visualized as the “waistline” in a program trace diagram. The second

experiment consists of calculating relative diversity amongst all programs solving the task at

each execution step. The relative diversity metric takes into account the number of unique

states reached by all programs. A low relative diversity indicates that a “waistline” exists in
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the task trace diagram. The relative diversities are then clustered to create similar diversity

groups, which are then plotted. It can be seen that the there are clearly program types that

exhibit dips in diversity, which indicates that they are modular in nature. The third experiment

seeks to overcome the shortcomings of the second experiment - namely that it is naive to assume

that semantically similar programs will reach the same memory state at the same instruction

step. They introduce a new metric to calculate the centrality of a state s′, which will be larger

if two conditions exist: the state s′ is near the middle of the task trace diagram, and many tasks

pass through s′ at some point during their execution. They then identify the state s′ that has

maximal centrality, as this will be the most likely place to decompose a problem into subtasks.

They plot task complexity versus maximal centrality and observe a monotonous tendency for

centrality to increase with complexity. What this means is that as tasks become more complex,

they also become more modular. This is the main result of the paper. The paper concludes by

mentioning that this is an investigation into the nature of programs solving a particular task,

but in general, we are trying to solve the task via genetic programming, so more work is needed

to incrementally find modularity as the program evolves.

In [5], a semantic-based search technique which involves transforming program space into

semantic space is discussed. Typically, program space is very large, containing many syn-

tactically unique variations. However, many of these programs are semantically the same, in

the sense that they produce the same outputs given a particular set of inputs. This paper is

concerned with identifying all unique program semantics and placing them in the context of a

semantic space, which can then be searched using GP. This search is more efficient primarily be-

cause the search space is smaller, and the fitness landscape is smoother than its program space

counterpart. The main achievement of this paper shows that semantic embeddings of small

programs (i.e. semantic spaces where each point represents the semantics of a depth-limited

tree-based program) can be exploited in a compositional manner to build larger compound

programs, resulting in more effective search in the larger space of programs. Figure 2.5 pro-

vides some intuition about the meaning of semantic embedding. Here, the semantic space is

an abstract space where each point in the space represents a set of equivalent programs (syn-

tactically unique programs with identical semantics). The point itself is represented as vector

of multiple program outputs corresponding to program inputs. Additionally, a neighborhood

is associated with each point, with the goal that neighbors have similar semantics. A similar-

ity measure, referred to as locality, exists based on the euclidean distance between program

semantics (not to be confused with the distance in the abstract semantic space). There exists

a bijective mapping between semantic equivalence classes and points in the semantic space. It

is important to note that semantic space is independent of any specific problem or fitness func-

tion. Rather, it is representation of all programs of a specified length, organized by semantic
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Figure 2.5: Semantic embedding (from [5])

locality. Obviously, this semantic space will be much smaller, but additionally, it is desired

that the fitness landscape be smoother so the search is easier. The paper demonstrates a link

between locality and fitness landscape based on the triangle inequality. In words, as two points

in semantic space get closer, so does the difference in their fitness values with respect to some

target point. This means that small changes in semantic space do not drastically change the

fitness, resulting in a smoother landscape across all programs. Furthermore, this smooth land-

scape applies for all possible target points in the semantic space, resulting in smoother fitness

landscapes for all possible problems that can be represented in the space. This is in contrast

to the syntactic space, where “nearby” programs can have wildly different fitness, resulting

in a rocky fitness landscape. Therefore, it is important to create a semantic space with high

overall locality. This semantic space organization can be done effectively with heuristic greedy

algorithms. To determine a near-optimal organization of the semantic space, a simple greedy

algorithm is applied:

1. Randomly distribute program semantics in the semantic space.

2. For each point, calculate the change in overall locality (i.e. locality over all points) as

a result of swapping with all points within its neighborhood. Choose the neighbor swap

that maximizes the increase in overall locality.

3. Repeat the step above until overall locality converges.

An illustrative example of the output of this algorithm is shown in Figure 2.6. Note also that
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Figure 2.6: Greedy organization of abstract semantic space (from [5])
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the choice of semantic space size and dimensionality is mostly arbitrary. The authors use a

maximum dimensional size of n and number of dimensions d such that nd is at least as big as the

number of semantically unique programs. Ultimately, this semantic space is used to guide GP.

To this end, they define a population member as a point within the abstract semantic space,

crossover as a random point geometrically between two parents, and mutation that takes two

flavors: either a single step in a particular dimension or a completely random point in the space.

Fitness is calculated as the semantic distance from a point to some target.

2.6 Semantic Modularity and Decomposition

This section will present research related to semantic modularity and decomposition. In other

words, using the semantics of known programs to improve semantic program search.

In [8], module identification and module exploitation in GP is considered. The paper intro-

duces monotonicity as a means of assessing how useful a particular subgoal is in finding good

modules. A good module is a subprogram whose output is highly correlated with the fitness of

the entire program, independent of the subprograms context. In general, their approach is to

generate many random programs (GP trees), define some constant tree decomposition that is

used for all programs (decompose into subprogram and context), and then observe the mono-

tonicity of all possible subgoals over the population of subprograms. To begin, they formalize

program decomposition as an invertible function that decomposes a program x into a subpro-

gram, or part, p and context c, i.e. d(x) = (p, c). Then they define the part quality function

that assesses the similarity between a vector of outputs of a part and a “subgoal”, which is

vector of expected outputs. Next they define monotonicity using Spearman’s rank correlation

coefficient. In short, this measures how much the quality of the parts are correlated with the

fitness of the program. Next, they define the optimal part quality as the part quality function

(tied with a subgoal) that maximizes the monotonicity. Finally, a problem is called α-modular

if the monotonicity of the optimal part quality function is greater than or equal to α. The first

question the paper wishes to answer is: “Given a problem, are there any differences between

subgoals in terms of monotonicity?” In other words, they wish to observe the distribution of

monotonicity over all subgoals for a given problem (e.g. XOR-3). To answer this, they generate

100,000 random Boolean-valued GP trees of depth 17. All possible subgoals are enumerated,

where a subgoal is a vector of outputs corresponding to fitness cases (28 subgoals for 3 inputs).

Monotonicity (correlation between part quality and fitness) is evaluated for each subgoal and

then plotted. It is observed that for the XOR-3 problem, the distribution of monotonicity is

highly skewed, with a very few number of subgoals having good monotonicity. This is expected,

as the XOR-3 problem is intuitively unmodular. In contrast, the distribution for the OR-AND
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problem is more evenly distributed, indicating that is may be more modular or more decom-

posable. This is depicted in Figure 2.7, where sub-goals on the x-axis are sorted by increasing

monotonicity. Another question the paper wishes to answer is: “Is it possible to reliably es-

Figure 2.7: Monotonicity for XOR3 and AND-OR functions (from [8])

timate monotonicity from an evolving population?” They run a standard fitness-based GP

algorithm and at the end, they calculate monotonicity of each subgoal (averaged over 100 runs)

and plot against the unbiased monotonicity distribution. They find high correlation between

the two curves, indicating that monotonicity can be estimated in a fitness-biased sample of

programs. Furthermore, the OR-AND function (which is expected to exhibit more modularity)

has a higher correlation to the unbiased curve, possibly indicating that more modular programs

have monotonicity that is easier to estimate. The paper concludes by saying that monotonicity

can be used to effectively identify modularity, and can be exploited during population evolu-

tion where there is fitness-bias. This is a useful finding, because it means this method could be

applied to identify modules and break them off as a separate sub-problem, reducing the search

to two smaller problems - finding a program that produces the subgoal, and finding the context

that, in combination with the subgoal solution, will produce the desired final program output.

2.7 Geometric Semantic GP

Geometric semantic GP is a sub-type of semantic GP that focuses on producing offspring that

hold some geometric relationship with their parents in semantic space. This is desirable because
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it allows the search to explore the space in a predictable and manageable way.

The idea of semantic mediality was discussed in [6] where the goal is to find an approximately

medial crossover. In other words, given two parents the goal is to produce offspring that are

near the geometric midpoint of the parents in semantic space. Because this midpoint may not

exist in discrete domains, an approximate nearest point is found. The search for the point

nearest the midpoint is exhaustive (considers all possible programs) which is infeasible, so the

algorithm operates only on sub-programs (e.g. sub-trees) of reasonable size. The idea is that

by performing approximate medial crossover of sub-programs, the overall program will also

evolve to be approximately medial. Formalities are first introduced, such as the definition of a

geometric offspring, which is ||o, p1||+ ||o, p2|| = ||p1, p2||, where o is the offspring of parents p1

and p2. In Euclidean space, this can be interpreted as all points o which lie on the line segment

between p1 and p2. Next, it is proven that the expected fitness (assuming uniform distribution

of o between p1 and p2) of o is equal to the average fitness of the parents. Furthermore, this

expected fitness is minimized when the offspring lies on the geometric midpoint of the parents,

||o, p1|| = ||o, p2||. It is also noted that the fitness of the offspring can be no worse than the

worst of its parents. Since there is no guarantee that an ideal midpoint exists, it must be

approximated. There are two factors to consider: how “geometric” is the offspring, and how

close to equidistant is the offspring from the parents. In the ideal case, the offspring is perfectly

geometric (i.e. lies on line segment between parents) and is equidistant from both parents. To

approximate these two factors, the deviation from the ideal values is calculated as the geometric

divergence and the equidistance divergence:

dG(o, p1, p2) = ||o, p1||+ ||o, p2|| − ||p1, p2|| (2.2)

dE(o, p1, p2) = abs(||o, p1|| − ||o, p2||) (2.3)

The primary result of the paper is that medial crossover can be effectively approximated by

operating only on subprograms. The primary drawback of the method is the exhaustive search

of all possible sub-programs of a particular length.

2.8 The SGP Algorithm

Geometric semantic GP algorithms typically focus on creating approximately geometric off-

spring using a generate-and-test methodology, but in [11], provably geometric crossover and

mutation operators are proposed which allow direct search in the semantic space. Rather than
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using traditional syntax-based crossover and mutation, this paper uses new operators that op-

erate on the semantics of parent programs. This is accomplished through the use of randomized

function composition of parent programs. Surprisingly, this technique is general enough to be

applied to most any GP problem domain (Boolean, regression, symbolic, etc). There have been

several attempts at performing evolutionary search in the semantic space, but the majority of

these algorithms rely on indirect methods, such as performing multiple crossovers until a se-

mantically better child emerges. Though this may eventually work, it results in a lot of wasted

effort. The authors therefore propose using existing known functions and composing them in

such a way as to directly manipulate the program outputs. The composition scheme is the key

contribution of the paper, and it is proven that the compositions used are equivalent to geo-

metric crossover/mutation in the semantic space. As an example, the Boolean recombination

operator is T3 = (T1 AND TR) OR (NOT TR AND T2), where T1 and T2 are the parents, T3

is the offspring, and TR is a random Boolean function with known semantics. This operator is

equivalent to a 2-input multiplexer, where T1 and T2 are the inputs and TR is the select bit.

This is illustrated in Figure 2.8. For each input case in the training data, either T1’s output

(a) OR

AND

T1 TR

AND

NOT

TR

T2

(b) IF

TR T1 T2

Figure 2.8: The semantic geometric crossover of parents T1 and T2 (from [11]). Note that (a)
and (b) are equivalent representations.

is chosen or T2’s output is chosen, based on the value of TR for that input case. Because

each offspring program output comes from T1 or T2, this equates to a geometric crossover

with respect to Hamming distance. Viewed another way, T3 is the result of applying a mask-

based crossover on the semantics of T1 and T2. An example of the truth table associated with

this operation is provided in Table 2.1. In this example, T1 is the program (AND x1 (NOT

x2)), T2 is the program (NAND x2 x3) and TR is the program x1. The paper offers similar

recombination operators for regression and symbolic problem domains. Similarly, a mutation

operator is defined which will change T3’s program output for a particular input case (i.e.

change one bit in the final truth table column). Since each recombination results in a program

containing both parents, the size of the program tree grows exponentially. The authors handle

this problem by performing incremental simplification at each generation, without changing
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Table 2.1: Example of semantic geometric crossover of parents T1 and T2 (TR = x1)

x1 x2 x3 T1 T2 TR T3
0 0 0 0 1 0 1
0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 1 0 0 0 0
1 0 0 1 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 1 0 0 1 0

the program semantics. Standard GP, semantic stochastic hill climber (SSHC), and semantic

genetic programming (SGP) are compared experimentally on Boolean problems, polynomial re-

gression problems, and classification problems. SSHC is simply applying the semantic mutation

operator discussed in the paper in a hill-climbing fashion. There is no test set, so only training

set accuracy is compared. For the Boolean problems, both SSHC and SGP were near 100%

accuracy on the training set, while standard GP was typically much less. Program size of SGP

and SSHC is typically 2-3 times bigger than standard GP. Similar accuracy results are seen for

the regression and classification domains. The authors state that the semantic operators may

have heavy biases in the offspring distributions that hinder performance.

Because this algorithm will be used as the basis of research presented in Chapter 3, more

algorithmic details will be provided based on this authors interpretation of the algorithm de-

scribed in [11]. The genetic programming algorithm is provided in Algorithm 2.8.1.

Typical parameters for the algorithm are provided in Table 2.2. Note that the crossover

Table 2.2: Typical parameters for Algorithm 2.8.1

Parameter Value
Population Size 200
Maximum Generations 50
Mutation Rate 0.1
Crossover Rate 1.0
Function Set {AND, OR, NAND, NOR}

rate is 1.0, meaning that crossover is always performed.

The structure of the algorithm follows the standard GP template and uses elitism, crossover,

and mutation. On line 2, the population is initialized randomly. This initial population provides

the “primordial soup” from which to compose future programs. The semantic diversity of this

initial population is a key element to the convergence rate. These initial programs are typically
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Algorithm 2.8.1 Semantic Genetic Boolean Programming algorithm

Input: Train - A set of input-output pairs (xi, yi)
Input: popSize - The size of the population
Input: maxGens - The maximum number of generations to evolve
Input: mutRate - Mutation rate, range [0.0, 1.0]
Input: funcSet - The set of functions to use as internal nodes in initial population
Output: A program tree that interpolates all input-output pairs in Train

1: function Semantic-GP(Train, popSize, maxGens, mutRate, funcSet)
2: Initialize P with popSize randomly generated program trees . Current Population
3: perfectFitness ← size(Train)
4: gen ← 0
5: while gen <maxGens and best.fitness < perfectFitness do
6: gen ← gen +1
7: nextP ← {}
8: ∀p ∈ P , evaluate fitness w.r.t. Train
9: best ← argmax

p∈P
{p.fitness}

10: Add best to nextP . Elitism
11: for i = 1 to size(P) do . Crossover
12: p1 ← TournSel(P)
13: p2 ← TournSel(P)
14: pr ← RandomMintermProgram( )
15: child ← (OR (AND p1 pr) (AND p2 (NOT pr)))
16: child.semantics ← EvaluateSemantics(child,Train)
17: Add child to nextP
18: for i = 1 to [mutRate ∗ size(P)] do . Mutation
19: r ← Randomly chosen program from nextP
20: pr ← RandomMintermProgram( )
21: if RandInt(0,1) = 1 then
22: mutant ← (OR r pr)
23: else
24: mutant ← (AND r (NOT pr))

25: mutant.semantics ← EvaluateSemantics(mutant,Train)
26: nextP[r] ← mutant

27: P ← nextP
28: return best
29: end function
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tree-based programs, but they can be any other type of program representation (e.g. linear

program, stack-based program, etc).

On line 8, the maximizing fitness function is evaluated on all population members. For the

Boolean domain, this will simply be the number of matching bits in the programs output and

the target semantics.

Crossover is then performed by first selecting two parents using tournament selection (tour-

nament size 2). Next a random minterm program is generated that will act as the TR program

(a.k.a. crossover mask). This program is a subset of minterms of inputs, and can be con-

structed in a mechanical fashion. A few examples of minterm programs constructed from

inputs {x1, x2, x3} are provided in Table 2.3.

Table 2.3: Examples of generated minterm programs

Minterm Program Representation Semantics
x1x2 (AND x1 (NOT x2) 00001100
x1x2x3 (AND x1 (AND x2 x3)) 00000001
x3 x3 01010101
x2x3 (AND (NOT x2) (NOT x3)) 10001000

Once the minterm is generated, the geometric crossover is performed by composing both

parents, and the offspring is added to the next generation.

On line 18, mutation is performed, which is analogous to randomly toggling one of the bits

in the program semantics. Again, a minterm program is generated for the mutation operation,

but this time all inputs are present in the minterm so as to set only a single bit in the semantic

vector. The corresponding bit in the program to mutate is then randomly chosen to be set or

cleared.

The algorithm terminates when either some maximum number of generations have elapsed,

or a perfect fitness individual is found.

To provide some intuition about the nature of the algorithm, an example of a few generations

is provided. In generation 0 (before the main loop), the population is initialized with random

programs, as depicted in Figure 2.9.

T1: OR

x1 x3

T2: NAND

OR

x1 x2

AND

x2 x3

T3: OR

NOR

x1 x3

x2

Figure 2.9: Generation 0: The “primordial soup” from which to evolve and compose program
trees
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The internal nodes of these randomly generated programs are chosen from the funcSet input

of the algorithm, which is the set of functions allowed. In this example, only {AND, OR, NAND,

NOR} are allowed.

At generation 1, crossover and mutation has been performed on the initial programs from

generation 0. This is depicted in Figure 2.10.

T4: IF

AND

x2 NOT

x3

T1 T3

T5: IF

AND

x1 x3

T2 T3

T6: IF

AND

x1 AND

x2 x3

T3 T1

Figure 2.10: Generation 1: Composition of programs from generation 0

Note that all trees in this generation are IF trees because of the regular way in which

programs are composed. The first input to the IF operator is the condition, the second input

is the “true” part, and the last input is the “false” part.

At generation 2 (Figure 2.11), crossover and mutation has been performed on the programs

from generation 1.

T7: IF

AND

NOT

x1

NOT

x2

T6 T5

T8: IF

AND

NOT

x2

x3

T4 T6

T9: IF

x2 T4 T5

Figure 2.11: Generation 2: Composition of programs from generation 1

Similar to generation 1, all trees are of the IF variety. Also note that programs in this

generation contain programs from both generation 1 and generation 0. In general, programs in

generation n will contain programs from all previous (n− 1) generations. Because of this, the

growth in the size of programs will be exponential in the number of generations.
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2.8.1 Limitations of SGP

As of this writing (and to the best of this author’s knowledge), the SGP algorithm is the only

GP algorithm that searches the semantic space directly. This is a powerful property that allows

it to solve many deceptive problems which traditional GP algorithms struggle with. However,

the cost of this property is fairly large - namely, the program size grows exponentially with the

number of generations. This is the biggest limitation of the algorithm and the area that offers

the most room for improvement.

Another limitation of SGP is the randomized structure of the program. Inserting random

sub-programs into the overall program is counter-intuitive, and makes the program complex

and difficult for human readers to interpret. Furthermore, the motivation for using randomized

sub-programs is lacking. The primary purpose it serves is to force the crossover and mutation

to be geometric in nature (which allows for direct search in semantic space).

Another limitation of SGP is that crossover and mutation create offspring that are un-

necessarily randomized. For example, the crossover operator will create offspring that are

semantically intermediate with respect to the parents, with the distance to each parent being

randomized. However, the motivation for doing this is unclear - why not just choose a semanti-

cally intermediate offspring that is closest to the target semantics? It’s possible the choice was

made in an effort to promote population diversity. However, it also delays the convergence to

a solution, which is important in SGP considering that the program size grows exponentially

with each generation.

These primary limitations will be addressed by the proposed algorithms in Chapter 3.



Chapter 3

Approach

This chapter will propose two algorithms for learning Boolean program trees. The first is a

revised version of the Semantic-GP algorithm described in [11] with improved crossover and

mutation operators. This algorithm is based on the composition of program semantics to

produce the desired output semantics. Due to weaknesses identified in the first algorithm, a

second algorithm is introduced that grows a Boolean program tree by utilizing greedy search,

and is based on the decomposition of program semantics.

3.1 Improved Semantic-GP

The Semantic-GP algorithm described in [11] and detailed in Algorithm 2.8.1 is one of the few

genetic programming algorithms which searches directly in the semantic space of programs.

This is particularly useful for deceptive Boolean problems, where the fitness landscape can

lead a traditional generate-and-test evolutionary search into local optima instead of the global

optimum. However, one of the primary weakness of the algorithm is that the evolved tree size

is too large. We wish to harness the power of semantic search while overcoming the weakness

of tree size using an improved Semantic-GP+ algorithm, or SGP+.

3.1.1 Motivation for SGP+

To address the weakness of tree size in the SGP algorithm, we must consider what makes the

tree grow. The tree grows in depth for every crossover and mutation operation that occurs.

This is dangerous, as it means the tree will grow in size exponentially with each generation.

Therefore, we wish to reduce the number of crossover and mutation operators by converging

to a solution more quickly. The general strategy will be to choose parents whose crossover is

27
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Figure 3.1: Mediality dictated by choice of pr. Smaller dots represent potential offspring
points in semantic space of parents 1 and 2, depending on pr. The middle line represents the
point of a perfectly medial offspring.

more likely to produce offspring closer to the target semantics, at the expense of computational

time per generation. This may slow down the evolution, but should produce smaller trees if

the crossover and mutation operators are indeed choosing better parents.

3.1.1.1 Random Program Archive

As mentioned in section 2.7, because the crossover operation is geometric we know that the

expected fitness of the offspring is optimal when it is equidistant from each parent [6]:

||o, p1|| = ||o, p2|| (3.1)

This means that it may be worthwhile to consider constraining the crossover to produce medial,

or equidistant, offspring. However, as mentioned in [6], this is technically infeasible due to the

complexity of the genotype-phenotype mapping. In other words, the mapping between program

syntax and semantics is too complex to be able to directly synthesize a semantically medial

offspring. Also note that this complex mapping is what makes search techniques like GP

necessary. The genotype-to-phenotype mapping is typically one-to-one and easily found by

simply evaluating the program output, but the phenotype-to-genotype mapping is often one-

to-many, and there is no direct way to learn the mapping unless a database of known programs

happens to contain a program with the desired phenotypic behavior.

Given that it is infeasible to produce a perfectly medial offspring, we can relax the constraint

to get an approximately medial offspring. In the SGP algorithm, recall that pr is an input to

the crossover operator that acts as a crossover mask and dictates the distance between the

offspring and each parent. This is illustrated in Euclidean semantic space in Figure 3.1. The

intermediate dots represent the semantics of offspring for various choices of pr. Note that there

is a single best approximate medial crossover, and that this pr should be preferred over the
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others for crossover because it will result in optimal expected fitness. In the extreme cases,

the offspring will be identical to one of the parents, which can occur if the semantics of pr are

0 . . . 0 or 1 . . . 1.

If an approximate medial offspring is desired, then it is important to have a diverse selection

of pr crossover masks to choose from. In the best case, all possible masks are available, in which

case the optimal medial offspring can be produced. In SGP, the pr programs are small programs

generated using a subset of minterms of inputs. For example, if program inputs are labeled

{x1 . . . xn}, then pr could be a program that generates the function (x1x3). This program can

be constructed mechanically as (AND x1 (NOT x3)) and fed into the crossover operator. For

n = 3, the semantic behavior of such a program would be 00001010. However, using programs

that are subsets of minterms will only allow a finite number of pr behaviors. In an effort to

increase the number of pr behaviors, we will add an archiving step to the main generational

loop. A random program archive (or RPA) will be maintained that will initially contain many

minterm programs. At each generation, a randomly chosen subset of the population will be

added to the archive, which will increase the number of pr choices available for the crossover

operator. This pr archive is similar to the archive described in [9] in that the archive contains a

history of programs observed throughout all generations. For two given parents, the RPA will

be queried for a particular ideal crossover mask, and the program pr with minimum distance

||q, pr|| with respect to query q will be chosen.

There are two main side-effects to using a random program archive. The first is that the

archive will increase linearly in size with each generation, resulting in longer pr query times

for each crossover. The second side-effect is that the pr programs inserted into the overall

program tree can be much larger (i.e. may not just be a small minterm program). However,

this side-effect is not a concern in practice, as the pr tree will not need to be re-evaluated each

time it is encountered. When a program tree is evaluated, the output of sub-trees is memoized,

so pr will only ever be evaluated once, which means that the size of the pr sub-tree is not of

primary concern.

3.1.1.2 Choosing Parents for Crossover

In the SGP algorithm, the selection of parents for crossover is done using normal GP selec-

tion methods such as roulette wheel selection, tournament selection, or rank selection. These

selection methods do not assume a geometric crossover, which means that there may be more

efficient selection methods that take advantage of the geometricity of offspring. In Euclidean

space, the offspring semantics are represented as a point on the line segment connecting the two

parents. With this knowledge, it seems advisable to select parents which straddle the target in

semantic space. An example of this straddling is shown in Figure 3.2. In this example, parents
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Figure 3.2: Example of choosing parents which straddle the target in semantic space. In this
case parents 2 and 4 would be chosen over parents 1 and 3, despite being further away from
the target.

2 and 4 straddle the target the best, so their offspring may have a better chance of landing near

the target. This selection is in contrast to fitness-proportionate selection, which would choose

parents 1 and 3.

The degree to which two parents straddle the target will be referred to as divergence from

geometricity (as defined in [6]), and can be calculated using the triangle inequality:

dG(t, p1, p2) = ||t, p1||+ ||t, p2|| − ||p1, p2|| (3.2)

If the target semantics lie on the line segment between two parents, then dG will be 0. In this

case, the parents perfectly straddle the target, and the crossover operation will be more likely

to produce offspring closer to the target. Parents should be chosen such that dG is minimized.

In practice, it is infeasible to calculate dG for all pairs of parents, so a small pool of parents

will be chosen using tournament selection. Each pair of parents in the pool will be considered,

and the pair that minimizes dG will be chosen.

In the previous section, it was observed that a medial geometric crossover will have optimal

expected fitness. However, given two parents and a known target, the medial point may not be

optimal. This is illustrated in Figure 3.3. The optimal choice of offspring semantics (i.e. the

one that minimizes the distance to the target) occurs at the intersection of the line segment

between the parents and the corresponding perpendicular line that passes through the target

semantics. Therefore, the RPA will be queried for this point instead of the medial point.

One of the primary differences between SGP and SGP+ is the location of the crossover

offspring in semantic space. Figure 3.4 illustrates this difference. Both algorithms utilize
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Figure 3.3: Example of an ideal geometric crossover in 2D Euclidean semantic space

Figure 3.4: Each black dot represents a potential offspring program. (a) SGP crossover is
geometric (on the line segment between parents), but the position along the line is randomly
chosen. (b) SGP+ chooses the offspring that is closest to the target, based on the current
contents of the RPA.
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geometric crossover, but the offspring produced by SGP+ will be closer to the target because

the RPA will be queried for the program that will produce offspring with minimal distance to

the ideal child/offspring.

3.1.1.3 Greedy Mutation

The mutation operator in the SGP algorithm chooses a random program from the current

population and mutates a single semantic bit randomly (either sets or clears the bit). However,

given that we know what the target semantics are, it seems more efficient to make the chosen

bit match the corresponding bit in the target. In other words, there is no clear motivation for

randomly assigning the bit if we know what the correct assignment should be. Therefore, the

mutation operator in SGP+ will identify the first semantic bit difference between the program

to mutate and the target and set that bit to match. This is equivalent to taking a step in a

single dimension in semantic space towards the target. Figure 3.5 illustrates the conceptual

difference between mutation in SGP and SGP+ in 2-D semantic Euclidean space.

Figure 3.5: (a) Mutation in SGP takes a single step in a random direction. (b) SGP+
mutation takes a step in the direction of the target semantics.

Given that we can mutate individual bits to match corresponding bits in the target, the

question arises: Why don’t we just keep mutating bits until we’ve matched the target? This is

generally a bad idea because the target semantic vector can be prohibitively large. Recall that

the program tree grows in depth for each mutation performed. If there are k input cases, then

the semantic vector is k bits long, and the resulting program tree would have depth O(k). If

k is large (say 10,000), then not only is the tree overly complex, but the evaluation of the tree

will take a prohibitively long time. In general, mutating a single bit at a time will make tiny

incremental steps towards the target, but crossover can make large jumps, resulting in faster

convergence and smaller tree sizes. Therefore, crossover should be the preferred operator with

mutation playing a lesser role (controlled by the mutation rate).
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3.1.2 SGP+ Algorithm

The structure of the SGP+ algorithm is nearly identical to Algorithm 2.8.1. There are three

primary differences:

• A new Semantic-Crossover operator

• A new Semantic-Mutation operator

• The addition of a random program archive

The revised algorithm is detailed in Algorithm 3.1.1.

As discussed previously, the random program archive is initialized with random minterm

subsets (line 3). At the end of each generation, programs from the current population are

archived to improve the diversity of the RPA (lines 19 to 21). The number of programs archived

is controlled by the RPA rate, which is typically set to 0.2. Note that the archived programs

are not necessarily fit programs. If programs were archived based on fitness, then highly fit

or similar programs could begin to dominate the archive, which would be counter to the goal

of the RPA, which is to have a diverse collection of unique programs for the purposes of a

crossover mask.

The crossover operator has been modified to utilize the RPA. The details of the crossover

function are provided in Figure 3.6.

First, the target semantics are extracted from the training set. Next, a small pool of parents

is selected using fitness-based tournament selection (lines 3 to 5). The tournament is a size-2

tournament with p = 0.8, meaning that the more-fit individual wins the tournament 80% of

the time. On line 6, the geometricity of each pair of parents in the parent pool is calculated

(dG from equation 3.2), and the pair that minimizes this value is chosen. Because the focus is

on Boolean problems, the distance metric for geometricity is Hamming distance.

Lines 7 through 19 find an ideal crossover mask, as depicted in Figure 3.3. This is done

by looping through each bit in the target semantic vector and checking whether any parent

matches the target bit. If both parents match the target, then it doesn’t matter which parent

is chosen to be represented in the mask, so a value of ’X’, or “don’t care”, is assigned to the

ideal mask. Similarly, a value of ’X’ is assigned if neither parent matches the target. If only a

single parent matches the target, then that parent is chosen for representation in the crossover

mask. After looping through all semantic bits, an ideal crossover mask is obtained. If this mask

were to exist in the RPA, then the offspring of the chosen parents will be optimally close to the

target. Line 20 queries the RPA for the program that most closely matches the ideal crossover

mask. For the Hamming distance calculation, the bits assigned as ’X’ in the ideal mask will

not add to the distance. This is a linear search through the entire RPA. For large training
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Algorithm 3.1.1 Improved Semantic Genetic Boolean Programming algorithm

Input: Train - A set of input-output pairs (xi, yi)
Input: popSize - The size of the population
Input: maxGens - The maximum number of generations to evolve
Input: mutRate - Mutation rate, range [0.0, 1.0]
Input: rpaRate - Rate at which to add programs to the Random Program Archive, range [0.0,

1.0]
Input: funcSet - The set of functions to use as internal nodes in initial population
Output: A program tree that interpolates all input-output pairs in Train

1: function Semantic-GP(Train, popSize, maxGens, mutRate, rpaRate, funcSet)
2: Initialize P with popSize randomly generated program trees . Current Population
3: Initialize RPA with random minterm programs . Random Program Archive
4: perfectFitness ← size(Train)
5: gen ← 0
6: while gen < maxGens and best.fitness < perfectFitness do
7: gen ← gen +1
8: nextP ← {}
9: ∀p ∈ P , evaluate fitness w.r.t. Train

10: best ← argmax
p∈P

{p.fitness}

11: Add best to nextP . Elitism
12: for i = 1 to size(P) do . Crossover
13: child ← Semantic-Crossover(Train, P, RPA)
14: Add child to nextP
15: for i = 1 to [mutRate ∗ size(P)] do . Mutation
16: r ← Randomly chosen program from nextP
17: mutant ← Semantic-Mutation(Train, r, RPA)
18: nextP[r] ← mutant

19: for i = 1 to [rpaRate ∗ size(P)] do . Archiving
20: r ← Randomly chosen program from P
21: Add r to RPA
22: P ← nextP
23: return best
24: end function
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Input: Train - A set of input-output pairs (xi, yi)
Input: P - The current population from which parents are chosen
Input: RPA - The Random Program Archive, from which crossover masks (pr) are chosen
Output: A child program tree created from the composition of parents

1: function Semantic-Crossover(Train, P, RPA)
2: Target ← {Output(t) ∀t ∈ Train}
3: ParentPool ← {}
4: for i = 1 to 5 do
5: Add TournSel(P) to ParentPool

6: argmin
p1,p2∈ParentPool

{Geometricity(Target, p1, p2)}

7: IdealCrossMask ← {}
8: for i = 1 to size(Target) do
9: if Target[i] = p1.semantics[i] then

10: if Target[i] = p2.semantics[i] then
11: . Both parents match target, so don’t care which output is used
12: IdealMask[i] ← X
13: else
14: IdealMask[i] ← 0 . Choose output from p1

15: else if Target[i] = p2.semantics[i] then
16: IdealMask[i] ← 1 . Choose output from p2
17: else
18: . Neither parent matches target, so don’t care which output is used
19: IdealMask[i] ← X

20: pr ← argmin
p∈RPA

{HammDist(IdealMask, p.semantics)}

21: child ← (OR (AND p1 pr) (AND p2 (NOT pr)))
22: child.semantics ←
23: (OR (AND p1.semantics pr.semantics) (AND p2.semantics (NOT pr.semantics)))
24: return child
25: end function
26:
Input: Target - The target semantics (vector of bits)
Input: p1 - Semantics of first parent (vector of bits)
Input: p2 - Semantics of second parent (vector of bits)
Output: A number representing the divergence from geometricity of p1 and p2
27: function Geometricity(Target, p1, p2)
28: a← HammDist(p1.semantics, Target)
29: b← HammDist(p2.semantics, Target)
30: c← HammDist(p1.semantics, p1.semantics)
31: return (a + b− c)
32: end function

Figure 3.6: SGP+ crossover function for Algorithm 3.1.1
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sets, this could be improved by using locality-sensitive hashing (LSH), which would return an

approximate nearest match.

Line 21 is the construction of the offspring program tree, which is equivalent to a 2-input

multiplexer of parent semantics. Finally, the semantics of the offspring are calculated by ap-

plying the crossover mask to the semantics of both parents. Note that the offspring tree is not

actually evaluated, because the output of each parent sub-tree is already known for each input

case in the training set (this is the definition of parent semantics). This greatly speeds up the

crossover operation and the overall speed of evolution because the programs do not need to be

fully evaluated.

The mutation operator has been modified to take a single-dimensional step in the direction

of the target. The details of the mutation function are provided in Figure 3.7.

Input: Train - A set of input-output pairs (xi, yi)
Input: r - The program to mutate
Input: RPA - The Random Program Archive to which a minterm program will be added
Output: A program whose semantics are one bit different from r

1: function Semantic-Mutation(Train, r, RPA)
2: Target ← {Output(t) ∀t ∈ Train}
3: i← Index of first difference between r.semantics and Target
4: if Target[i] = 1 then
5: set ← True
6: else
7: set ← False
8: IdealMask ← 0. . . 0
9: IdealMask[i] ← 1

10: pr ← GenMinterm(IdealMask)
11: Add pr to RPA
12: if set then
13: mutant ← (OR r pr)
14: mutant.semantics ← (OR r.semantics pr.semantics)
15: else
16: mutant ← (AND r (NOT pr))
17: mutant.semantics ← (AND r.semantics (NOT pr.semantics))

18: return mutant
19: end function

Figure 3.7: SGP+ mutation function for Algorithm 3.1.1

First the target semantics are extracted. Next, the target semantic vector is scanned (Line 3)

to find the first semantic difference with the program to mutate. This is simply the index of

the first 1 bit in the vector (XOR r Target). Next it is determined if the bit in the program to
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mutate should be set or cleared to match the target bit.

An ideal mask is then constructed with a single bit set in the index of the first difference.

This mask corresponds to a minterm, and a small program is generated that will have semantics

that match the mask. Although the details are omitted, the construction of such a minterm

program can be done mechanically. The bit that is set corresponds to a single input case in the

truth table. For instance, if the mask were 00100000, this could corresponded with the input

case {0, 1, 0}. The minterm for this bit is (x1x2x3), and the corresponding program is (AND

(NOT x1) (AND x2 (NOT x3))). The mutant is then constructed based on whether the bit is

to be set or cleared. If being set, then the program can be bitwise-OR’d with pr. Otherwise, the

bit is to be cleared, and the program should be bitwise-AND’d with the negation of pr. Finally,

the semantics of the mutant are obtained in a similar fashion. As in the crossover operator,

the mutant tree does not need to be fully evaluated because the original program semantics are

known and will never change.

3.1.3 Complexity Analysis

The time complexity of fitness evaluation is O(|T |), where |T | is the size of the training set.

This is because programs are constructed compositionally so that sub-trees do not need to be

recomputed. All that needs to be done for fitness evaluation is to multiplex the |T | bits from

each parent and to calculate the Hamming distance to the target vector.

The time complexity for the entire evolutionary process is O(G∗|T |∗|R|∗M), where G is the

number of generations, M is the size of the population and |R| is the size of the RPA. This can

be seen by observing that each of the (G∗M) programs created during the evolutionary process

must perform O(|T |∗|R|) work to search the RPA during crossover for a nearest crossover mask,

which involves computing Hamming distance to each program in the RPA.

The time complexity for tree evaluation (after the evolutionary process has completed) is

O(|T | ∗ (|P |+ |R|)), where |P | is the size of the Parent Program Archive (PPA). Although not

previously discussed, the PPA is used for practical implementations for storing parent programs

that are actually used in the crossover and mutation operations. If a program is never used

in one of these operations, it can be discarded. Therefore, to evaluate the tree output, each

of the programs from the parent and random program archives must be evaluated, because

they occur in some part of the overall program tree. Each of these sub-tree evaluations take

O(|T |) time. In practice, the tree is evaluated depth-first starting from the root and results

from each sub-tree are memoized. This means that each of the O(|P |+ |R|) sub-trees will only

be evaluated once.

The space complexity of each program is O(|T |) because each program (except for seed

programs at tree leaves) only needs to store the semantics for each of the |T | input cases, as
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well as O(1) metadata, such as pointers to parent trees. The space complexity of the seed

programs is O(k + |T |), where k is the upper limit on the size of the initial program trees.

The space complexity of the RPA is O(G∗M ∗|T |). This can be seen because αM programs

of size O(|T |) are added to the archive at each generation. The space complexity of the PPA

is also O(G ∗M ∗ |T |) by similar reasoning.

The complexity analysis of SGP and SGP+ are summarized and compared in Table 3.1.

Table 3.1: Summary of SGP+ Complexity Analysis

Alg Fitness Evolution Evaluation Prog Size RPA Size PPA Size
SGP O(|T |) O(G ∗ |T | ∗M) O(|T | ∗ |P |) O(|T |) - O(G ∗M ∗ |T |)
SGP+ O(|T |) O(G ∗ |T | ∗M) O(|T | ∗ (|P |+ |R|)) O(|T |) O(G ∗M ∗ |T |) O(G ∗M ∗ |T |)

The only complexity differences between SGP and SGP+ are the tree evaluation time com-

plexity and the RPA size complexity. Note that the RPA does not exist in SGP, as random

minterm programs are generated on-the-fly. It would appear that despite the intentions, the

evolutionary time and tree evaluation time have not improved. However, as will be shown in

Chapter 4, the actual running time of SGP+ is better than SGP because the G term is lower.

In other words, convergence to a solution occurs more quickly with SGP+, which improves

most of the complexity measures from Table 3.1.

3.2 Semantic Decomposition for Program Search

This section discusses a new kind of semantically-driven algorithm for program search that is

not biologically-inspired or based on any kind of evolutionary algorithm, called Semantic De-

composition for Program Search, or SDPS. Instead, it is based on traditional search techniques.

First the motivation for this algorithm is established followed by some background information,

the algorithm details, and finally the complexity analysis.

3.2.1 Motivation for SDPS

Given that the goal of SGP+ was to produce a smaller tree, it is not clear whether that goal is

fully realized. On the one hand, the time to convergence is improved over SGP by making larger

and more directed steps toward the target. But on the other hand, we still have an overly large

tree that is extremely complex. The fact that the tree includes random programs is problematic

because it is contrary to common sense. If a software engineer were tasked with designing a

program to specifications, there will most likely not be any “random” design decisions made.

Each sub-program would have a justifiable purpose for achieving the specification.
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Therefore, we wish to create program trees that are more deterministic and are as simple as

possible. To this end, a greedy algorithm called Semantic Decomposition for Program Search

(SDPS) will be proposed. There are several key distinctions between the SGP+ and SDPS

algorithms:

1. SGP+ is an evolutionary algorithm, while SDPS is a traditional greedy search algorithm.

2. SGP+ searches the semantic space by evolving multiple models, whereas SDPS only

operates on a single model.

3. SGP+ builds programs from the bottom up by composing programs. SDPS builds pro-

grams from the top down by decomposing semantics.

4. SGP+ includes random programs and non-determinism. SDPS is completely determinis-

tic.

The top-down, decompositional nature is probably the most important aspect of SDPS

(this was depicted in Figure 1.3). In words, the algorithm starts with the target output (i.e.

“what we want”) and decomposes the target into multiple sub-targets, each of which will

be independent sub-problems. The decomposition terminates when the sub-target semantics

match the semantics of an input variable (i.e. “what we’ve got”), which will be the tree leaf.

In other words, the tree is grown from output to inputs.

The algorithm is designed to produce short trees by using heuristics to determine how close

the current semantic sub-target is to the tree leaf (i.e. one of the input variables). By creating

shorter trees, the goal is to improve tree simplicity and generalization to unseen inputs. This

should improve the accuracy of the tree on the training and test sets. Furthermore, it will be

easier for a human to interpret and reason about than the trees output from SGP or SGP+.

One positive aspect of the SGP and SGP+ algorithms was the ability to solve deceptive

Boolean problems such as the parity problem, where a change in a single input bit can result in

a change in the output. This was possible because programs were searching directly in the se-

mantic space, so any complexities resulting from the input-output mapping were side-stepped.

Will SDPS be able to achieve this as well? In short, yes, because SDPS will utilize the semantic

space to determine how far away a sub-target is from one of the input variables and for gen-

erating new sub-targets. Because of this semantic space utilization, the complexities from the

input-output mapping are side-stepped. However, because of the greedy (i.e. non-backtracking)

nature of the algorithm, it is possible that sub-optimal trees (overly complex/large) are gen-

erated for certain deceptive problems. A comparison of accuracy and tree size on deceptive

Boolean problems will be explored further in Chapter 4.
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3.2.2 Background

A few key terms and ideas should first be explained before diving into the SDPS algorithm.

To begin, the semantic context of a node n is defined similarly as in [10]. It is the overall

program tree with the sub-tree rooted at node n removed. With n removed, the exact semantics

of the overall tree will not be exactly known, but certain semantic bits may be precisely known

due to other parts of the overall tree. Consider the tree depicted in Figure 3.8. Here, node n is

Figure 3.8: Example of determining semantic context associated with node n by removing it
from the overall tree. Semantics are displayed above each node. Also note that removal of n
affects the semantics of all ancestors of n (in this case, just the root node).

removed from the tree and replaced by the # symbol. Once removed, the output of the tree is

no longer known. However, some of the outputs are known, because they will not be affected

by the output of the sub-tree at node n. For instance, the last four bits of the overall program

will be 1s, regardless of the sub-tree at #. These are referred to as fixed bits. For the unknown

(non-fixed) context bits (i.e. the sub-tree at n matters), a ’-’ is used to indicate that the bit

can be a 0 or a 1. As a notational convention, context will be written inside of square brackets.

In this example, the context associated with node n is [- - - -1111], which means this sub-tree

has the potential to change any of the first four semantic bits, but is unable to change any of

the last four. The semantic context can be determined in a similar way for any node in the

program tree.

The input semantics are the semantics associated with a particular input. This corresponds

to an input variable column in the truth table. Also referred to as leaf semantics in some cases.

Sub-targets are semantic vectors, similar to target semantics previously discussed, that repre-

sent the desired sub-tree behavior at that location in the overall tree. It is a unique sub-problem

that needs to be solved.

The ancestors of a node are the set of parents on the ancestral path from the node to the
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root (i.e. parent, grand-parent, great-grand-parent, great-great-grand-parent, etc).

3.2.3 SDPS Algorithm

The overall structure of SDPS follows that of a recursive tree induction algorithm, such as the

ID3 decision tree learning algorithm. The top-level pseudocode is provided in Algorithm 3.2.1.

The inputs and outputs to SDPS are identical to that of SGP+: given a set of input-output

Algorithm 3.2.1 SDPS algorithm

Input: Train - A set of input-output pairs (xi, yi)
Input: funcSet - The set of invertible functions to use as internal nodes
Output: A program tree that interpolates all input-output pairs in Train

1: function SDPS(Train, funcSet)
2: targetQ ← {}
3: target ← {yi | (xi, yi) ∈ Train}
4: root ← Node(target) . Initialize program tree
5: Add root to targetQ . Initialize target queue with desired program output
6: while targetQ not Empty do
7: t ← SelectTargetNode(targetQ) . Choose next sub-target
8: Remove t from targetQ
9: f, subtargs ← DecomposeNode(t, funcSet)

10: t.func ← f . Associate an f ∈ funcSet with this node
11: Create branches from node t to subtargs . Grow the tree
12: UpdateAncestralSemantics(t) . Update semantics on ancestral path of t
13: UpdateContext(root) . Update context of entire tree
14: for s ∈ subtargs do
15: if s is not a leaf then
16: Add s to targetQ

17: return root
18: end function

pairs and a set of functions to use as internal nodes, return a program tree that interpolates

them. To begin, the desired tree output (or target) is determined by extracting the outputs

from the training set (i.e. the final column in the truth table). On line 4, the program tree is

initialized with this target and it is also added to the target queue. The main loop consists of

decomposing nodes one at a time and adding any new sub-targets the to target queue. Once

the target queue is empty (all targets reached), the program tree is returned.
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A detailed discussion of each of the algorithm sub-procedures will follow:

• Choosing a node to decompose (SelectTargetNode)

• Node Decomposition (DecomposeNode)

– Determining target semantics (GetTargetSemantics)

– Choosing sub-targets (ChooseSubtargets)

– Validating sub-targets (ValidSubtargets)

• Tree Update (UpdateAncestralSemantics and UpdateContext)

3.2.3.1 Choosing a Node to Decompose

The algorithm is biased to select the most difficult sub-target first because the harder sub-

targets might require more node decompositions. These decompositions have an effect on the

target semantics and context of other nodes in the tree, so it is desirable to get these difficult

sub-targets out of the way first. Alternatively, the easiest sub-target could be chosen. This

might be useful if fully learned sub-trees are allowed to be reused to achieve other sub-targets.

In that case, it may make sense to solve the easier sub-targets first so they can be reused as

soon as possible. Ultimately, the choice of easiest/hardest sub-target is not very significant

because the learned sub-trees will be approximately the same, except for a few bits which may

be more or less constrained by the current context.

The target queue is a priority queue of sub-targets. At each iteration of the main while

loop, the highest priority sub-target is selected and extracted from the queue (lines 7 - 8). The

selection of a sub-target is based on the Hamming distance from the sub-target semantics to the

closest leaf semantics (a.k.a. input variable semantics). Consider the example in Figure 3.9. For

each of the candidate nodes to decompose (on the frontier of the tree), the semantic Hamming

distance between the sub-target and each input variable is computed. The input variable with

minimum Hamming distance is associated with each of the candidates.

min
i∈I
{HammDist(i, s)} (3.3)

In formula 3.3, i represents the semantics for a particular input variable (i.e. the column in the

truth table associated with that input) and s is the semantics of a particular candidate node

to decompose. This is a crude heuristic that captures the expected number of decompositions

before a leaf is reached on that path. In other words, how difficult the sub-target is to achieve.

This is not a perfect heuristic, but is good enough for most cases. As an example of the crudeness

of this heuristic, consider semantics between sub-target s = 10101010 and leaf x2 = 01010101.
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Figure 3.9: The most “difficult” sub-target (based on Hamming distance) is chosen for de-
composition (in this case, 01100000). Note that 10011001 could have also been chosen, as it is
equally as difficult.

Here, the Hamming distance is 8, the maximum possible, yet there is only one more node

decomposition needed to reach the leaf, namely (NOT s).

The pseudocode for the SelectTargetNode function is provided in Figure 3.10.

3.2.3.2 Node Decomposition

Node decomposition is the process of breaking down a target into two or more unique semantic

sub-targets such that, when combined via a function, generates the original target semantics.

The problem is to find the function and the sub-targets that will minimize the overall size of

the tree. Additionally, we want the sub-targets to be easier to solve than the original target. In

general, the ideal sub-targets are not known, so heuristics will be used. The choice of function

and sub-targets is at the heart of the algorithm and will dictate the shape, size, and complexity

of the final program. The overall goal of the algorithm is to reduce the total number of node

decompositions to produce a smaller tree.

To choose the decomposition that will result in a smaller overall tree, heuristics will be used.

We will prefer the decomposition that results in sub-targets which are closest to the inputs in

semantic space. More precisely, we will choose sub-targets such that the Hamming distance to

the semantics of the nearest inputs are minimized. This is done in an effort to minimize the

depth of each branch of the tree. By minimizing the depth of every branch in the tree, we will

reduce the overall size of the tree.
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Input: targetQ - Queue of candidate nodes for decomposition
Output: difficultNode - Node selected for decomposition (the most-difficult sub-target)

1: function SelectTargetNode(targetQ)
2: maxDist ← 0
3: difficultNode ← {}
4: for s ∈ targetQ do
5: dist ←min

i∈I
{HammDist(i.semantics, s.semantics)}

6: if dist > maxDist then
7: maxDist ← dist
8: difficultNode ← s
9: return difficultNode

10: end function

Figure 3.10: SelectTargetNode function from Algorithm 3.2.1. Selects the most “diffi-
cult” target for decomposition.

Node decomposition occurs on line 9 of Algorithm 3.2.1. The function DecomposeNode

returns two objects - a function from funcSet (to associate with the newly-decomposed node)

and a set of new sub-targets. The pseudocode for DecomposeNode is provided in Figure 3.11.

DecomposeNode exhaustively checks all functions in funcSet and all possible combinations

of inputs. For example, if there are 5 input variables {x1, . . . , x5} and f is chosen to be the 3

input OR function, then there are
(
5
3

)
possible input combinations to f. For each of these (f,c)

combinations (line 8), candidate sub-targets are created. In essence, this is testing potential

decompositions of node t to determine the optimal decomposition, which will be returned by

the function. Once all (f,c) pairs have been considered, the optimal function and sub-targets

are returned.

Node decomposition consists of three primary sub-procedures - determining the target se-

mantics (incorporates context), choosing the sub-target semantics, and validating the chosen

sub-targets.

Determining target semantics. Because t is the node to be decomposed, it does not yet

have an associated function or any children. However, it does have associated semantics that

represent the target semantics that are to be achieved by the sub-tree rooted at t as well as

an associated context, which encodes information about other parts of the overall program

tree. The GetTargetSemantics function returns the target semantics associated with t,

which is a modification of the semantics of t that incorporates the context. If context were not

considered, the value returned by this function would simply be the semantics of t. However,
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Input: t - Node to decompose. Has associated context and target semantics.
Input: funcSet - The set of invertible functions to use as internal nodes
Output: bestF - A function from funcSet to replace node t with
Output: bestSubtargs - A set of new sub-target nodes

1: function DecomposeNode(t, funcSet)
2: target ← GetTargetSemantics(t) . Determine target based on t’s context
3: minDistance ← 0
4: for f ∈ funcSet do
5: k ← arity of f
6: inputCombinations ←
7: Set of all k-combinations of input variables {x1, . . . , xn}
8: for c ∈ inputCombinations do
9: d, subtargs ← ChooseSubtargets(target,f,c)

10: if ValidSubtargets(subtargs) and d < minDistance then
11: bestF ← f
12: bestSubtargs ← subtargs
13: minDistance ← d
14: return bestF, bestSubtargs
15: end function

Figure 3.11: DecomposeNode function from Algorithm 3.2.1. Exhaustively tries all possible
node decompositions and returns the best one.
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Table 3.2: Relationship between semantic bits, context bits, and target bits in GetTarget-
Semantics

Semantic Bit Context Bit Target Bit
0 0 *
0 1 *
0 - 0
1 0 *
1 1 *
1 - 1

because certain bits are fixed by the context, the target semantics of t may be relaxed, because

they cannot be modified by t’s sub-tree. Fixed context bits of 0 or 1 are desired, as this will

allow for more possible choices of sub-targets. In this way, t’s sub-tree will be easier to learn.

For any fixed bits in the context, the corresponding bit in the semantics of t will become a

“don’t care”, indicated by the character ’*’.

Recall that the context is represented as a vector of 0s, 1s, and dashes (-). If a context bit

is a 0 or 1 then it is fixed, and the corresponding target bit becomes a ’*’. If the context bit

is a ’-’, then the target bit must still be learned by the sub-tree and will remain unchanged.

Table 3.2 shows the mapping between semantic bit, context bit, and target bit.

The psuedocode for GetTargetSemantics is provided in Figure 3.12.

Input: t - Node to decompose. Has associated context and target semantics.
Output: target - Target semantics of t (incorporates context)

1: function GetTargetSemantics(t)
2: target ← t.semantics
3: L ← len(target)
4: for i=1..L do
5: if t.context[i] 6= ’-’ then
6: target[i] ← ’*’

7: return target
8: end function

Figure 3.12: GetTargetSemantics function from DecomposeNode. If the context is
fixed, then set the corresponding target bit to a ’*’, or “don’t care”.

Choosing sub-targets. Given a particular function f, combination of inputs c, and target

semantics (from GetTargetSemantics), the ChooseSubtargets function will return a

set of new sub-target nodes such that the Hamming distance between the new sub-target’s
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semantics and the input semantics is minimized. By minimizing the Hamming distance, we are

biasing towards sub-targets which are closest to the leaves in semantic space. This is done to

minimize the depth and size of the overall tree.

Sub-targets are constructed one semantic bit at a time, based on the corresponding input

bits, the target bit, and the output of f(c). For each bit, if the target bit and the output bit

match, then the input bits are copied over to the corresponding sub-target bits. Similarly, if

the target bit is a ’*’, then we are free to choose any sub-target bits, so we will prefer the

input bits, which will be copied directly to the corresponding sub-target bits. If a mismatch

between output and target occurs, then we must decide how to set the sub-target bits so that

f(subtarget bits) = target bit (or equivalently, choose sub-target bits from f−1(target bit)).

As an example, suppose f is the OR function and c is the input pair (x1, x3). The step-by-

step process of setting the first four sub-target bits is illustrated in Figures 3.13 through 3.16.

For each figure, the candidate node decomposition is shown on the left with semantics above

each node.

Figure 3.13: Setting sub-target bit 0. Since the output bit and the target bit match, then we
can set the sub-target bits to match the input bits.

This process continues until all sub-target bits have been set. In this case, they would be set

to 00001011 and 00110001, respectively. As a measure of quality for this node decomposition,

the total Hamming distance between sub-targets and corresponding inputs is calculated and

returned by the function. In this case it would be HammDist(00001111, 00001011) + Ham-

mDist(01010101, 00110001) = 4. This value will be used by the DecomposeNode function

for tracking the best of the candidate node decompositions.

Finally, if a sub-target perfectly matches the input semantics, then a flag will be set for the

sub-target to indicate that it is a leaf, and that no further decomposition is necessary.

The pseudocode for ChooseSubtargets is provided in Figure 3.17.
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Figure 3.14: Setting sub-target bit 1. The output bit doesn’t match the target bit, so we
must decide how to set the sub-target bits. An inverse function lookup is performed to find the
set of possible sub-targets we can choose from so that f(Sub-trg1,Sub-trg2)=Target. There is
only one choice, so we must set the sub-targets to (0,0).

Figure 3.15: Setting sub-target bit 2. The output bit doesn’t match the target bit, so an
inverse function lookup is performed. We will prefer the sub-target bits that have minimal
Hamming distance to the input bits. Note that there are two optimal choices of sub-target bits
in this case, each of which have Hamming distance 1 to the input bits.
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Figure 3.16: Setting sub-target bit 3. Since the target bit is ’*’, we are free to choose any
sub-target bits, so we will choose the input bits.

Input: target - Target semantics for this node decomposition
Input: f - The function associated with this node decomposition
Input: c - The set of inputs associated with this node decomposition
Output: subtargs - Sub-target nodes that minimize distance to inputs in c
Output: d - Total distance between all sub-targets and corresponding inputs

1: function ChooseSubtargets(target, f, c)
2: d ← 0
3: subtargs ← {Node({})} . Initialize empty sub-target nodes
4: L ← len(target)
5: k ← arity of f
6: for i=1..L do
7: inputBits ← {xj .semantics[i] | xj ∈ c}
8: if target[i] = ’*’ then . target[i] is a “don’t care”
9: subtargetBits ← inputBits

10: else
11: B ← f−1(target[i]) . Rows in truth table matching target bit
12: subtargetBits ← argmin

b∈B
{HammDist(b, inputBits)}

13: d ← d + HammDist(subtargetBits, inputBits)

14: for j=1..k do
15: subtargs[j].semantics[i] ← subtargetBits[j]

16: for j=1..k do
17: if subtargs[j].semantics = c[j].semantics then
18: subtargs[j].isLeaf ← True

19: return d, subtargs
20: end function

Figure 3.17: ChooseSubtargets function from DecomposeNode. Chooses sub-targets
that are closest to the inputs in semantic space.
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Validating sub-targets. Once sub-targets have been chosen, then they must be validated

to ensure that they don’t match a previous target. If targets are allowed to repeat, then the

tree decomposition will infinitely recurse. Therefore, we must enforce that all targets on a

particular ancestral path are unique. If no repeated targets exist, then the function will return

True. Otherwise, a repeated target exists and the function will return False.

The pseudocode for ValidateSubtargets is provided in Figure 3.18.

Input: subtargs - Sub-target nodes to verify
Output: True, if no repeated targets. False, otherwise.

1: function ValidateSubtargets(target, f, c)
2: ancestralOutputs ← {a.semantics | a ∈ Ancestors(t)}
3: for s ∈ subtargs do
4: if s.semantics ∈ ancestralOutputs then
5: return False . Sub-targets exists in the ancestral path

6: return True
7: end function

Figure 3.18: ValidateSubtargets function from DecomposeNode.

3.2.3.3 Tree Update

The tree update process includes creating branches to the newly-created sub-targets followed

by updating the semantics and context of the entire tree.

The semantics must first be updated on the ancestral path of the node that was just de-

composed. This is necessary because of constraint relaxation on the sub-target. When the

node was decomposed, some of the target bits became “don’t cares” because of fixed bits in the

context. Therefore, these bits may not match the original target from before decomposition.

These changes can also affect all of the nodes on the ancestral path, up to the root. These

changes also necessitate an update of context of the entire tree, because semantic changes in

one part of the tree can affect context of entirely different parts of the tree. The potential for

context to change is important, as it will guide how relaxed or constrained each sub-target is

when it is decomposed.

As an example of why the tree update is necessary, consider the example depicted in Fig-

ure 3.19. In this example, if the right node context is not updated, then it might produce

incorrect results at the time of decomposition due to having a context that does not reflect the

current state of the tree.
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Figure 3.19: (a) Prior to decomposition, the semantics of the left node was 0110 and the
context of the right node was [0 - - 0]. (b) After decomposition of the left node, the semantics
changed to 0111 because of context relaxation. This change in semantics also changed the
context of the right node on the other side of the tree. In this case, that side of the tree
becomes more constrained because there are fewer fixed bits in the context. If the context was
not updated, this additional constraint on the right node would be lost, possibly producing
incorrect results at the output of the overall tree.

Lines 10 to 13 in Algorithm 3.2.1 update the program tree based on the function and sub-

targets returned from the DecomposeNode function. First, the function is associated with

the node and branches are created from the node to each of the sub-targets.

Next, UpdateAncestralSemantics updates the semantics of all nodes on the ancestral

path of t, including t. All that needs to be done to update the semantics of a node is to

re-evaluate the sub-tree rooted at that node, which can be done efficiently by updating nodes

from leaf-to-root.

The change in semantics necessitates that the context be re-evaluated for the entire tree

starting at the root. The tree is processed in a breadth-first fashion and the context of a node

is evaluated as described in section 3.2.2.

3.2.4 Complexity Analysis

The time complexity of the DecomposeNode function is O(|F | ∗
(
n
k

)
∗ |T | ∗ k), where |F | is

the number of functions in funcSet, n is the number of input variables, k is the arity of f ∈
funcSet with maximum arity, and |T | is the size of the training data. The reason is that each

of the O(|F | ∗
(
n
k

)
) pairs of function and input combinations are considered as potential target

decompositions. Then for each of these pairs, O(|T | ∗ k) work is done to determine the new

sub-targets.

Recall in line 4 of the DecomposeNode function that repeated sub-targets are disallowed

to avoid recursive sub-targets. This means there are a maximum of 2|T | possible sub-targets in
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the tree. Therefore, the time complexity of the SDPS algorithm is O(2|T | ∗ |F | ∗
(
n
k

)
∗ |T | ∗ k).

In reality, the number of node decompositions will be much less than 2|T |.

The space complexity of the program tree will be O(2|T |), as this is the maximum number

of sub-target nodes possible. As with the worst-case running time, the tree size will nearly

always be much less than this.

The size of funcSet plays an important role in the execution time of the algorithm as well as

the overall tree size. Although increasing |F | will increase the worst-case running time of the

DecomposeNode function, having more choices at each node decomposition generally reduces

the total number of node decompositions needed, which reduces the overall running time. This

will be observed in Chapter 4.



Chapter 4

Evaluation and Results

4.1 Evaluation Criteria

There will be four main criteria for evaluation of algorithms:

1. Program size (i.e. number of internal nodes in tree)

2. Accuracy on training and test sets

3. Training time

4. Tree evaluation time

For the SGP and SGP+ algorithms, the program size will be the combined size of the RPA

and the PPA as described in the complexity analysis, as this represents the number of unique

internal nodes in the program tree. For the SDPS algorithm, the number of internal nodes will

be counted.

Accuracy on the training and test set data will be defined as the percentage of correctly

classified instances:

Acc(h′, T ) =
|{h′(xi) = yi | (xi, yi) ∈ T}|

|T |
(4.1)

where h’ is the model returned by the algorithm and T can be either the training set or the

test set.

Training time is the time it takes the algorithm to train and create the final model. The

tree evaluation time is the time it takes for the model to evaluate the entire training set after

the model has been created. All times will be in units of seconds as measured by the CPU time

on a PC with a 3.0 GHz Intel Core 2 Duo CPU and 4 GB of RAM.

53
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4.2 Experimental Procedures

Experiments will be performed to compare the relative effectiveness of the following three

algorithms:

1. The SGP algorithm originally described in Section 2.7

2. The SGP+ algorithm proposed in Section 3.1

3. The SDPS algorithm proposed in Section 3.2

Note that the original SGP algorithm described in [11] included an extra simplification step at

each generation to reduce the size of the program without altering the semantics. This step was

omitted for ease of implementation in both the SGP and SGP+ algorithms. Removal of this

step will not affect the comparison of algorithms because the simplification does not alter the

semantics, and therefore the unsimplified and simplified models will be equivalent with respect

to semantics. The program sizes and evaluation time will be inflated, but will be comparable

between SGP and SGP+.

For all three algorithms, an identical function set will be used, namely {AND, OR, NAND,

NOR}. This will allow for similar models to be built by all algorithms so that they may be

fairly compared.

The algorithms will be compared using the evaluation criteria previously described against

both synthetic Boolean datasets and real-world classification datasets from the UCI Machine

Learning Repository. For the synthetic Boolean datasets, only a training set will be used due

to the limited number of instances for each of the problems. For the UCI data sets, the data

will be split into separate training and test sets, with the model being built against the training

set alone. This is done to quantify how well a model generalizes to unseen instances in the test

set.

Results reported will be averaged over 10 runs to eliminate elements of randomness in the

GP-based algorithms as well as for the choice of instances in the training and test sets. A

two-sample T-test will be used to determine the statistical significance of observed differences.

For each run of the UCI data sets, 75% of the instances will be randomly chosen for the training

set with the remaining 25% used for the test set.

4.2.1 Algorithm Parameters

The parameters for the genetic-programming based algorithms (SGP, SGP+) are described in

Table 4.1. The selection of parents is done by tournament selection with tournament size 2 and

probability 0.8, meaning that the more “fit” individual will be chosen 80% of the time. The
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Table 4.1: Parameters for GP-based algorithms (SGP, SGP+)

Parameter Value
Elitism? Yes
Function Set {AND, OR, NAND, NOR}
Population Size 200
Crossover Rate 1.0
Mutation Rate 0.1
Maximum Generations 50
Tournament Size 2
Tournament Probability 0.8
Initialization Method Random

number of generations was limited to 50 to limit the depth of the tree for SGP/SGP+, as it

will increase by one each generation.

The initial population (generation 0) will be randomly-created linear programs. A linear

program is a sequence of instructions, similar to machine code, which includes a destination

register, an op code, and two source registers. The initialization of these programs will be done

based on the recommendations in [1]. Specifically, the programs will contain a random number

of instructions between 10 and 30, with half of the instructions involving a constant (0 or 1) in

one of the source registers. Each of the n inputs will be placed in registers 1 through n, and

there will be an additional n registers for general usage. After execution of a linear program,

it is assumed that the output resides in register 1. The decision to use linear programs in

generation 0 was made for ease of implementation. It is important to note that this decision

will only affect the syntax of the program. In theory, any kind of program syntax could be used

without affecting the results (e.g. tree-based, grammar-based, stack-based, etc.).

There are some additional parameters that are specific to the SGP+ algorithm. These

are described in Table 4.2. The values chosen are based on sensitivity analysis presented in

Table 4.2: Parameters specific to the SGP+ algorithm

Parameter Value
Initial RPA Size (1.4 * Population Size)
RPA Rate 0.45
Parent Pool Size 7

Section 4.3.

There are no “magic numbers” for the SDPS algorithm. However, the choice of library

functions used (funcSet in Algorithm 3.2.1) will play an important role. For most experiments,
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this set will be limited to the same set used in the GP-based algorithms, namely {AND, OR,

NAND, NOR}.

4.3 Synthetic Boolean Problems

This section will present results on several synthetic Boolean problems. Many of these are

“deceptive” problems, meaning that the search may be deceived if there does not exist a clear

path in the search space from a promising individual to the individual that solves the prob-

lem. Deceptive problems will help highlight the difference between traditional syntax-based

GP algorithms and semantic-based algorithms. It is hard to qualify exactly what makes a

problem deceptive, but an attempt has been made to distinguish between the deceptive and

non-deceptive problems. Non-deceptive problems will also be considered, in order to observe

how well the algorithms deal with “easy” problems.

4.3.1 Data Set Description

Table 4.3 lists the synthetic Boolean data sets used. For all problems, the number of inputs

Table 4.3: Synthetic Boolean Data Set Description

Name Deceptive? # Inputs # Instances
PARITY5 Yes 5 32
PARITY6 Yes 6 64
PARITY7 Yes 7 128
PARITY8 Yes 8 256
MUX6 Yes 6 64
OR5 No 5 32
OR6 No 6 64
OR7 No 7 128
OR8 No 8 256
COMP6 No 6 64
COMP8 No 8 256
RANDOM5 - 5 32
RANDOM6 - 6 64
RANDOM7 - 7 128
RANDOM8 - 8 256

is limited to a maximum of 8 due to inherent limitations in the ability of the SGP and SGP+

algorithms to handle a large number of inputs.

The PARITY* problems will be computing odd parity, meaning that if there are an odd

number of 1s in the input, the output will be a 1. The MUX6 problem will be computing
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the multiplexer function with 4 input bits and two select bits. The OR* problems are simply

computing the OR function with multiple inputs. The COMP* problems will be computing the

comparator function, where half of the inputs are treated as input A, the other half treated as

input B, and the output will be 0 if A ≤ B. Finally, the RANDOM* problems are completely

randomized functions, which may or may not be deceptive. For instance, RANDOM5 will

randomly choose one of the possible 232 5-input functions.

4.3.2 Results

There are four primary experiments performed on the synthetic Boolean problems, including

parameter sensitivity experiments and an overall comparison of all algorithms.

4.3.2.1 SGP+ Parameter Sensitivity

The first experiment will be a parameter sensitivity test on the PARITY5 problem for the

parameters that are specific to the SGP+ algorithm - namely the initial RPA size, the RPA

rate, and the parent pool size. All values reported are averaged over 10 runs. The accuracy

metric is omitted because it was 100% regardless of specific parameter value. The results for

the initial RPA size sensitivity are provided in Table 4.4. The actual size of the initial RPA

is equal to (Init RPA * Population Size), where the population size is fixed at 200. Generally

speaking, the SGP+ algorithm is not very sensitive to the size of initial RPA, although the

general trend seems to be that larger RPA sizes result in slightly smaller programs and shorter

evaluation times. The learning time is largely unaffected because the RPA initialization occurs

outside of the main evolutionary loop. The ideal value appears to be 1.4, so this will be the

default RPA size used in subsequent experiments. With a population size of 200, this means

that the RPA will be populated with 280 random minterm programs.

The results for the RPA rate sensitivity are provided in Table 4.5. This is the rate at which

programs are added to the RPA each generation. It was expected that the more programs that

are added to the RPA, the longer the training time will be, because the RPA must be searched

every time a crossover operation occurs. So it is not surprising to see the training time increase

proportionally with the RPA rate. It also appears that increasing this rate has a favorable

impact on the program size and program evaluation time, presumably due to finding better

crossover masks because of the increased diversity in the RPA. The ideal value appears to be

0.45, meaning that with a population size of 200, 90 programs will be randomly chosen to be

added to the RPA at each generation. Programs will only be added to the RPA if they are

not already present, so increasing the RPA rate even further will most likely not improve the

evaluation metrics.
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Table 4.4: SGP+ Parameter Sensitivity - Initial RPA Size

Init RPA Program Size Train Time (s) Eval Time (s)
0.1 461.7 1.064 0.207
0.2 518.4 1.100 0.232
0.3 454.3 1.045 0.201
0.4 482.5 1.075 0.215
0.5 475.8 1.105 0.212
0.6 471.8 1.051 0.209
0.7 488.5 1.080 0.221
0.8 493.6 1.108 0.220
0.9 459.7 1.056 0.210
1.0 483.7 1.064 0.213
1.1 436.4 1.052 0.190
1.2 429.4 1.035 0.186
1.3 449.2 1.045 0.196
1.4 425.4 1.012 0.186
1.5 473.2 1.056 0.215
1.6 462.8 1.059 0.207
1.7 445.7 1.031 0.195
1.8 465.3 1.093 0.204
1.9 451.8 1.069 0.197
2.0 471.8 1.056 0.209

Table 4.5: SGP+ Parameter Sensitivity - RPA rate

RPA rate Program Size Train Time (s) Eval Time (s)
0.00 658.2 1.145 0.279
0.05 524.3 1.086 0.213
0.10 568.4 1.185 0.237
0.15 550.5 1.230 0.227
0.20 499.8 1.234 0.204
0.25 460.6 1.242 0.186
0.30 485.9 1.302 0.198
0.35 483.1 1.340 0.197
0.40 521.1 1.431 0.216
0.45 454.3 1.377 0.182
0.50 459.5 1.364 0.189
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The results for the parent pool size sensitivity are provided in Table 4.6. Recall from the

Table 4.6: SGP+ Parameter Sensitivity - Parent Pool Size

Parent Pool Size Program Size Train Time (s) Eval Time (s)
2 664.2 1.170 0.285
3 582.8 1.288 0.243
4 541.6 1.332 0.223
5 432.3 1.325 0.175
6 400.2 1.497 0.160
7 394.3 1.684 0.158
8 329.1 1.784 0.129
9 361.9 2.130 0.146

10 358.8 2.359 0.143
11 324.1 2.618 0.130
12 332.6 3.143 0.135
13 323.4 3.363 0.130
14 296.2 3.704 0.121
15 306.8 4.156 0.125

SGP+ algorithm that parents are chosen from the parent pool, and that all pairs of parents

in the pool are considered. Therefore, it is expected that the training time should increase

with the the number of parents in the pool. Additionally, it is expected that the larger parent

pools should reduce the program size and evaluation time, as it will be more likely to find the

“ideal” parents for crossover, resulting in offspring that are closer to the target semantics. The

experimental results match these expectations. In the ideal case, we would allow for a pool size

of 200 consisting of everyone in the population, though this would increase the training time

drastically. Therefore, a pool size of 7 was chosen a compromise between program size and

training time.

4.3.2.2 SDPS Parameter Sensitivity

The next experiment will be a parameter sensitivity test on the PARITY5 problem for the

parameters that are specific to the SDPS algorithm. There is only one parameter to consider,

and that is the choice of the function set. Three choices will be considered - use only the base

function set of {AND,OR,NAND,NOR}, use all 2-input functions, or use all 3-input functions.

The results of this experiment are provided in Table 4.7. The function set represents what

kinds of functions can be present at the internal nodes of the program trees. It is expected

that having a larger number of functions to choose from will allow for a more expressive, and

therefore shorter, tree. There are a total 24 = 16 possible 2-input functions and 28 = 256

possible 3-input functions. As expected, the shortest program trees are created when there are
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Table 4.7: SDPS Parameter Sensitivity - Function Set

Function Set Program Size Train Time (s) Eval Time (s)
{AND,OR,NAND,NOR} 61 0.536 0.003

All 2-input 40 0.600 0.002
All 3-input 17 7.321 0.001

a larger number of functions to choose from. Additionally, the evaluation time is shorter due to

the shorter program size. To ensure a fair comparison with other algorithms, only the 4 base

functions will be used in subsequent experiments.

4.3.2.3 SGP Metrics During Evolution

For the evolutionary GP algorithms, metrics will be observed during the training/learning

process on the PARITY5 problem. The evaluation time will not be considered since that

metric only applies after the model has been learned.

A comparison of program size per generation is provided in Figure 4.1. The SGP+ data

Figure 4.1: Program size vs. Generation for SGP and SGP+ on the PARITY5 problem

cuts off at generation 7 because the problem was solved at or before generation 7 in all 10 runs.

This figure shows that the program size per generation is roughly equal for both algorithms.

This is expected because the crossover and mutation operators increment the program size by

equal amounts each generation in both SGP and SGP+. However, after training is complete
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the size of the SGP+ program will be much smaller than the SGP program due to achieving

perfect training set accuracy in an earlier generation.

A comparison of training set accuracy per generation is provided in Figure 4.2. This figure

Figure 4.2: Training Set Accuracy vs. Generation for SGP and SGP+ on the PARITY5
problem

shows that accuracy per generation increases more for the SGP+ algorithm than it does for the

SGP algorithm. This is primarily due to the SGP+ crossover operator taking larger and more

directed steps in semantic space towards the target, compared to SGP. Additionally, the SGP+

mutation operator helps by taking a step in the direction of the target semantics instead of a

step in a random direction. This improved accuracy per generation is essential to keeping the

program size small since the size grows exponentially with the number of generations.

A comparison of training time per generation is provided in Figure 4.3. This figure shows

that SGP is performing better than SGP+ with respect to training time per generation. This

is expected, because the SGP+ algorithm sacrifices time each generation to perform a more

selective search for parents that have a high chance of producing offspring that are close to the

target in semantic space. Even with this sacrifice, the overall training time of the SGP+ algo-

rithm is less than SGP due to finding a program with perfect accuracy in an earlier generation

(0.916 seconds vs. 1.056 seconds).
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Figure 4.3: Training Time vs. Generation for SGP and SGP+ on the PARITY5 problem

4.3.2.4 Program Accuracy

An overall comparison of all algorithms over all metrics is provided in the next few sections.

First, a comparison of program accuracy on the training set is provided in Table 4.8. An addi-

tional column is added for the standard GP algorithm. Results in this column were originally

reported in [11], Table 1. Fields marked with a dash were not reported and are omitted. The

first observation is that the GP algorithm does very poorly on the PARITY problems. The

target semantics for these problems are half 1s and half 0s, so an accuracy of 50% could easily

be achieved by creating a trivial program that outputs all 0s or all 1s. Standard GP does not

do much better than 50% accuracy, so it seems ill-suited for that type of problem. In general,

it is expected that standard GP does poorly on any kind of deceptive problem, hence the desire

for semantic-based algorithms.

The SGP algorithm does fairly well for simple non-deceptive problems, and even deceptive

problems with a low number of inputs. However, the larger PARITY7 and PARITY8 proved

difficult for SGP, and the evolution was cut off at the maximum of 50 generations before a

solution could be found. The accuracy of SGP+ and SDPS was nearly perfect in all cases

(found a solution in 10 out of 10 runs), with the exception of one run of the PARITY8 problem

on SGP+. These results show that SGP+ and SDPS can more accurately fit training data in

cases where SGP+ and standard GP can not.
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Table 4.8: Comparison of program accuracy for each algorithm

Problem
GP SGP SGP+ SDPS

mean std mean std mean std mean std
PARITY5 0.529 0.024 1.000 0.000 1.000 0.000 1.000 0.000
PARITY6 0.505 0.007 0.998 0.005 1.000 0.000 1.000 0.000
PARITY7 0.501 0.002 0.888 0.013 1.000 0.000 1.000 0.000
PARITY8 0.501 0.002 0.748 0.012 0.997 0.010 1.000 0.000
MUX6 0.708 0.033 1.000 0.000 1.000 0.000 1.000 0.000
OR5 - - 1.000 0.000 1.000 0.000 1.000 0.000
OR6 - - 1.000 0.000 1.000 0.000 1.000 0.000
OR7 - - 1.000 0.000 1.000 0.000 1.000 0.000
OR8 - - 0.999 0.002 1.000 0.000 1.000 0.000
COMP6 0.802 0.038 1.000 0.000 1.000 0.000 1.000 0.000
COMP8 0.803 0.028 0.962 0.014 1.000 0.000 1.000 0.000
RAND5 0.822 0.066 1.000 0.000 1.000 0.000 1.000 0.000
RAND6 0.836 0.066 1.000 0.000 1.000 0.000 1.000 0.000
RAND7 0.851 0.053 0.930 0.018 1.000 0.000 1.000 0.000
RAND8 0.896 0.053 0.832 0.012 1.000 0.000 1.000 0.000

4.3.2.5 Program Size

Next, a comparison of program size is provided in Table 4.9. Note the addition of a CNF/DNF

Table 4.9: Comparison of program size for each algorithm

Problem CNF/DNF
SGP SGP+ SDPS

mean std mean std mean std
PARITY5 79 2717.3 355.3 386.0 70.9 61.0 0.0
PARITY6 191 6045.1 463.8 1580.8 93.1 136.0 0.0
PARITY7 447 8087.9 193.9 3293.9 207.9 301.0 0.0
PARITY8 1023 9488.1 182.9 5723.0 297.5 643.0 0.0
MUX6 191 4072.3 494.6 386.7 89.5 18.0 0.0
OR5 4 184.3 150.9 24.2 0.8 4.0 0.0
OR6 5 341.9 257.8 24.2 0.6 7.0 0.0
OR7 6 1524.7 1337.4 25.2 1.7 9.0 0.0
OR8 7 3583.6 2586.8 26.0 1.8 11.0 0.0
COMP6 191 3581.7 370.7 386.4 105.4 16.0 0.0
COMP8 1023 9281.0 298.9 2126.9 269.4 37.0 0.0
RAND5 79 1597.7 436.4 100.3 40.1 27.0 0.0
RAND6 191 5609.0 804.1 1001.3 145.9 75.0 0.0
RAND7 447 8031.5 249.9 2201.7 123.5 91.0 0.0
RAND8 1023 9504.2 200.9 4892.0 333.5 267.0 0.0

column. This column represents the number of internal nodes that would be needed to represent

the CNF/DNF formula (whichever is smaller) using only the allowed functions, namely {AND,

OR, NAND, NOR}. This is a “baseline” for which to compare the program sizes obtained by

each of the algorithms. If this baseline number cannot be beaten, then it is likely that the model

is overly complex. To calculate the size of the CNF/DNF programs, if the truth table contains

half ones and half zeros, then there are 2n−1 clauses, each of which require (n − 1) nodes.
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These clauses are then combined with 2n−1 − 1 nodes, for a total of (n− 1)2n−1 + 2n−1 − 1 =

n2n−1 − 1 nodes. Note that this number does not include negation of inputs, and represents a

lower/conservative bound.

It is clear that the SDPS algorithm has the smallest program size for most problems. Pro-

gram size was one of the key metrics to improve in the design of the SGP+ and SDPS algorithms,

and it is clear that a drastic improvement was made compared to the program sizes of SGP.

This applies to both the deceptive and non-deceptive problems. For example, OR8, a sim-

ple non-deceptive problem had thousands of internal nodes in the program tree, whereas both

SGP+ and SDPS had around 10 to 30.

For the deceptive problems, it seems that both SGP and SGP+ have an unusually large

size. In fact, they are unable to beat the CNF/DNF baseline, which means the model could

be overly complex and contain extraneous/unnecessary computations. Significant algorithmic

modifications would most likely be needed to overcome this limitation.

4.3.2.6 Training and Evaluation Time

A comparison of training time is provided in Table 4.10. This is the time, in seconds, that

it takes for the model to be built. There are two points to make here. The first is that as

Table 4.10: Comparison of training time (s) for each algorithm

Problem
SGP SGP+ SDPS

mean std mean std mean std
PARITY5 1.554 0.135 1.694 0.184 0.582 0.062
PARITY6 5.085 0.371 6.779 0.401 3.463 0.218
PARITY7 12.108 0.603 22.816 1.400 20.686 0.194
PARITY8 24.852 1.143 71.715 4.490 129.595 1.825
MUX6 3.790 0.439 2.701 0.356 0.475 0.024
OR5 0.451 0.205 0.278 0.006 0.035 0.002
OR6 1.068 0.391 0.489 0.013 0.150 0.007
OR7 3.190 1.803 0.937 0.107 0.475 0.012
OR8 12.348 7.871 1.785 0.181 1.455 0.037
COMP6 3.222 0.271 2.802 0.323 0.340 0.007
COMP8 23.454 0.308 23.801 2.743 4.746 0.132
RAND5 1.088 0.153 0.901 0.154 0.235 0.001
RAND6 4.670 0.567 4.366 0.483 1.694 0.047
RAND7 11.467 0.041 13.433 0.627 5.097 0.101
RAND8 23.065 0.185 57.409 4.205 40.004 1.525

the number of inputs are increased, SGP+ takes longer than SGP. This is due to the RPA

increasing linearly in size each generation, which causes the crossover operation to take longer.

The second point is that the training time for SDPS was very long for the PARITY8 and

RAND8 problems. This uncovers a weakness in the ability of SDPS to handle a large number

of inputs for deceptive/difficult problems. This is due to the exhaustive search that occurs at
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each node decomposition.

Finally, Table 4.11 provides a comparison of program evaluation times (after the model

is built). This is the time it takes to evaluate the program on all instances in the training

set. SDPS was best across the board, due to the smaller program sizes. In many cases, the

Table 4.11: Comparison of evaluation time (s) for each algorithm

Problem
SGP SGP+ SDPS

mean std mean std mean std
PARITY5 1.395 0.189 0.146 0.033 0.003 0.000
PARITY6 8.530 1.011 2.043 0.138 0.012 0.000
PARITY7 31.693 1.380 13.820 0.897 0.060 0.021
PARITY8 104.792 3.277 78.641 4.419 0.244 0.029
MUX6 5.679 1.249 0.378 0.109 0.002 0.000
OR5 0.063 0.060 0.001 0.000 0.000 0.000
OR6 0.321 0.259 0.003 0.000 0.001 0.000
OR7 4.891 4.755 0.011 0.003 0.002 0.000
OR8 34.449 26.684 0.037 0.013 0.004 0.000
COMP6 4.446 0.523 0.377 0.121 0.001 0.000
COMP8 96.016 3.681 26.469 3.827 0.013 0.002
RAND5 0.728 0.224 0.027 0.015 0.001 0.000
RAND6 7.463 1.087 1.179 0.208 0.006 0.000
RAND7 29.377 1.033 8.726 0.588 0.016 0.002
RAND8 98.014 2.797 66.254 4.689 0.111 0.035

evaluation time for SDPS is several orders of magnitude smaller than SGP.

4.4 Classification Problems

This section will present results on several real-world Boolean classification problems from the

UCI Machine Learning Repository. Additionally, the data will be split into separate training

and test sets to observe the ability of each algorithm to learn a model that can generalize to

unseen instances.

4.4.1 Data Set Description

A variety of different classification tasks will be attempted, some more difficult than others.

Additionally, the MONK problems (described in [15]) are used because training/test set accu-

racy numbers exist for a large variety of other machine learning algorithms. This will allow for

a ranking of SGP+ and SDPS amongst existing machine learning techniques.

4.4.1.1 Preprocessing

All data sets consist of multiple discrete attributes and a single Boolean classification. For

discrete attributes that can take on multiple values (e.g. color = {RED, BLUE, GREEN}),
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each attribute value was assigned a unique binary encoding (e.g. color = {(0,0), (0,1), (1,0)}).
Once all attributes are converted to binary, they are concatenated together to form the input

vector. No conversion is necessary for the classifications, as they are already in Boolean/binary

form.

4.4.1.2 UCI Data Sets

Table 4.12 lists the UCI Boolean data sets used. The Car data set was derived from a simple

Table 4.12: UCI Boolean Data Set Description

Problem Atrributes Inputs Train Instances Test Instances
Car 6 12 1296 432
TTT 9 18 718 240
MONK1 6 10 124 432
MONK2 6 10 169 432
MONK3 6 10 122 432

hierarchical model and classifies whether a car is acceptable or unacceptable according to at-

tributes such as price, number of doors, capacity, trunk size, and estimated safety. The TTT

data set contains Tic-Tac-Toe end-games, where each attribute represents one of the nine po-

sitions on the board and the corresponding token that is placed on it, one of {X,O,B}. The

output is a class favorable/unfavorable, stating whether the board position is favorable for

player X. The MONK’s problems were the basis of a first international comparison of learning

algorithms. The results were summarized in [15]. There are three MONK’s problems, each

with different Boolean target concepts. For the MONK3 problem, 5% class noise was added to

the training set.

4.4.2 Program Accuracy

An overall comparison of all algorithms is provided, similar to what was done with the synthetic

Boolean problems. Due to excessive run times, only a single run is performed on the Car and

TTT data sets. 10 runs are averaged for the three MONK data sets. First, a comparison of

training and test set accuracy is provided in Table 4.13. Overall, SDPS had the best training

and test set accuracy, presumably due to a smaller program tree that was able to generalize

to unseen instances in the test set. The test set accuracy for MONK2 and MONK3 is close

between all algorithms. The MONK3 data set had 5% noise added to the training set instances,

and it seems that SGP+ and SDPS had better test set accuracy than SGP. Usually when data

sets are noisy, care should be taken not to overfit the model to the training data. For this
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Table 4.13: Comparison of training and test set accuracy for each algorithm over the UCI
data sets

Problem
SGP SGP+ SDPS

Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc
Car 0.944 0.907 1.000 0.938 1.000 0.988
TTT 0.786 0.707 0.969 0.682 1.000 0.874
MONK1 0.960 0.773 1.000 0.801 1.000 1.000
MONK2 0.846 0.703 1.000 0.692 1.000 0.701
MONK3 0.975 0.873 1.000 0.921 1.000 0.917

paper, no steps were taken to avoid overfitting (e.g. pruning), so this would be a good area for

future research.

To see how SGP, SGP+, and SDPS stack up to other learning algorithms, test set accuracy

on the MONK problems is be compared in Table 4.14. To ensure a fair comparison, the test

set contains identical instances for all algorithms. Most of these results are extracted from [15]

where they were originally reported. Note that these results are over 20 years old (1991). The

intent of the comparison is to get some idea of how the semantic algorithms compare with

classical machine learning algorithms, so the raw accuracy numbers (which may be outdated)

are not as important as the ranking. The rank column represents the ranking from 27 (worst)

to 1 (best) of each algorithm for that particular problem. All three algorithms are ranked

average in most cases, with the exception of SDPS on the MONK1 problem, which achieved

perfect accuracy. It is likely that accuracy improvements could be made to the SGP+ and

SDPS algorithms by implementing some form of tree pruning to avoid overfitting, as most

other learning algorithms listed have overfitting avoidance built in. In general, it seems like

Backpropagation and its variants perform the best, though this could be specific to the MONK

problems.

4.4.3 Program Size, Training Time, and Evaluation Time

Next, a comparison of size, training time, and evaluation time is provided in Table 4.15. These

results are similar to what was seen on the synthetic Boolean problems. The program sizes

created by SGP and SGP+ seem excessively long, which leads to long evaluation times. In

general, SGP+ outperforms SGP, and SDPS outperforms both SGP and SGP+. Additionally,

the inability of SDPS to handle a large number of inputs is exposed on the TTT data set (which

has 18 inputs), where SDPS had the longest evaluation time. This was also observed on the

synthetic PARITY8 problem.
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Table 4.14: Comparison of test set accuracy from 27 learning algorithms on the MONK
problems

Algorithm MONK1 rank MONK2 rank MONK3(noisy) rank
AQ17-DCI 1.000 1 1.000 1 0.942 12
AQ17-HCI 1.000 1 0.931 5 1.000 1
AQ17-FCLS - 27 0.926 6 0.972 8
AQ14-NT - 27 - 27 1.000 1
AQ15-GA 1.000 1 0.868 7 1.000 1
Assistant Professional 1.000 1 0.830 8 1.000 1
mFOIL 1.000 1 0.692 13 1.000 1
ID5R-1 0.817 17 0.618 24 - 27
IDL 0.972 12 0.662 21 - 27
ID5R-hat 0.903 14 0.657 22 - 27
TDIDT 0.757 21 0.667 20 - 27
ID3 0.986 11 0.679 18 0.944 11
ID3, no windowing 0.832 16 0.691 16 0.956 9
ID5R-2 0.797 19 0.692 15 0.952 10
AQR 0.959 13 0.797 9 0.870 19
CN2 1.000 1 0.690 17 0.891 17
CLASSWEB 0.10 0.718 22 0.648 23 0.808 21
CLASSWEB 0.15 0.657 24 0.616 25 0.854 20
CLASSWEB 0.20 0.630 25 0.572 26 0.752 22
PRISM 0.863 15 0.727 10 0.903 16
ECOBWEB leaf pred. 0.718 23 0.674 19 0.682 23
Backpropagation 1.000 1 1.000 1 0.931 13
BP + weight decay 1.000 1 1.000 1 0.972 6
Cascade Correlation 1.000 1 1.000 1 0.972 7
SGP 0.773 20 0.703 11 0.873 18
SGP+ 0.801 18 0.692 14 0.921 14
SDPS 1.000 1 0.701 12 0.917 15

Table 4.15: Comparison of size, training time, and evaluation time for each algorithm over
the UCI data sets

Problem
SGP SGP+ SDPS

Size Train (s) Eval (s) Size Train (s) Eval (s) Size Train (s) Eval (s)
Car 9887 129.8 1811.6 5016 239.6 1337.2 61 77.6 0.1
TTT 8497 81.6 629.1 5703 141.0 520.7 148 259.4 0.1
MONK1 8096 12.6 28.6 1392 8.2 5.5 20 2.7 0.0
MONK2 8179 16.9 47.7 3017 19.2 22.0 127 19.4 0.0
MONK3 4387 12.1 14.1 467 4.3 1.4 34 3.7 0.0
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4.5 Statistical Significance of Results

To understand the significance of the differences observed, a two-sample T-test is performed to

compare each of the metrics on the synthetic Boolean problems. A comparison will be made

between SGP/SGP+ as well as SGP+/SDPS. The p-value provided represents the two-tailed

significance of the calculated t-value, rounded to four decimal places. An additional column is

provided to state whether one algorithm is significantly better than the other with respect to

the metric in question at a 95% confidence level.

A T-test on training set accuracy is given in Table 4.16. Most of the differences in training

Table 4.16: T-test on training set accuracy for synthetic Boolean problems

Problem
SGP/SGP+ Compare SGP+/SDPS Compare

Diff t(df=9) p SGP+ Better? Diff t(df=9) p SDPS Better?
PARITY5 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
PARITY6 0.002 0.085 0.9342 - 0.000 0.000 1.0000 -
PARITY7 0.112 2.947 0.0163 better 0.000 0.000 1.0000 -
PARITY8 0.249 5.036 0.0007 better -0.003 -0.090 0.9303 -
MUX6 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
OR5 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
OR6 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
OR7 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
OR8 0.001 0.067 0.9480 - 0.000 0.000 1.0000 -
COMP6 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
COMP8 0.038 0.963 0.3605 - 0.000 0.000 1.0000 -
RAND5 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
RAND6 0.000 0.000 1.0000 - 0.000 0.000 1.0000 -
RAND7 0.070 1.565 0.1520 - 0.000 0.000 1.0000 -
RAND8 0.168 4.601 0.0013 better 0.000 0.000 1.0000 -

set accuracy were insignificant, due to each of the algorithms being able to solve the problem

in all 10 out of 10 runs with perfect accuracy. However, there were some significant differences

between SGP and SGP+ for the problems with a large number of inputs. This means that

SGP+ and SDPS are more likely than SGP to solve problems with a large number of inputs.

A T-test on program size is given in Table 4.17. For all problems, there was a significant

difference in program sizes between SGP and SGP+. This difference easily surpasses the 95%

confidence level, as indicated by the near-zero p-values. This means that the improvements

made in the SGP+ algorithm resulted in the creation of smaller programs. Furthermore, there

was a significant difference in program sizes between SGP+ and SDPS for all problems, meaning

that SDPS had even smaller programs than SGP+ (and much much smaller than SGP).

A T-test on training time is given in Table 4.18. Between SGP and SGP+, significant

differences were observed, though not always for the better. In many cases, the training time

on SGP+ is significantly longer than SGP. This primarily occurs on the deceptive problems.

This result is not too surprising because the growing RPA in SGP+ causes longer search times
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Table 4.17: T-test on program size for synthetic Boolean problems

Problem
SGP/SGP+ Compare SGP+/SDPS Compare

Diff t(df=9) p SGP+ Better? Diff t(df=9) p SDPS Better?
PARITY5 2331.3 338.776 0.000 better 325.0 115.793 0.000 better
PARITY6 4464.3 567.526 0.000 better 1444.8 449.215 0.000 better
PARITY7 4794.0 717.487 0.000 better 2992.9 622.711 0.000 better
PARITY8 3765.1 515.343 0.000 better 5080.0 883.571 0.000 better
MUX6 3685.6 457.494 0.000 better 368.7 116.918 0.000 better
OR5 160.1 38.996 0.000 better 20.2 67.753 0.000 better
OR6 317.7 59.291 0.000 better 17.2 66.615 0.000 better
OR7 1499.5 122.931 0.000 better 16.2 37.274 0.000 better
OR8 3557.6 209.771 0.000 better 15.0 33.541 0.000 better
COMP6 3195.3 439.323 0.000 better 370.4 108.236 0.000 better
COMP8 7154.1 900.300 0.000 better 2089.9 381.986 0.000 better
RAND5 1497.4 205.792 0.000 better 73.3 34.726 0.000 better
RAND6 4607.7 448.481 0.000 better 926.3 230.062 0.000 better
RAND7 5829.8 905.082 0.000 better 2110.7 569.789 0.000 better
RAND8 4612.2 598.544 0.000 better 4625.0 759.775 0.000 better

Table 4.18: T-test on training time for synthetic Boolean problems

Problem
SGP/SGP+ Compare SGP+/SDPS Compare

Diff t(df=9) p SGP+ Better? Diff t(df=9) p SDPS Better?
PARITY5 -0.140 -0.744 0.476 - 1.112 6.726 0.000 better
PARITY6 -1.694 -5.784 0.000 worse 3.316 12.644 0.000 better
PARITY7 -10.708 -22.698 0.000 worse 2.130 5.061 0.001 better
PARITY8 -46.863 -59.235 0.000 worse -57.880 -69.098 0.000 worse
MUX6 1.089 3.664 0.005 better 2.226 10.833 0.000 better
OR5 0.173 1.130 0.288 - 0.243 8.150 0.000 better
OR6 0.579 2.733 0.023 better 0.339 7.191 0.000 better
OR7 2.253 4.891 0.001 better 0.462 4.018 0.003 better
OR8 10.563 11.168 0.000 better 0.330 2.120 0.063 -
COMP6 0.420 1.635 0.137 - 2.462 12.857 0.000 better
COMP8 -0.347 -0.596 0.566 - 19.055 33.714 0.000 better
RAND5 0.187 1.012 0.338 - 0.666 5.075 0.001 better
RAND6 0.304 0.890 0.397 - 2.672 11.011 0.000 better
RAND7 -1.966 -7.216 0.000 worse 8.336 29.310 0.000 better
RAND8 -34.344 -49.174 0.000 worse 17.405 21.813 0.000 better
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in the crossover operation. This is the sacrifice that is made in SGP+ to gain smaller program

sizes. Between SGP+ and SDPS, SDPS takes significantly less time to train in 13 out of 15

problems. However, in the case of PARITY8 the time was significantly more than SGP+ by a

large margin (57.880 seconds on average). As mentioned before, SDPS has a weakness in that it

does not deal with a large number of inputs very efficiently. Every node decomposition involves

considering every pair of inputs. For problems that require many node decompositions, this

can drastically increase the training time.

Finally, a T-test on evaluation time is given in Table 4.19. Similar to the results from the

Table 4.19: T-test on evaluation time for synthetic Boolean problems

Problem
SGP/SGP+ Compare SGP+/SDPS Compare

Diff t(df=9) p SGP+ Better? Diff t(df=9) p SDPS Better?
PARITY5 1.249 7.953 0.0000 better 0.143 2.362 0.0425 better
PARITY6 6.487 18.155 0.0000 better 2.031 16.402 0.0000 better
PARITY7 17.873 35.533 0.0000 better 13.76 43.084 0.0000 better
PARITY8 26.151 28.280 0.0000 better 78.397 111.516 0.0000 better
MUX6 5.301 13.647 0.0000 better 0.376 3.417 0.0077 better
OR5 0.062 0.759 0.4671 - 0.001 0.000 1.0000 -
OR6 0.318 1.875 0.0936 - 0.002 0.000 1.0000 -
OR7 4.880 6.712 0.0001 better 0.009 0.493 0.6339 -
OR8 34.412 19.980 0.0000 better 0.033 0.868 0.4078 -
COMP6 4.069 15.211 0.0000 better 0.376 3.243 0.0101 better
COMP8 69.547 76.144 0.0000 better 26.456 40.560 0.0000 better
RAND5 0.701 4.302 0.0020 better 0.026 0.637 0.5401 -
RAND6 6.284 16.566 0.0000 better 1.173 7.716 0.0000 better
RAND7 20.651 48.660 0.0000 better 8.71 34.018 0.0000 better
RAND8 31.760 34.824 0.0000 better 66.143 91.296 0.0000 better

T-test on program size, in most cases there are significant improvements in evaluation time.

This is expected, because smaller programs can be evaluated more quickly. SGP+ evaluation

time was significantly less than SGP, often by a large margin. Likewise, SDPS evaluation time

was significantly less than SGP+ (and much much less than SGP) on 10 out of 15 problems.

4.6 Analysis

For the classification problems, it appears that SGP, SGP+, and GPS perform poorly on the

MONK2 problem. Although other machine learning algorithms also perform worst on MONK2,

it is interesting to analyze because it may uncover a weakness that could be improved upon. The

definition of the MONK2 problem is that the output is a 1 if exactly two attributes take on their

first attribute value. This means that the other 4 attributes must not take on their first attribute

value. An example instance could be {{a1=00,a2=00,a3=1,a4=10,a5=01,a6=1},out=1}, where

the first two attributes take on their first value. The problem statement is complex and difficult
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to represent with traditional DNF or CNF. Modularity could be useful for this problem, partic-

ularly the equality function. Most attributes are encoded with two bits, so testing the equality

of 2 attributes would require a 4-input equality function. If this function were allowed to used

in the tree, it could make the target concept easier to learn. This was attempted with SDPS,

where the equality function was added to the function library, but there was only a marginal

2% improvement in test set accuracy. The improvement was small most likely due to the choice

of attribute encoding. Since multiple bits are representing a single attribute, they should stay

together (e.g. attribute 1 encoded into input bits 0 and 1, so bits 0 and 1 should never occur in

isolation). However, the current implementation does not handle these multi-bit inputs, so the

algorithm was unable to take advantage of the equality function. To overcome this limitation,

a new type of tree representation would be needed for handling multi-value discrete attributes.

One such representation is provided in Figure 4.4. Note that the new multi-value nodes on the

Figure 4.4: A potential solution to the multi-value discrete attribute problem. Two different
types of nodes would be allowed in the tree - a multi-value node (left) and a normal Boolean
node. The multi-value node would take an attribute type on the left branch (e.g. Color) and
a constant value of that type (e.g. Red). In this example, the node will output a 1 if the color
associated with an input is Red.

left of the figure would only be needed at the leaf level for translating discrete attributes into

Boolean values. This ensures compatibility with normal Boolean nodes that are used in higher

levels of the tree.

The fact that the training accuracy for SGP+ and SDPS on MONK2 is 100% while the test

set accuracy is around 70% could indicate that overfitting is occurring. This could be overcome

by implementing some form of pruning. It would be fairly easy to add pruning support to

SDPS, as the majority of node decompositions occur at the leaves in an attempt to perfectly

classify the last few instances. If the tree were pruned, training accuracy would be sacrificed

and tree size would be smaller, but the program may generalize better to the test set instances

as a result.
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Conclusions

Two new algorithms were proposed, SGP+ and SDPS, that directly search the semantic space

and are improvements over the existing SGP algorithm. In particular, both SGP+ and SDPS

build programs that are significantly smaller in size, with SDPS program sizes being even

smaller than SGP+. For the deceptive parity problems, SGP+ programs were 3.8 times smaller

than SGP and SDPS programs were 32.5 times smaller than SGP, on average. The reduction

in program size also results in a significant reduction in program evaluation time, which is

important when processing large amounts of data. Additionally, classification accuracy had a

significant 17.6% improvement for high-arity deceptive Boolean problems, such as the 8-input

odd parity problem. Finally, SDPS has shown better generalization to unseen instances (from

the test set) on 4 out of 5 UCI Boolean classification problems. This improvement in model

generalization is presumably due to the reduction in program size.

The proposed SGP+ algorithm included several strengths and weaknesses that were revealed

in the experiments. Strengths include:

• Better at solving deceptive problems than standard GP (see Table 4.8). This is an im-

portant result of semantic algorithms in general, as standard GP algorithms appear to be

ill-equipped for solving deceptive Boolean problems.

• Smaller program sizes than SGP (see Table 4.17).

• Solves high-arity deceptive problems more frequently than SGP (see Table 4.16).

• Shorter evaluation times due to smaller program sizes (see Table 4.19).

• Covers more instances per generation than SGP (see Figure 4.2).

Some of the weaknesses (or areas of improvement) for SGP+ include:

73
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• Lots of magic numbers. This is a general problem for genetic programming, but SGP+

adds 3 more magic numbers which can affect the performance of the program.

• Long training times for problems that require many generations. This is due to the

random program archive that increases linearly in size each generation.

• Higher memory usage than SGP, due to the RPA.

• Usage of random programs is counter-intuitive. Random programs were also used in SGP,

so it’s not new to SGP+, but it is still a problem because it is counter to the principle

of Occam’s Razor. It also makes the resulting program very hard for a human reader to

interpret.

• Program length is still excessively long. Often the programs output by SGP+ have more

nodes than a simple DNF minterm program would have, which means that there is a lot

of unnecessary computation (introns) in the program.

• Inability to deal with overfitting and noisy data. The results from the UCI experiments

suggest that SGP+ programs do not generalize all that well to unseen instances, which

could be due to overfitting.

The strengths of the SDPS algorithm include:

• Avoids usage of random programs. Programs are therefore easier for humans to interpret

and analyze.

• No magic numbers. This is a big improvement over the genetic programming algorithms.

The only input that is required is the set of library functions to use at internal tree nodes.

• Smaller program sizes than both SGP and SGP+ on all deceptive Boolean problems (see

Table 4.17).

• Shorter evaluation time than SGP and SGP+ on most problems.

• Algorithm is flexible enough to handle arbitrary Boolean functions as internal tree nodes.

Increasing the number of functions in the library results in much improved performance

(see SDPS parameter sensitivity).

Some of the weaknesses of SDPS include:

• Increased training time for large input sizes, due to exhaustive search that occurs for

every node decomposition.
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• Inability to deal with overfitting and noisy data. However, due to the top-down construc-

tion of the program pruning is still option, as most of the overfitting should occur at the

leaves. This could be an area for future research.

• Very susceptible to poor greedy decisions near the root of the program tree. Bad decisions

result in poor semantic decomposition, which can result in much larger program trees.

This problem is amplified by the fact that the first few node decompositions are usually

the most uncertain and therefore are the most likely to be “bad” decisions. In other words,

the semantic space landscape is largely unknown near the beginning of the algorithm, and

this is the time when semantic decomposition is the most critical.

The reduction in program size was the key metric to optimize in all experiments. Smaller

program sizes typically resulted in shorter training times, improved classification accuracy on

both seen and unseen instances, and shorter program evaluation times. With this in mind, it

appears that SDPS is the most promising semantic-based algorithm, as it achieved significantly

smaller program sizes than any of the other algorithms tested.

In general, semantic search appears most useful for solving deceptive problems. It succeeds

in finding a solution more often than standard GP, where the search falls flat due to difficult

fitness landscape. However, for general classification problems, the proposed semantic algo-

rithms do not stack particularly well to other algorithms, such as Backpropagation and ID3. In

conclusion, semantic algorithms are good for solving certain types of deceptive problems, but

further improvements would be necessary to make it a strong learning algorithm in general.

5.1 Future Work

There are several areas of future research which could improve some of the weaknesses of

SGP+ and SDPS previously discussed. The first would be extension to non-Boolean domains.

Extension to the regression problem domain would not be too difficult, as the semantics would

be replaced by real numbers instead of 1s and 0s. Also, the semantic space will be Cartesian,

which means the distance metric would have to change from Hamming distance to Euclidean

distance.

There are several efficiency improvements that could be made in both algorithms. The most

obvious are the exhaustive search of the RPA in SGP+ during crossover operations and the

exhaustive search of every combination function/inputs in SDPS. One solution would be to

perform random sampling. This would reduce the training time and allow for extension to a

larger number of inputs at the expense of some classification accuracy.

Currently, only single-output functions are allowed, but it would be desirable to extend to
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multiple outputs. This would be similar to a circuit-based or graph-based model, where the

output of a single gate can be fed to multiple locations (fan-out). One naive solution is to run

the algorithm multiple times, once for each output bit. This would result in a lot of repeated

computation, so a better solution would be to build support into the algorithm itself.

One of the weaknesses of SDPS was its poor greedy decisions near the root of the tree.

Therefore, it would be useful to include some sort of backtracking and/or beam search to

minimize this risk.

Finally, it would be desirable to harness the power of program modularity. There has been

a lot of research dedicated to discovering modularity within programs, and some of those ideas

could be applied to SGP+ and SDPS. As an example, sub-problems in the SDPS algorithm

could be marked as modular programs and added to the function set, where they could be

re-used in other parts of the tree. This would increase the node decomposition time, but may

result in fewer node decompositions overall due to the increased number of function choices.
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