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Abstract

Title:

Forecasting SEP Events based on Merged CME Catalogs

using Machine Learning

Author:

Peter William Tarsoly

Major Advisor:

Philip Chan, Ph.D.

The lack of preparation for a Solar Energetic Particle (SEP) event may be catastrophic

for astronauts and aircraft passengers alike, along with their electronic equipment. It

is widely theorized that SEP events are caused by Coronal Mass Ejections (CMEs),

some occurring up to a full day beforehand, accompanied by additional space weather

conditions. The only significant models for SEP forecasting are statistically or machine

learning-based, often developed on imprecise data. We present an enhanced catalog

of CMEs, along with other space weather phenomena, and their relationship with the

occurrence of SEP events. Using the enhanced CME catalog, we combine machine

learning techniques to create a model that achieves a TSS of 0.829, HSS of 0.712, and

F1 Score of 0.714. Further, we analyze the model to determine the relative importance

of each input measurement when making SEP occurrence predictions.
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Chapter 1

Introduction

1.1 Motivation

Solar Energetic Particle (SEP) events result in potentially hazardous doses of radiation,

both in Space and on Earth. As such, the consequences of not preparing for these

events are grave [29]. Astronauts on or near the outside of Earth’s magnetosphere,

along with aircraft passengers on Earth flying over or near the magnetic poles, may be

exposed to the same amount of radiation during a momentary SEP event that radiation

workers are exposed to over a year. Further, electronic devices in similar conditions as

these humans are prone to failure under radiation doses produced by SEP events. By

providing an advanced warning that an SEP event may imminently occur, radiation

exposure to humans and devices may be mitigated.

1.2 Problem

We define an SEP event as when the flux of >10 MeV protons becomes greater than 10

proton flux units (pfus). SEP events are understood to be driven by a solar phenomenon
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called Coronal Mass Ejections (CMEs), often occurring hours before SEP events. The

main problem we address is forecasting the occurrence of future SEP events using CME

measurements.

1.3 Approach

We approach this problem through adding additional measurements to each CME event

record, developing SEP forecasting models, and conducting model analyses. First, we

enhance the CME catalog from the Space Weather Database Of Notifications, Knowl-

edge, Information (DONKI) by adding measurements from another CME catalog, along

with additional data from previous works addressing a similar problem. Next, we de-

velop several machine learning models to forecast the occurrence of SEP events based

on related CME measurements. These models are designed to take into account the

rarity and importance of forecasting the occurrence of these events. Finally, we in-

terpret high-performing models to determine the most important measurements and

explain their most commonly made errors.

1.4 Contributions

In this work, we propose two main contributions: an improved dataset relating CMEs

to SEP events, and a neural network model to forecast the occurrence of SEPs using

CME measurements. For the dataset, we build on the work of Torres [32] who linked

and used events from the CDAW CME catalog to address a similar problem. For

the forecasting model, we handle the imbalance of SEP to non-SEP events through

two main techniques. First, we employ two stages of training to separately perform

representation and classifier learning. Second, to assist the representation learning

2



stage, we introduce an autoencoder branch to the network.

1.5 Organization

In chapter 2, we discuss work related to our approach to forecast SEP events. We

additionally explain previous efforts used in handling imbalanced data, along with

techniques to analyze these models. In chapter 3, we describe our process of enhancing

the DONKI CME Catalog. In chapter 4, we introduce our forecasting models including

our proposed representation learning technique. We further present the performance

results of these models, analyze the importance of measurements (hereinafter features),

and a discussion on common mistakes made by the model using our technique.

3



Chapter 2

Related Work

2.1 SEP Forecasting

The main line of work we are interested in within SEP forecasting is focused on the

occurrence of an SEP event. Typically, these manifest in two forms: physics and ma-

chine learning based forecasting. However, these methods are not necessarily mutually

exclusive; for instance, the physics-based methods are typically data-driven, whereas

the machine learning methods often incorporate previous physics-based methods.

2.1.1 Physics-Based SEP Forecasting

Richardson et al. [22] present techniques for associating coronal mass ejections (CMEs)

with solar energetic particle (SEP) events. Based on work originally meant to estimate

the intensity of an SEP event based on its associated CME’s characteristics, the au-

thors dive further by exploring ways of mitigating the sharp imbalance between CMEs

that are and are not associated with SEPs. First, they introduce a previously-derived

gaussian fit formula to predict the peak proton intensity (in units of proton flux units
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or pfus) of an SEP based on its related CME’s linear speed, angular distance from the

magnetic connection longitude between the Sun and the observing spacecraft (com-

monly known as connection angle), and the average width of all SEP-related CMEs.

Further, they mention the formula was created using data from 334 CMEs within solar

cycle 24, including observations from both Earth and Sun-orbiting spacecraft. Using

the formula, the authors attempt to predict the occurrence of SEPs by thresholding

its output, commonly using either 10−1 or 10−4 pfus. The event is classified as an

SEP if its formula output is greater than the threshold value. However, they find that

this immediately is not quite effective. By evaluating the formula on part of the data

used to create the formula, the authors point out that, without any modifications, it

routinely over-predicts the proton intensity during non-SEP related CMEs, leading to

a high number of false alarms. In order to reduce the number of false alarms predicted,

the authors explore a number of properties associated with the related CME to ex-

clude certain events prior to predicting their peak proton intensity. These properties

include creating thresholds for CME speed, width, their product, and Types II and

III radio wave emissions. By excluding certain events below the threshold, they are

able to reduce the false alarms from 66% of the events predicted to 19%, in the case

of the product of CME speed and width. While the authors achieve significant results

through their event exclusion method, they point out that the evaluation data was not

exclusive of the data used to create the peak proton intensity formula. In order to

test the robustness of their technique, they evaluate their method on data from solar

cycle 23. However, they point out that this period only contained one Earth-orbiting

spacecraft recording relevant data. Because of this, they claim many of the speed and

width measurements are erroneous. They still find that using the formula, in conjunc-

tion with removing events using Type II and III emissions, is effective in predicting

both whether or not a CME is associated with an SEP, and its respective peak proton

5



intensity.

Bruno and Richardson [18] present a model to predict the peak proton intensity (in

proton flux units or pfus) of solar energetic particle (SEP) events based on a related

CME’s connection angle and the desired energy level. This contrasts with previous

work that solely based peak proton intensity prediction on connection angle, and only

considered the SEP event’s energy spectrum between 14 and 34 MeV. By making parti-

cle energy a parameter in the model, the authors extend previous efforts to successfully

predict proton intensity between 10 and 130 MeV. After analyzing the energy spectra

of 32 SEP events between 2010 and 2014, they derived a multivariate gaussian-based

formula for predicting peak particle intensity, based on energy level and connection

angle. They find that their estimation matched each of the 32 peaks well, across their

energy spectra. They additionally evaluated their model on an additional separate 20

SEP events from 2011 to 2017. Compared to the original predictions between 14 and 34

MeV, the authors accurately extrapolated peak particle intensity predictions between

10 and 130 MeV for each SEP event.

2.1.2 SEP Forecasting using Machine Learning

Boubrahimi et al. [15] present a decision tree-based method for forecasting SEPs using

X-Ray data. Specifically, they employ time-series data from GOES to predict the

occurrence of greater than 100 MeV SEP events. Interestingly, they used 94 X-Ray

events from 1997 to 2013, with 47 both SEP and non-SEP related events. Though

their method of combining multiple sources of data may improve model performance,

the class-balanced ratio is not representative of the problem as observed in nature.

Kahler and Ling [25] explore various methods to forecast SEP events by using X-Ray

measurements associated with solar flare events. They first provide an in-depth study

of the relationship between SEP and flare events from both the perspective of peak flux

6



between different X-Ray bands and flare source location. They then create two models

to forecast the occurrence of SEPs, based on flares from the western hemisphere of the

sun, using multilayer perceptron network and k nearest neighbor techniques. Their data

consisted of 261 solar flare events with a 4 to 1 non-SEP to SEP class imbalance ratio.

They conclude that the multilayer perceptron network is the better choice, because

they claim the decision boundary of the model using k nearest neighbors would be

difficult to implement for operational use.

Inceoglu et al. [23] investigate modeling the likelihood of relations between solar

flares, CMEs, and SEP events within magnetically-active regions of the sun. Specifi-

cally, they break their events into three classes: exclusively flares, flare+CME+SEP,

and exclusively CMEs. Flare events were supplied from GOES, whereas CME events

were supplied from DONKI between 2010 and 2018. Then, they construct separate

classifier models using support vector machines and multilayer perceptron networks.

They find that the support vector machine performs the best, specifically when tasked

with determining if CMEs will not be associated with flares or SEPs.

Brea et al. [16] investigate the use of machine learning models with X-Ray, Type II

and IV radio bursts, and CME events to predict the occurrence of SEPs. The models

they explored included logistic regression, adaboost, and support vector machines.

They find that their logistic regression and support vector machine model outperforms

NOAA’s Proton Prediction Model when compared using the Heidke Skill Score.

Torres presents machine learning-based approaches to predict the occurrence and

intensity of SEP events [32]. In order to forecast the occurrence of an event, en-

tries from the CDAW CME catalog are used to train a multi-layer perceptron (MLP)

neural network. In addition to using measurements included in the catalog, Torres

incorporates derived solar phenomena such as Type II radio bursts, Diffusive Shock

Acceleration, and a non-machine learning based equation to predict peak proton inten-

7



sity. Additionally, a feature importance method for MLP neural networks is described.

Torres’s method determines the importance of each feature by multiplying together the

network weights along the path of a feature, from input to output. The features are

then ranked by importance. After using this method on the model, Torres found that

sunspot number, Type II radio bursts, and the CME width were the most influential

features. Torres then continues on to proposing a method to predict the intensity of

an SEP event. The method involves time-series electron and X-ray intensity values as

input, and seeks to predict the proton intensity up to an hour ahead in the future.

Torres developed recurrent neural network-based approaches, including using rising,

falling, and background intensity models to decrease prediction error in terms of both

lag and intensity.

Lavasa et al. [28] studied the application of various machine learning algorithms to

predict the occurrence of SEPs at 10 MeV using CME and solar flare properties. They

treated the task as a classification problem, where each CME event is either related

or not to an SEP event. Their dataset was created using CME speed and width en-

tries from the CDAW CME Catalog from 1997-2013, along with solar flare data from

GOES. CMEs were only included if they were associated with a C, M, or X class flare

event. Their final dataset consisted of 33221 solar flares, 6218 CME events, and 257

SEP events. Further, they created separate datasets to study the impact of utilizing

the properties of solar flares and CMEs, both together and separately, to predict the

occurrence of SEPs. At best, their class imbalance ratio was 25 non-SEP to 1 SEP

related entries; at worst, the ratio was 128 non-SEP to 1 SEP related entries. The

machine learning algorithms compared included support vector machines, logistic re-

gression, multi-layer perceptron classifier, and decision tree-based algorithms. They

additionally assess different parameter and hyperparameter optimization methods, in-

cluding undersampling the majority class in the training set. Nevertheless, they find
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training the models on the data without modifications to class distribution typically

performs the best, and that the logistic regression and random forest models proved

to perform the best when minimizing the false alarm rate (FAR) or maximizing the

probability of detection (POD) respectively. After running the feature permutation

performance algorithm on all models, they determined that CME speed, width, and

solar flare fluence were the most important features across all models.

2.2 Machine Learning Techniques

Due to the nature of the problem, two main machine learning techniques were explored:

handling imbalanced data, and explaining both predictions and models. Considering

SEP events are very rare events, the imbalanced dataset is handled with caution.

Further, due to the physics background of the problem, it is important to understand

the potential physical phenomena driving the occurrences of SEP events.

2.2.1 Handling Imbalanced Data

Kang et al [26] explore treating neural networks as a combination of two separate

entities, as learned data representation and a classifier, in order to increase the ac-

curacy of classifying long-tail distributed, underrepresented classes. Within a neural

network-based classifier, the output layer is typically considered the classifier. Gener-

ally speaking, it need not even be a network layer, as the outputs of the representation

can be treated as inputs to any other classifier of choice. To choose a classifier fit

for the newly-learned representation, four main options are investigated. First, in a

method called Classifier Re-Training (cRT), only the output layer is retrained using

class-balanced sampling. Second, Nearest Class Mean (NCM) takes a departure from

the output layer approach of a classifier. Instead, the mean vector for the output of
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the representation for each class is computed. Each test sample is then classified based

on the closest class mean vector. Third, the tau-normalized classifier normalizes every

weight between the representation output and the classifier by the L2 norm raised to

a hyperparameter, tau, of the weights connecting the former layer with the latter on a

class-by-class basis. The authors claim that this method corrects imbalanced decision

boundaries. Finally, Learnable Weight Scaling (LWS) is similar to the third option, but

effectively allows for the learning of the tau hyperparameter. In order to compare the

methods outlined for representation learning and classification, three image datasets

with hundreds to thousands of categories, many following a long-tailed distribution,

were introduced. For each dataset, at least one network architecture was explored, with

each at minimum including a form of hidden and output layers. They first compare

the sampling strategies presented for representation learning, revealing that instance-

balanced sampling, combined with decoupled strategies for training, performs the best

on classes with low representation. Second, they compare the weight norms of the

different classifier options, finding that the tau-norm method is the most consistent

amongst all classes. Finally, they compare their classifiers to others meant to deal with

data imbalances, which shows the cRT, tau-norm, and LWS methods perform better

than all previously proposed methods for the given datasets and network architectures.

Zhou et al. [36] present a framework called a Bilateral Branch Network (BBN) to

separate learning representations from classifiers in order to increase classifier perfor-

mance on ”long-tailed”, or underrepresented, classes. The authors created the frame-

work after experimenting with different variations of fixing representation and classifier

learning separately. The proposed framework consists of a neural network with three

parts: a representation branch, a classifier branch, and a cumulative learning part that

combines results from both together. The primary difference between the two branches

of the neural network is their training regimen, leaving a desired effect during testing
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and general inferencing. For each iteration of training, each branch is given a different

sample in accordance with a specific sampling scheme. For the branch responsible for

representation learning, samples are selected based off of the as-is data distribution.

As there is no modification to how exactly samples are selected, the branch is also

known as the conventional learning branch. Conversely, the branch responsible for

learning the classifier, also known as the re-balancing branch, is given samples based

off of a reversed sampler. For example, if class A makes up 90 percent and class B

makes up the remaining 10 percent of the training data, samples from class A are

picked 10 percent and those from class B are picked 90 percent of the time for the

rebalancing branch. Additionally, weights within the hidden layers are shared amongst

the two branches. Results from both branches are combined using a cumulative learn-

ing strategy. Before the output is generated, each branch output is multiplied by an

iteration-varying coefficient, which is then considered the input for the output layer.

These results are multiplied by their respective weight matrices, summed up, and finally

go through a softmax activation function. The resulting error function is defined by a

sum of the errors of each respective network, with each being multiplied by their same

aforementioned iteration-varying coefficient. The coefficient acts in a way, such that at

the beginning of training, the error function is solely the error from the conventional

branch; at the end, the converse is true. Since the coefficient varies quadratically, the

training focuses more on the representation learning first, then quickly emphasizes clas-

sifier learning towards the end. During test and inference in general, these coefficients

are set to 0.5 to equally weight the branches.

Wang et al. [34] describe an additional approach to classification that seeks to

increase the performance of classifying samples from long-tailed, underrepresented

classes. Through a combination of model architecture and loss modifications, the

authors show improved performance over other state of the art techniques when faced
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with class-imbalanced problems. They introduce their approach as a framework that

is a neural network model with two branches: one to learn features (or representa-

tion), and another to learn a classifier. During training, the feature learning branch

is given samples with no modifications to sampling, whereas the classifier branch uses

class-balanced sampling. Though this implies the branches receive different samples

per training iteration, they share their hidden, or ”backbone”, network layers. Addi-

tionally, the two use different loss functions; while the classifier branch uses standard

cross entropy, the feature branch uses supervised contrastive loss (SCL). SCL is min-

imized by both maximizing the similarity of the output with those of the same class,

while minimizing the similarity with the output of other classes. Since this implies the

need to compute the similarities for every sample, thereby drastically increasing the

computational complexity, the authors introduce the use of one prototype output per

class, and redefining the loss as prototypical supervised contrastive (PSC) loss. Finally,

the importance of each branch within the overall loss function changes during training

by multiplying the branch losses with an iteration-varying coefficient. Training starts

off with no classifier loss, and gradually transitions to no feature loss instead by the

end. During inference, only the classifier branch is used to determine model output.

2.2.2 Explaining Predictions and Models

In this section, we describe techniques to interpret machine learning techniques at two

levels: on an individual sample basis, and a global model basis. The individual sample

techniques attempt to explain why certain predictions are made; meanwhile, the global

model techniques attempt to explain the function of the entire model.
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2.2.2.1 Explaining Model Predictions

Ribeiro et al. [30] present a technique to address the trustworthiness of a model, both

at the sample prediction and overall model levels. The authors claim and show that

their method is interpretable, is faithful to the model both around a prediction and

subsequently globally trusted, and is agnostic to model type. Through a number of

experiments involving simulated and real human participants, the authors show that

their technique outperforms numerous previous ones on key aspects of model and pre-

diction explainability and trustworthiness. The authors first present their technique

around the criteria they lay out for prediction explainers. To address explainer in-

terpretability and trustworthiness around a certain prediction, they introduce a new

classifier that uses a simple linear combination of important features as its decision

boundary. They train the explainer model by attempting to match the predictor’s

output using a variant of mean squared error as the loss function. While discussing the

loss function, they address the model agnostic criteria by training the explainer model

with points generated within the vicinity of the specific sample regarding the specific

features deemed important to the specific sample being explained. By addressing three

of the aforementioned criteria, the authors call explanations generated from this first

part of their technique Local Interpretable Model-Agnostic Explanations (LIME).

Jeyakumar et al. [24] compare a number of neural network classifier explanation

methods, and present a new technique to explain model predictions by selecting similar

training set samples. The authors start by presenting the most prominent explanation

techniques to date, including LIME. They claim that most methods center around

superimposing the explanation itself back onto a data sample, such as highlighting

a part of an image. While these methods proved to be successful in the past, they

typically are designed for specific data domains, presenting a nontrivial task to adapt

each to other types of data. In order to overcome this obstacle, they present an
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explanation method based on providing a given number of similar training samples.

Further, cosine similarity across activation values per sample is employed to determine

how close each training sample is with respect to the given sample being explained.

2.2.2.2 Explaining Entire Models

As previously mentioned, Torres [32] proposed a method to determine the importance

of each feature in an MLP network. Torres’s method determines the importance of each

feature by multiplying together the network weights along the path of a feature, from

input to output. This is achieved through multiplying the column-normalized weight

matrices together. Specifically, they define a multilayer perceptron neural network

with one hidden layer, and weight matrices W1 and W2. Then, they normalize the

columns and take the absolute value of each weight, resulting in Ŵ1 and Ŵ2. In order

to determine the importance of each feature, represented in vector I, they perform the

following operation:

I = Ŵ1Ŵ2 (2.1)

Torres proved that by normalizing the weight matrix columns before multiplying

them together, all values in I are also normalized between 0 and 1. Further, the feature

with the largest value in S is considered most important. As such, the rest are ranked

in descending order by each feature’s importance.

Ribeiro et al. [30] present a technique using LIME to address the functionality of

the global model by using LIME to explain a limited number of training samples. The

proposed algorithm addresses the picking problem by seeking to attain the maximum

coverage of globally-important features, all while constraining the number of explained

samples to within a predefined budget. Since finding the exact solution to the picking
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problem is computationally intractable, they introduce a greedy strategy to select the

samples that add the most amount of coverage when added to the set of important

samples. The authors coin this part of their technique the submodular pick (SP),

referring to the entire method as SP-LIME. Unlike Torres’s method, SP-LIME only

implicitly describes the importance of certain features in a given model. Though not

emphasized in their work, they define a feature importance calculation as a more

explicit understanding of the model:

Ij =

√ n∑
i=1

|Wi,j| (2.2)

Where j is an input feature, Wi,j is the linear coefficient obtained from LIME for

the explanation of the ith event and jth feature, Ij is the importance of the jth feature,

and n are the number of instances that are explained.

While introducing the Random Forest technique, Breiman [17] additionally intro-

duced a method to determine the relative importance of each feature for not just

Random Forests, but any classifier. In its simplest form, the values within each feature

in the test set is individually permuted, and the performance drop is recorded. Features

associated with the highest relative performance drop are considered most important;

therefore, the features are sorted in descending order of performance drop as most to

least important. While this method appears to produce meaningful results, we found

it unreliable and decided not to use it further on in analyzing our results.

Another way to interpret a model is through finding the relations, formed through

training, between variables themselves and how they contribute to the model output.

Particularly for natural processes, it may be useful to derive a mathematical equation

where features are treated as variables in an algebraic form. The process to find such

models is commonly referred to as symbolic regression, and it is often approached using
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a genetic algorithm-based technique.

Cranmer et al. [19] describe the creating algebraic equations, through symbolic

regression, through neural network models of physical phenomena. In order to guide the

eventual process of symbolic regression, they investigate using Graph Neural Networks

(GNNs). GNNs are particularly useful for representing relationships between physical

objects and their properties. Similar to an actual graph, a GNN captures object

properties analogous to graph vertices, and interactions analogous to graph edges. A

typical GNN is a collection of multilayer perceptron (MLP) neural networks, some of

which are effectively tasked with working on subproblems. First layers typically deal

with learning how objects, represented as graph nodes, interact with each other, giving

them the name edge models. Outputs of the edge models are referred to as messages,

which are effectively features created during training. The output layer consists of

MLPs tasked with learning how interactions between objects affect individual objects,

and take both messages and object properties as input. The authors claim that this

network structure creates an inductive bias necessary to model the physical world while

simplifying the symbolic regression process. In order to further generalize the results

of the GNN, the authors experimented with different forms of regularizing the edge

model results.

In their symbolic regression technique, a population of equations are created, and

each individual is evaluated using a fitness measure that factors in accuracy and sim-

plicity. In order to create relevant symbolic equations, they use the intermediate and

final models within the GNN to determine the fitness of each equation. In this case,

they assume that the output model from the GNN can be composed of results from

intermediate models, including edge models. This assumption drastically reduces their

search space, decreasing the amount of effort needed for fit results, because they divide

up the overall model into smaller chunks.
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The main problem they investigate is deriving an algebraic equation for determining

the density of a dark matter halo, given surrounding halo properties. Prior to their

work, there were no symbolic models that accurately represented the phenomenon.

After ingesting the dataset of halos, and defining how they relate to each other, a GNN

was created and symbolic regression was successfully performed, both for instances with

and without the mass of a halo.

Although symbolic regression typically takes the form of a genetic algorithm, Sahoo

et al. [31] describe a way of integrating it directly into a neural network model. The

authors achieve this through a number of modifications to a typical network including

architecture, training, and hyperparameter choices.

The first modification they propose is a change to the activation functions within

the hidden and output layers. Within the hidden layers, every unit’s activation function

is either a unique unary mathematical operator, such as sine, cosine, and an identity

operator of the dot product pre-activation, or a multiplicative operator that multiplies

two input values together. Within the output layer, special division operators are

introduced that ensure the denominators are never negative or approach zero.

The second modification regards the training process. In order to account for the

division by zero problem, penalty terms are introduced into the loss function to avoid

the problem on data both inside and outside of the observed range during training.

Additionally, in order to realize meaningful coefficients as weights between hidden unit

layers, a three-step, phased regularization scheme is utilized to remove meaningless

coefficients.

The third change, tuning hyperparameters, selects the number of layers needed for

the model’s optimal performance. Instead of solely basing performance on error, they

define it by model error on the test set, simplicity as a function of sparsity amongst

the weights, and optionally error on data out of range of that seen within the test set.
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When compared with the symbolic regression algorithm also used in Cranmer et

al. [19], Sahoo et al.’s technique consistently outperformed its genetic algorithm-based

counterpart. Additionally, when given problems representing physical systems, their

proposed technique performed with lower error. Further, their technique generalized

much better to data outside the range used within the test set; instead of increasing,

the error decreased on the extrapolated inputs.

Further, Udrescu and Tegmark [33] present a deterministic algorithm that discov-

ers scientific symbolic models from a given set of associated inputs and outputs known

as mysteries. Their method differs from typical symbolic regression, as genetic algo-

rithms are stochastic in nature. In short, through a divide-and-conquer technique,

the algorithm ”solves” mysteries by breaking them down into smaller parts which are

computationally tractable to realize into symbolic forms. While their method relies

on input and target output data, one could use their method to create a symbolic

representation of a model by determining the model output for every training sample,

and then use this technique to derive the expression.
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Chapter 3

Enhancing DONKI CME Entries

using CDAW CME Entries

3.1 Motivation

The CDAW CME dataset [1] was previously used to create a classifier model to pre-

dict whether a particular CME was the catalyst of a Solar Energetic Particle (SEP)

event [32]. Considering CDAW gathers measurements for CME entries from Earth-

centric instruments, it can only measure a projection of a given event’s true attributes.

On the other hand, the DONKI CME dataset [5] gathers measurements from Sun-

centric instruments. Although these measurements are still projections of an event’s

true attributes, additional information is gained compared to solely using Earth-centric

data. As an example, Figure 3.1 contains the event distribution of widths and half

widths, for CDAW and DONKI respectively. They are both heavy-tailed distributions,

with a secondary peak around 360 degrees for CDAW. These events are considered to

have a “halo”, an accurate description of the observation from Earth; however, most of
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them are much smaller than 360 degrees. This problem does not exist within DONKI,

because most events were measured using at least two instruments with at least one

orbiting the Sun.

Figure 3.1: Event distributions of width and half width, for CDAW and DONKI entries
respectively.

Additionally, due to the nature of instruments used amongst CDAW and DONKI

databases, the recorded location of an event contains more information within DONKI

compared to CDAW. Within CDAW entries, only positional angles of the event, from

Earth’s perspective, are recorded; meanwhile, DONKI records the latitude and longi-

tude on the Sun of each event. This increases the accuracy of computing additionally

useful values, such as the event’s connection angle.

Further, every DONKI and CDAW CME entry contains a label of whether it is

associated with an SEP. Within the CDAW dataset, for every CME associated with an

SEP, there are 270 that are not. Using the DONKI dataset decreases this imbalance,

as there are only 62 non-SEP CMEs for every CME associated with an SEP. This is

driven by the fact that DONKI primarily records CMEs with fast speeds and are large in
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width, whereas CDAW records all CMEs that can be observed from Earth’s perspective.

By decreasing the imbalance between events that are and are not associated with SEPs,

all while focusing on significant CMEs, we are able to create more meaningful models

to forecast SEPs.

While the DONKI CME catalog contains advantages over its CDAW counterpart, it

does have some drawbacks. The primary problem with using the DONKI catalog is its

current time span. The catalog, additionally labelled with SEP relations, only covers

a 7 year span, which is less than a complete 11 year solar cycle. This constraint makes

it difficult to leverage the cyclical nature of event frequencies to operationally evaluate

forecasting models. Separately, for every actual CME event, the catalog may contain

duplicate entries. Fortunately, most of these contain an indicator revealing the most

accurate entry; however, there are additional rare cases where the catalog itself records

one event as two separate events, and both may contain additional entries themselves.

We discuss how we identify and resolve these duplicate entries in Section 3.3.

After comparing both DONKI and CDAW databases, DONKI is more suitable for

building a model due to its accuracy for most event measurements. However, CDAW

CMEs contain measurements that are not as affected by the hindrance introduced by

taking measurements from Earth’s perspective that DONKI does not contain, including

event links to other space weather phenomena such as Type II radio waves completed

in previous works [32]. Since DONKI events are more suitable for our purposes but are

limited with information, we supplement them with information from CDAW CME

entries, Type II radio waves, and sunspot number by merging their catalog entries

together. Figure 3.2 depicts the previous and newly matched sources of data.
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Figure 3.2: A comparison of previously [32] versus newly matched sources of data.
This chapter addresses the process of linking DONKI to CDAW CME entries in order
to gain additional information useful to forecasting future SEP events.

3.2 The Matching Process

We begin the match process by considering the potential matches for every DONKI

entry. From this perspective, there are four types of scenarios:

1. There is a one-to-one match with a CDAW entry

2. There are no CDAW candidate entries

3. There are multiple CDAW candidate entries

4. There are multiple DONKI entries associated with a single CDAW entry

The first scenario is ideal; therefore, the matching process primarily addresses the

other scenarios. For the second scenario, Without additional CDAW entries, there

is no feasible way to address the given DONKI entry other than to not include the

event within the combined data. We address the third scenario by attempting to find

a matching CDAW entry using a number of criteria defined in Section 3.2.1. Finally,

we describe how we perform a second pass on the DONKI entries, to resolve the fourth

scenario, in Section 3.2.2.
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3.2.1 Addressing Multiple CDAW Candidates

Originally, we attempted matching events solely based on a time window. However,

this proved to create incorrect matches; for instance, two separate CMEs in CDAW

and DONKI can exist where they occurred on opposite sides of the sun at the same

time. To account for these events, matching criteria for DONKI to CDAW entries were

created based on attributes of the entries in the following order:

1. Time

2. Approximate MPA with uncertainty

3. MPA quadrant match

4. Two entries are close in location

5. Two entries are close in speed

3.2.1.1 Time

The time criterion first filters out events outside of a ±3-hour time window of the

DONKI entry. After applying the filter, 127 DONKI entries are automatically removed

with no CDAW candidate entries within their time window, removing the second type

of match listed above. If there is only one candidate CDAW entry, the entries are

matched. If there are multiple CDAW candidates left, the absolute elapsed entry start

time is taken and sorted in ascending order between each and the DONKI entry. If

the difference in elapsed time between the closest two are greater than 36 minutes,

equivalently the amount of time that 3 frames occur during analysis on events input

into CDAW, a one-to-one match is recorded between the DONKI and closest CDAW

entry in time. The expression can be rewritten as follows:
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difference1 + 36 minutes < difference2 (3.1)

If the condition is not met, the match is considered ambiguous using only time, and

the candidate entries continue onto additional matching criteria.

3.2.1.2 Approximate MPA with uncertainty

The next criteria address the entries on an event location basis. The motivation to ad-

ditionally consider location is that two unrelated CMEs may occur at or near the same

time, creating a potential for mismatch between DONKI and CDAW event records.

Figure 3.3 illustrates this exact dilemma. For a DONKI CME entry with a recorded

start time of 00:50 on November 13th, there are multiple CDAW CME records within

its time window. In CDAW, the event moving to the lower left has a start time of

00:54, and the one moving to the right has a start time of 1:12. While both events

would not be filtered out by the first criterion, the location data of the DONKI entry

reveal that the correct match is the entry on 00:54.

The most accurate location attribute associated with each CME entry in CDAW is

the Measurement Position Angle (MPA). The MPA of a CME is obtained by finding

the counterclockwise angle between the Sun’s equivalent of a north pole (90 degrees

latitude, 0 degrees longitude) and its leading edge as seen from Earth. For the second

criterion, using each entry’s latitude and longitude, we approximate the MPA and its

uncertainty for each DONKI event and filter out additional candidate CDAW events.

We start by approximating MPA for each DONKI entry:

MPA = atan2(−cos(latitude) ∗ sin(longitude), sin(latitude)) (3.2)

Since the range of arctangent is in between -180 and 180 degrees, we add 360 degrees
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Figure 3.3: A coronagraph capture from the instrument used by CDAW to determine
CME measurements showing at least two distinct CMEs (one at 00:54 on the lower left
and 1:12 on the right) starting within 20 minutes of each other [4].

to the output if MPA is negative to constrain the range in between 0 and 360 degrees,

consistent with how CDAW records MPA. We then calculate the MPA uncertainty:

∆MPA =
|sin(λ)|

sin2(λ) + sin2(λ) ∗ cos2(λ)
[|∆φ ∗ cos(φ) ∗ cos(λ)|+ |∆λ ∗ sin(φ)

sin(λ)
|] (3.3)

In the above equation, lambda and phi are latitude and longitude respectively. Delta

lambda and phi represent the tolerance for each measurement; we currently fix these

at 15 degrees. Once we determine the uncertainty, we construct bounds by adding and

subtracting it from the approximate MPA. After accounting for wraparound in MPA,

we filter out all candidate events outside of the range. If a one-to-one match does not

exist, the candidate CDAW events are restored from the time criterion for additional
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Table 3.1: The Quadrant-based approach to MPA matching.

Longitude Latitude
CDAW
MPA

Quadrant

Negative or ±Tolerance Positive or ±Tolerance 0-90 1
Negative or ±Tolerance Negative 90-180 2
Positive Negative or ±Tolerance 180-270 3
Positive Positive 270-360 4

Any Any
Halo (large
speed)

Any

Close to 0 or ±180 ±Tolerance
Halo
(small
speed)

Any

Within ±Tolerance,
180 - Tolerance, or
-180+Tolerance

Magnitude < Tolerance Any 1 or 4

Within ±Tolerance,
180 - Tolerance, or
-180+Tolerance

V alue > Tolerance Any 1 or 4

Within ±Tolerance,
180 - Tolerance, or
-180+Tolerance

V alue < −Tolerance Any 2 or 3

V alue > Tolerance Magnitude < Tolerance Any 3 or 4

checks.

3.2.1.3 MPA quadrant match

The second criterion has the potential to produce multiple candidate CDAW entries

for a single DONKI entry, especially given the range of MPA uncertainty associated

with a given event. When this case arises, the third criterion is applied on all candidate

CDAW entries that satisfied the first criterion. Additionally, we take the latitude and

longitude of each DONKI event, find acceptable ranges of MPA for the entry, and

filter out CDAW entries that exist outside of these ranges. These ranges, shown in

Table 3.1, are quadrant-based, and allow for ±15-degree tolerance near the edges of

the quadrants.
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3.2.1.4 Two entries are close in location

If multiple CDAW candidates still exist past the primary location-based methods,

the fourth criterion considers matching the two closest CDAW entries with respect to

angular distance in MPA. The angular distance between each CDAW entry and the

DONKI entry are first taken and sorted in ascending order. If the difference of the

distances of the two closest CDAW entries exceeds 30 degrees, we match the DONKI

entry with the closest CDAW entry. This inequality can be represented as follows:

distance1 + 30 degrees < distance2 (3.4)

3.2.1.5 Two entries are close in speed

If the closest CDAW entries do not meet the previous criterion, the fifth criterion

attempts to match entries based on speed. While linear speed is used for DONKI

entries, the second order speed at 20 solar radii is used for CDAW entries. Like the

fourth criterion, the absolute values of speed differences between each candidate CDAW

entry against the DONKI entry are taken and sorted in ascending order. If the two

closest CDAW entries in speed exceed 400 km/s, the closest entry in speed is matched.

Similarly, the inequality for this final criterion can be represented in the following

manner:

difference1 + 400
km

s
< difference2 (3.5)

The remaining DONKI entries with multiple candidate CDAW entries are reviewed

to see if the CDAW entry with the closest time also has the closest speed relative to

the other candidates. In that case, a match is made; otherwise, the events are flagged

for manual review.
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3.2.2 Addressing Multiple DONKI Entries Matching a CDAW

Entry

While the matching technique thus far can resolve the problem of multiple CDAW

entries matching a single DONKI entry, it does not solve the opposite problem where

multiple DONKI entries match a single CDAW entry. If multiple DONKI entries only

match to one CDAW entry, all but one of the matches are kept by manual inspection.

In our case, 86 of these pairs exist, thereby solving this problem by the deletion of

43 DONKI entries. In the case where only one DONKI entry matches to one CDAW

entry, and other DONKI entries have multiple candidate CDAW events, that DONKI

entry is matched with the CDAW entry. In the final case, when the DONKI entries

with the same CDAW entry all have multiple CDAW candidate matches, all top unique

CDAW candidate entries are ordered and matched with the DONKI entries.

3.3 Additional Data Modifications

Prior to starting the merging process, we remove certain entries within DONKI that

are duplicate entries. If two events have a start time within an hour of each other

and share the same source location, the event with the later start time is considered a

duplicate and is removed. Additionally, after the merging process, we remove CMEs

that occur during SEP events, but are not the cause of the SEPs themselves. These

CMEs can hamper the objective of associating whether a CME is considered to cause

an SEP event, as they occur during high proton intensity levels, yet do not contribute

to the ongoing SEP itself.
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3.4 Statistics of the Enhanced Dataset

A summary of the dataset statistics is presented in Table 3.2. The CDAW dataset

contains 29,217 entries of CME events, spanning from January 1996 to March 2018.

However, the DONKI dataset only contains 2,585 events, from April 2010 to September

2017. After removing DONKI entries with no CDAW candidate entry within their

time window, entries occurring during SEP events, duplicate entries, and entries with

only one CDAW candidate entry, sharing it with another DONKI entry, our final

dataset consists of 2,394 CMEs. Of the 2,394 CMEs, only 39 are associated with

SEPs; therefore, the imbalance ratio is one SEP-related event to 60 non SEP-related

events.

Table 3.2: Statistics of the DONKI, CDAW, and Enhanced DONKI datasets.

Dataset
Number
of Events

Number
of Non-
SEPs

Number
of SEPs

Non-
SEP:SEP
Ratio

Date
Range

CDAW 29,217 29,109 108 270:1
1/11/1996
-
3/31/2018

DONKI 2,585 2,544 41 62:1
4/3/2010 -
9/6/2017

Enhanced
DONKI

2,394 2,355 39 60:1
4/3/2010 -
9/4/2017

29



Chapter 4

Forecasting SEP Events using the

DONKI CME Catalog with

Additional Features

4.1 Problem

The primary task is to predict whether a particular Coronal Mass Ejection (CME)

event may be related to an upcoming Solar Energetic Particle (SEP) event. Consider-

ing CMEs can cause an elevation in proton flux, their event measurements can be used

to forecast the occurrence of future SEP events. We treat the task as a classification

problem with two classes: SEP and non-SEP related CMEs. Previously, Torres de-

veloped a Neural Network based classifier to address the problem [32]. The data used

to train the classifier consisted of the CDAW CME catalog linked with other space

weather phenomena, such as Type II radio bursts and sunspot numbers. In order to

increase the classifier’s performance, we explored two separate areas: the quality of
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data and additional machine learning techniques. In order to improve the quality of

data, we investigated merging event entries in both DONKI and CDAW CME catalogs

in Chapter 3. In this chapter, we improve model performance by additionally look-

ing beyond previously-investigated methods, such as oversampling and classifier score

threshold adjustments, to include feature and representation learning.

4.2 Approach

4.2.1 Neural Network Classifier

Similar to the work of Torres [32], we first use a multi-layer perceptron neural network

classifier using one hidden layer. Figure 4.1 depicts the architecture of the network

using a common configuration of input features. Considering the categorical nature

of the model’s output, we look to minimize the difference between the observed and

predicted distributions. Thus, the cross entropy loss function is used during training:

LCE = −ylog(ŷ)− (1− y)log(1− ŷ), (4.1)

where y is the observed class, and ŷ is the predicted score between [0,1]. In this

particular problem, an observed value of 0 means the given CME event is not related

to an SEP, and a value of 1 meaning the CME is related to an SEP. Figure 4.1 shows

the configuration of layers for the multi-layer perceptron neural network classifier.

One key difference from the network used in Torres’s work is the number of output

units. Since we use the cross entropy loss function, the output of the network represents

a probability distribution split amongst the two classes. While semantically the same

as the output of Torres’s network, this aids us in using additional techniques to increase

network performance introduced later in this section.

31



Figure 4.1: Network architecture for the multi-layer perceptron neural network classi-
fier.

4.2.1.1 Feature Sets

Since merging the DONKI and CDAW CME catalogs as outlined in Chapter 3, we

grouped together three sets of features. The first, or baseline, set is made of measure-

ments directly from DONKI entries. The second set consists of selected features, both

derived from catalog entries and taken from other sources of data. The third and final

set of features are the remaining features from the CDAW CME catalog-based model.

Specifically, the baseline features consist of the following:

• Linear Speed

• Half Angle

• Latitude

• Longitude

The selected features then consist of the following:

• Daily Sunspot number

• Type II visualization area
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• Acceleration

• Peak proton intensity derived by Richardson et al. [22]

• Diffusive shock acceleration

Within the selected features, Acceleration and Type II visualization area are bor-

rowed directly and from previous links with CDAW CMEs respectively. Meanwhile,

Daily Sunspot number was directly linked to each DONKI entry. Finally, the Peak

Proton Intensity and Diffusive Shock Acceleration were directly derived using DONKI

CME entry measurements. The procedures used to calculate these two features can

be found in Appendix A. The remaining features are broken down into four categories:

CME speed, CME size, event location, and CME history. Further, these groups are

used in section 4.3.5.1 to understand the importance of similar features relative to each

other. These features are grouped as the following:

• Speed

– 2nd order speed initial

– 2nd order speed final

– 2nd order speed at 20 solar radii

• Size

– Halo

• Location

– Central Position Angle (CPA)

– Measurement Position Angle (MPA)
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• CME History

– Maximum speed in the past day

– Number of CMEs in the past month

– Number of CMEs in the past 9 hours

– Number of CMEs with a Linear Speed >1000 km/s in the past 9 hours

The additional features in the Speed, Size, and Location groups come directly from

linked CDAW entries, while the CME History features were recomputed using the

merged DONKI-CDAW CME dataset.

4.2.2 Handling Imbalanced Data with Separate Feature and

Classifier Learning

The imbalanced data solutions explored for this particular problem generally fall into

one of two categories: data-based and model-based. The main data-based method

employed is a technique called oversampling, where outlier class samples are duplicated

in the training set. Typically, we oversample the data to a 3 to 1 negative to positive

ratio. This technique has been used successfully in improving the performance of

predicting the occurrence of SEP events [32].

For all models presented in this work, we employ some form of oversampling the

minority class to hinder the bias imposed by the original distributions during training.

This follows the work of Torres [32], who used a 3 to 1 non-SEP to SEP event over-

sampling ratio. Another technique to emphasize the minority class is to reweight the

loss function. Equation 4.1 describes the cross entropy loss function for the classifier.

In this case, the first term determines the loss of the case where an event is associated

with an SEP, and the second term determines the loss of the case where an event is not

34



associated with an SEP. In this case, assuming the use of gradient descent with every

training sample per training epoch, weighting the first term greater than the second

is equivalent to oversampling. However, when using stochastic or mini batch gradient

descent, particularly as described in Section 4.3.3.1, the aforementioned statement does

not hold. For example, in the scenario where there are 10 samples per batch, the effec-

tive number of samples is different between the two techniques. For oversampling with

replication, the effective number of samples is 10 for the weight update. However, for

the reweighting technique, if one sample in the minority class is weighted as two, the

effective number of samples in the batch is 11 for the weight update. Our initial results

indicate that oversampling the minority class outperform the reweighting technique.

Hence, we only report results using the oversampling technique.

While oversampling improves performance on minority classes, additional model-

based methods were investigated to improve overall performance. To learn a better

representation of the training data, a technique called classifier re-training (cRT) was

first explored [26]. The technique presents two stages of training: first, it trains the

entire model on the original training data, without oversampling. The first stage is

used to learn better features output from the hidden layer units. Then, as a second

stage, the weights between the hidden and input layers are frozen, and the weights

between the hidden and output layers are reinitialized and retrained typically using

class-balanced data. Given the newly-learned intermediary features output from the

hidden layer, the second stage focuses on learning the classifier in the form of the

output layer. Figure 4.2 depicts the weights modified during stages one and two.

The network shown in Figure 4.2 contains 9 features, a typical configuration seen in

models using baseline and selected features. Additionally, in our case, class-balanced

data is a special case of oversampling; for every SEP-related CME, there is exactly one

non-SEP-related CME. However, after hyperparameter tuning, we determined that
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Figure 4.2: Network architecture for the cRT technique, showing the different weights
updated during the two stages of cRT.

a 3 to 1 non-SEP to SEP event ratio performed better than typical class-balanced

sampling.

Then, to learn better features than those used as inputs, an autoencoder model

was investigated. Figure 4.3 depicts the autoencoder configured for the baseline and

selected features. The autoencoder consists of two parts: the encoder and decoder.

The encoder takes the input and outputs a transformed version, while the decoder

takes the same transformed version and reconstructs the input into its original form.

In order to train the model to accurately reconstruct the input, the mean square error

(MSE) loss function is used:

LMSE =
1

N

N∑
n=1

(x− x̂)2 (4.2)

Within the MSE loss function, N is the number of training samples, x is the input

vector, and x̂ is the model-reconstructed input vector. The benefit of the autoencoder

lies in using the output of the encoder, typically known as the z-layer, as newly-learned

features based on the training data.
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Figure 4.3: Network architecture for the Autoencoder model.

Leveraging the feature learning capabilities of an autoencoder, combined with the

data representation and classifier learning ability of cRT, we propose a combination

of the two techniques known as cRT+AE. The output of the middle z-layer of the

autoencoder is additionally used as input into the output layer of the classifier. A joint

loss function is employed, where MSE and cross entropy from the autoencoder and

classifier are respectively used:

LcRT+AE = αLCE + (1− α)LMSE (4.3)

In the joint loss function, α is a tunable parameter within the range of [0,1]. Fig-

ure 4.4 shows the resulting example network using the baseline and selected features

model. Then, cRT was integrated in a similar fashion; however, instead of using class-

balanced data in the second stage of training, a 4 to 1 non-SEP to SEP oversampling
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ratio was used. Like regular cRT, all weights are updated using the original training

dataset in the first stage. In the second stage, the decoder portion of the autoencoder

is discarded, the encoder portion’s weights are frozen, and the classifier layer weights

are reinitialized and trained using the oversampled training data.

Figure 4.4: Network architecture for the cRT+AE technique.

4.3 Evaluation

4.3.1 Dataset Partitioning

We partition the dataset between train and test sets using two separate schemes:

chronological and random. In order to test the operational capability of the model,

we first split the data chronologically, where the first 70 percent of CME events are

included in the training set, and the remaining 30 percent are used as the test set. This

helps simulate ”future” predictions using a model trained solely on ”past” data. Table

4.1 describes the start and end dates for the train and test sets. While testing the op-
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Table 4.1: Details of the chronological data partitioning.

Partition Event Count Start Event End Event
Train 1673 4/3/10 9:54 4/26/15 12:36
Test 720 4/28/15 7:31 9/4/17 19:39

erational capacity of the model is important, the distribution of events associated with

SEPs is highly underrepresented in the chronological test set. Of the 39 SEP-related

events in the entite dataset, only 6 are in the chronological test set. In order to better

distribute the SEP events, 30 percent of each class is randomly chosen for the test set,

and the remaining data is assigned to the training set.

4.3.2 Evaluation Metrics

Before showing how we calculate evaluation metrics, Table 4.2 shares a brief overview

of useful classification terminology, and how it relates to the main problem.

Table 4.2: The confusion matrix for our classification problem.

Is the CME Related to an
SEP Event?

Actual No/Negative Actual Yes/Positive

Predicted No/Negative True Negative (TN) False Negative (FN)
Predicted Yes/Positive False Positive (FP) True Positive (TP)

Three intermediary metrics useful for those commonly used to evaluate models

include precision, recall, and False Positive Rate (FPR). Precision is defined as the

likelihood that an event is actually positive given a positive prediction:

precision =
TP

TP + FP
(4.4)

Recall can be described as the True Positive Rate (TPR). Given an event is actually

positive, it describes the probability that it will also be predicted positive:
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recall = TPR =
TP

TP + FN
(4.5)

FPR is described as the likelihood that a negative sample will be predicted as

positive:

FPR =
FP

FP + TN
(4.6)

The first calculated metric we use is the F1 score, computed as the equally-weighted

harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.7)

The True Skill Score (TSS), also known as Hanssen and Kuipers’ Discriminant [35],

is described as the difference between the true and false positive rates:

TSS = TPR− FPR (4.8)

The Heidke Skill Score (HSS) is commonly used to determine a classifier’s ability

to perform better than random predictions [21]. The skill score has a range of (−∞,

1], where a score between (0,1] are better than randomly making predictions. Those

between (−∞, 0), however, are considered worse than random.

HSS = 2 ∗ TP ∗ TN − FP ∗ FN

(TP + FP )(FP + TN) + (TP + FN)(FN + TN)
(4.9)

Further, we report two additional metrics: Lowest Positive and Highest Negative

average ranks (LPR and HNR respectively). Figure 4.5 depicts LPR and HNR. LPR

and HNR are computed by ranking each test event’s score in descending order, with
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the event predicted most likely to be an SEP ranked first. In the perfect scenario, these

two numbers are next to each other with an absolute difference of one; in the case of

Figure 4.5, this would correspond to an LPR of 3 and HNR of 4. Further, LPR and

HNR are not sensitive to the classifier threshold, allowing more general performance

measures for the model than the aforementioned ones, whom rely on the threshold for

defining classification errors.

Figure 4.5: Visualization of LPR and HNR. Here, there are 8 events in the test set: 3
are related to SEPs and the other 5 are not. The scores correspond to an HNR of 2
and an LPR of 6.

The goal is to minimize the lowest positive rank, while also maximizing the highest

negative rank. By increasing the highest negative rank, we rank more TPs above the

worst FP; similarly, when we decrease the lowest positive rank, we increase the number

of TNs below the worst FN. Further, as the ranks approach their ideal cases, it becomes

more meaningful to adjust the score threshold to optimize the other metrics.

Another important attribute of HNR and LPR is their threshold-independent na-

ture, which allows us to evaluate the model past its classifier capability. A more well-

known threshold-independent metric is known as the area under the Receiver Operating

Characteristic (ROC) curve, commonly known as AUC. Typically, better performance
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corresponds to an increase in AUC. However, we do not use AUC in this work because

the ROC curve covers FPR from 0 to 1; however, we only want to consider models that

incur a small FPR.

4.3.3 Parameters and Procedures

4.3.3.1 Model Hyperparameters

All variations of the neural network classifier were implemented using Keras [7]. The

Multilayer Perceptron Neural Network used the Sequential model, whereas cRT and

cRT+AE were implemented by subclassing the Model class to cleanly transfer weights

between training stages. Additionally, the sigmoid function was used as the activation

function for all layers. The base model contains three units in the hidden layer and

two in the output layer. Although Torres’s model uses 30 hidden units, we found that

three units maximized metrics in this case. Prior to training, weights are initialized

using the Glorot uniform initializer. Weights are updated using mini batch gradient

descent with 200 samples per mini batch. We additionally set momentum to 0.9 and

use L2 weight regularization set to 0.0075. The model is then trained over 400 epochs.

The cRT model contains three units in the hidden layer and two in the output layer.

Prior to training, weights are initialized using the Glorot uniform initializer. Weights

are updated using mini batch gradient descent with 200 samples per mini batch. We

set momentum to 0.9 and use L2 weight regularization set to 0.0075. During the

first stage, the model is then trained over 400 epochs, without any oversampling in

the training data. Then, during the second stage, the weights between the input and

hidden layers are frozen, and the weights between the hidden and output layers are

reinitialized using the Glorot uniform initializer. Finally, these weights are retrained

over 400 epochs, using a 3 to 1 non-SEP to SEP oversampling ratio in the training set.
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For the cRT+AE model, the autoencoder follows a n/2n/n/2n/n architecture,

where n is the number of features. To ensure the autoencoder does not converge to

the identity function [14], L2 weight regularization is utilized and is set to 0.0075. The

weights connecting the z-layer of the autoencoder to the classifier use the same form

of regularization. Prior to training, all weights are initialized using the Glorot uniform

initializer. Mini batch gradient descent is once again used with 200 samples per mini

batch. We additionally set momentum to 0.9. During the first stage, the model is

then trained over 2000 epochs without any oversampling in the training data. The α

in the loss function is set to 0.4, weighting the classifier more than the autoencoder.

During the second stage, the decoder portion of the autoencoder is discarded, the en-

coder weights are frozen, and the weights between the z-layer and classifier layer are

reinitialized using the Glorot uniform initializer. Finally, these weights are retrained

over 400 epochs, using a 4 to 1 non-SEP to SEP oversampling ratio in the training set.

4.3.3.2 Data Procedures

Before model evaluation, the features are normalized between 0 and 1. This is per-

formed by taking the difference between the individual values and the minimum value

of the feature, divided by the difference between the maximum and minimum values of

the feature. In cases where the difference between the minimum and maximum values

of a feature are over three orders of magnitude, the log is taken before normalization.

These features include Diffusive Shock and Type II Area Visualization.

There are a number of samples that contain missing data on a feature basis. For the

baseline features, all missing values are assigned the feature’s median value. Samples

not related to a Type II event are initially given a 0 value for Type II Area Visualization.

Considering all values of the feature are either 0 or a large positive integer greater

than 1, all samples without Type II events retain their feature value of 0. There are
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additional details on how missing data is handled for CDAW CME Entries detailed in

Torres’s work [32].

4.3.3.3 Evaluation Procedures

Each model configuration’s results are created using the average of five independent

experiments. Further, the same random seed is used each time for the random data

partitioning to compare results.

4.3.4 Results

First, in Section 4.3.4.1 we incrementally add feature sets to the base multilayer per-

ceptron neural network. Then, in Section 4.3.4.2, we use cRT and cRT+AE with

the previously-added feature sets. Finally, in Section 4.3.4.3, we modify the classifier

thresholds in order to maximize the F1 score using all features for both chronological

and random data partitioning scenarios.

4.3.4.1 Varying Feature Sets

As described in Section 4.2.1.1, we first use only baseline features, then add in selected

features, followed by all features. Table 4.3 displays the results using chronologically-

partitioned data, whereas Table 4.4 shows results using randomly-split data. For each

metric column, the best results are underlined.

Table 4.3: Results from adding sets of features to the base model using chronological
data partitioning.

Features TSS HSS F1 LPR HNR TN FP FN TP
Baseline 0.6594 0.5215 0.5263 194.8 1.0 708.8 5.2 2.0 4.0
Baseline +
Selected

0.6613 0.5757 0.5797 112.4 2.0 710.2 3.8 2.0 4.0

Baseline +
All

0.6608 0.5591 0.5634 89.6 1.8 709.8 4.2 2.0 4.0
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Table 4.4: Results from adding sets of features to the base model using random data
partitioning.

Features TSS HSS F1 LPR HNR TN FP FN TP
Baseline 0.7123 0.3622 0.3782 69.4 4.2 679.4 26.6 3.0 9.0
Baseline +
Selected

0.8544 0.4805 0.4930 59.8 8.6 685.6 20.4 1.4 10.6

Baseline +
All

0.8327 0.5840 0.5930 64.0 9.0 693.8 12.2 1.8 10.2

As seen throughout both partitioning schemes, TSS, HSS, and F1 improve when

additional features are added. Although the configuration with all features does not al-

ways improve metrics the best, this is expected, since the selected features are a subset

that we believe help differentiate SEP-related from non-SEP-related CMEs. Consid-

ering Diffusive Shock Acceleration is derived using a CME event’s speed, some form

of Speed, Type II Radio Event occurrence, and Richardson’s Peak Proton Intensity in

the selected subset were found to differentiate these events by Richardson et al. [22].

In addition, LPR and HNR improve, suggesting that there may be benefit to adjusting

the score threshold in order to further maximize the other metrics.

4.3.4.2 Using cRT and AE to Handle Imbalanced Data

In this section, we present the results of adding in additional techniques to handle

the data imbalance, including classifier re-training (cRT) and the autoencoder (AE).

For each table, we report results for models using baseline with both selected and all

features, based on their positive results demonstrated in the previous section.

Table 4.5 shows the results of adding in cRT and AE to models using the base-

line+selected (baseline+5) and baseline+all feature set configurations when the events

are partitioned between training and test chronologically. For each metric column, the

best results are underlined. In this case, although the models without cRT and AE

produce the best LPR, adding in cRT and cRT+AE tend to increase F1 and the skill
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scores.

Table 4.5: Results from adding in techniques to handle the data imbalance beyond
oversampling to the model using chronological data partitioning.

Features/
Algorithm

TSS HSS F1 LPR HNR TN FP FN TP

Baseline+5 0.6613 0.5757 0.5797 112.4 2.0 710.2 3.8 2.0 4.0
Baseline+5/
cRT

0.6619 0.5933 0.5970 125.0 2.0 710.6 3.4 2.0 4.0

Baseline+5/
cRT+AE

0.6611 0.5673 0.5714 286.2 2.8 710.0 4.0 2.0 4.0

Baseline+all 0.6608 0.5591 0.5634 89.6 1.8 709.8 4.2 2.0 4.0
Baseline+all
/cRT

0.5936 0.5023 0.5070 170.0 1.6 709.4 4.6 2.4 3.6

Baseline+all
/cRT+AE

0.8263 0.6211 0.6250 243.4 1.2 709.0 5.0 1.0 5.0

Table 4.6 shows the results of adding in cRT and AE to models using the base-

line+selected (baseline+5) and baseline+all feature set configurations when the events

are partitioned between training and test randomly. For each metric column, the best

results are underlined. Similar to the results using chronological partitioning, adding

in cRT and cRT+AE increase F1 and the skill scores under different feature configu-

rations.

With the increased number of SEP-related events in the test set using random

partitioning, it is more meaningful to compare the Lowest Positive and Highest Neg-

ative rank changes. Although using cRT and cRT+AE both increase TSS, HSS, and

F1 in various configurations at a score threshold of 0.5, they typically vary in rank

improvement much more than the original single-stage model.

4.3.4.3 Varying Classifier Thresholds to Maximize the F1 Score

To additionally optimize metrics, we vary the output score threshold that determines

how an event is classified. Typically, the threshold is set to 0.5: if the output score of
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Table 4.6: Results from adding in techniques to handle the data imbalance beyond
oversampling to the model using random data partitioning.

Features/
Algorithm

TSS HSS F1 LPR HNR TN FP FN TP

Baseline+5 0.8544 0.4805 0.4930 59.8 8.6 685.6 20.4 1.4 10.6
Baseline+5/
cRT

0.8095 0.5040 0.5155 73.8 8.6 689.2 16.8 2.0 10.0

Baseline+5/
cRT+AE

0.8748 0.5207 0.5320 111.8 5.0 688.2 17.8 1.2 10.8

Baseline+all 0.8327 0.5840 0.5930 64.0 9.0 693.8 12.2 1.8 10.2
Baseline+all
/cRT

0.8680 0.6267 0.6347 49.8 8.6 695.2 10.8 1.4 10.6

Baseline+all
/cRT+AE

0.8025 0.6082 0.6164 65.4 4.0 696.0 10.0 2.2 9.8

the network is above, then we predict it is related to an SEP; otherwise, we predict the

event is not related to an SEP. Here, we optimized F1 through threshold adjustments.

Using all features, the results improve, as seen in Tables 4.7 and 4.8, reporting results

for chronological and random data partitioning respectively. For each metric column,

the best results are underlined.

Table 4.7: Results of varying the classifier threshold to maximize the F1 score using
all features and chronological data partitioning.

Model Threshold TSS HSS F1 FP FN
Single Stage 0.7793 0.6625 0.6119 0.6154 3.0 2.0
cRT 0.2016 0.8235 0.5506 0.5556 7.0 1.0
cRT+AE 0.8495 0.8291 0.7115 0.7143 3.0 1.0

When we previously adjusted the threshold to increase a certain metric, it typically

decreased other metrics. Opposite from previous results, when we now modify the

threshold to maximize the F1 score, we see an additional increase in TSS and HSS. In

the case of cRT+AE using chronological partitioning, the two were originally 0.8263

and 0.6211 with a threshold of 0.5.
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Table 4.8: Results of varying the classifier threshold to maximize the F1 score using
all features and random data partitioning.

Model Threshold TSS HSS F1 FP FN
Single Stage 0.9783 0.6667 0.7973 0.8000 0.0 4.0
cRT 0.9652 0.6667 0.7973 0.8000 0.0 4.0
cRT+AE 0.5053 0.8206 0.6377 0.6452 9.0 2.0

Similar to the chronological data partitioning results, when using the cRT+AE

model, TSS and HSS also increased from 0.8025 and 0.6082 respectively. The vari-

ability demonstrated amongst different configurations of cRT and cRT+AE models

for Lowest Positive and Highest Negative rankings have clear effects on the optimized

score thresholds. However, although cRT+AE has the worst F1 and HSS, it reduces

the number of false negatives in half compared to the original single-stage and cRT

models. Considering the severe consequences of false negatives in our problem, and

the single digit number of false positives, the cRT+AE model remains the best choice.

4.3.5 Analysis

In this section, we take a closer look into the cRT+AE models using all features. In

Section 4.3.5.1, we identify important features in two separate ways: by correlating

feature value ranges with output scores, and by ranking features. In section 4.3.5.2,

we discuss common errors made by the models.

4.3.5.1 Feature Importance

To better understand how the trained models perform given the ranges for different

features, and to additionally observe any correlations between individual features and

output score, we visualize each test set sample’s predicted score against each individual

feature. Figures 4.6 and 4.7 depict these scatter plots of the baseline and selected
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features for the cRT+AE model using all features. Within the baseline features, there

is a clear increase in score when events have a speed of 1000 km/s or greater or a

half width of 40 degrees or higher. Considering CME speed, and half width to a

lesser extent, have previously been used as a proxy to determine its association with

an SEP event by Richardson et al. [22], the correlations shown through these plots

validate the model’s behavior. Further, within the selected features, an increase in

both Type II area and Richardson’s Formula output lead to an increase in score. Both

have previously also been used to predict whether a CME was related to an SEP:

we previously successfully used Type II area as a feature, and Richardson’s formula

previously was used to predict the peak proton intensity after a given CME event.

Figure 4.6: Individual scatter plots of each individual baseline feature. Red dots are
SEP-related events, and green dots are non-SEP-related events.
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Figure 4.7: Individual scatter plots of individual selected features. Red dots are SEP-
related events, and green dots are non-SEP-related events.

We additionally observe how certain features may impact model predictions by us-

ing techniques to rank all features from most to least important. First, we use the

method proposed by Torres [32]. Table 4.9 shows the output of this method for the

cRT+AE model using all features trained using the random partitioning scheme. In-

terestingly, sunspot number and acceleration are two of the top five features in Torres’s

work.

Another Feature Importance method we explored is called Local Interpretable

Model-agnostic Explanations (LIME), developed by Ribeiro et al. [30]. Please refer to

Chapter 2 for the details on how feature importance is calculated using this method.

In addition to what Ribeiro et al. present, we normalize the feature importance vector

between [0,1] to compare with Torres’s method’s results. The major difference between

the two is that our method is model-based, whereas LIME is based on the collective

explanations of every instance in the training set. Table 10 contains the results of this

feature importance method for the cRT+AE model using all features trained using the
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Table 4.9: All features ranked in descending order of importance using the method
developed by Torres. This ranking was compiled after taking the average importance
per feature over 5 independent runs.

Feature Importance
1. Acceleration 0.0616
2. 2nd order speed final 0.0593
3. Diffusive Shock 0.0582
4. Latitude 0.0582
5. Sunspot Number 0.0578
6. DONKI Linear Speed 0.0566
7. CMEs in past 9 hours 0.0542
8. DONKI Half Width 0.0539
9. CPA 0.0535
10. CMEs in past month 0.0530
11. 2nd order speed at 20 solar radii 0.0523
12. Richardson’s Formula 0.0518
13. MPA 0.0501
14. Longitude 0.0501
15. 2nd order speed initial 0.0488
16. Halo 0.0486
17. Max speed past day 0.0465
18. Type II Visualization Area 0.0436
19. CMEs over 1000 km/s past 9 hrs 0.0419

random partitioning scheme.

We compare the Feature Importance methods using two techniques: through com-

paring feature differences within ranges of rankings, and by ranking groups of features.

First, we compare the methods by splitting the ranked features into three groups:

1-6 are high-ranking, 7-13 are mid-ranking, and 14-19 are low-ranking. Within high-

ranking features, only Diffusive Shock, 2nd order speed final, and Sunspot Number

remain across both methods. For mid-ranking features, only CPA and 2nd order speed

at 20 solar radii are consistent. Finally, for low-ranking features, only Max speed past

day, Type II Visualization Area, and the number of CMEs over 1000 km/s in the past

9 hours are similar. Although these rankings differ, it should be noted again that both
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Table 4.10: Feature importance using LIME. This ranking was compiled after taking
the average importance per feature over 5 independent runs.

Feature Importance
1. Richardson’s Formula 0.0924
2. Diffusive Shock 0.0910
3. 2nd order speed final 0.0740
4. Sunspot Number 0.0729
5. CMEs in past 9 hours 0.0718
6. DONKI Half Width 0.0645
7. Halo 0.0579
8. Latitude 0.0558
9. CPA 0.0556
10. Longitude 0.0427
11. 2nd order speed initial 0.0425
12. 2nd order speed at 20 solar radii 0.0405
13. Acceleration 0.0404
14. DONKI Linear Speed 0.0401
15. Type II Visualization Area 0.0398
16. MPA 0.0351
17. Max speed past day 0.0340
18. CMEs in past month 0.0255
19. CMEs over 1000 km/s past 9 hrs 0.0234

methods are designed differently: Torres’s method is model-based, whereas LIME is

instance-based. Further, simply comparing feature rankings in bins may additionally

disregard how the features themselves are related. This gives motivation for introduc-

ing an additional technique to compare feature importance methods: grouping together

all related features, sum their importances, and rank the groups of features accordingly.

There are five primary groups: Speed, Location, Size, CME History, and Other. The

Speed group contains the following features:

• DONKI Linear Speed

• Diffusive shock acceleration

• 2nd order speed final
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• 2nd order speed initial

• 2nd order speed at 20 solar radii

The Location group contains features related to the physical origin of the CME event,

and any derived features:

• Latitude

• Longitude

• Peak Particle Intensity formula (Richardson et al.)

• CPA (weighted by 0.5)

• MPA

It is important to note that CPA is weighted by 0.5, because both location and event

size data is encoded in the measurement. As mentioned in the description of the CDAW

catalog [1], an event’s CPA is the counter clockwise angle between the effective north

pole of the Sun and the center of the CME as viewed from Earth. However, CMEs

large in size often appear as a ”Halo” around the Sun from Earth; these events are

given a CPA of 360. The Size group relates to features conveying the width of the

CME event:

• CPA (weighted by 0.5)

• Halo

• DONKI Half Width

The CME History group is made up of features that are measured using previous

CMEs. These features are related to detecting double CME events, where more than

one CME cause an elevation in proton intensity:

• Maximum speed in the past day
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• Number of CMEs in the past month

• Number of CMEs in the past 9 hours

• Number of CMEs with a Linear Speed >1000 km/s in the past 9 hours

Finally, the Other group consists primarily of other space weather phenomena:

• Acceleration

• Type II Visualization Area

• Sunspot Number

Tables 4.11 and 4.12 present the results of grouping features as a means of comparing

feature importance methods. As expected, the rankings are the same, with speed at the

top for both. Additionally, it is unsurprising that Location ranks second, considering

the Peak Particle Intensity formula from Richardson et al. [22] is included in the group.

Further, although the summed importance for each group differs between methods, this

is expected because both are implemented differently.

Table 4.11: The Feature Group Importance for Torres’s method, ranked in descending
order.

Group Combined Importance
1. Speed 0.2752
2. Location 0.2370
3. CME History 0.1956
4. Other 0.1630
5. Size 0.1293

4.3.5.2 Common Errors

To better understand classification errors, we plot test set errors on scatter plots where

each axis is a feature and events are color-coded based on score. Figure 4.9 depicts
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Table 4.12: The Feature Group Importance for the LIME method, ranked in descending
order.

Group Combined Importance
1. Speed 0.2881
2. Location 0.2538
3. CME History 0.1547
4. Other 0.1531
5. Size 0.1502

these plots for the cRT+AE model using all features for random data partitioning.

Figure 4.8: The legend for Figures 4.9 and 4.12.

The false negatives, depicted by green cross marks in Figure 4.9, are listed in

Table 4.13.

Table 4.13: The false negatives typically seen when using the cRT+AE model with all
features and the random data partitioning technique.

Event Score Notes

6/14/12 14:09 0.0981
Energetic Storm Par-
ticle (ESP) event

4/11/13 7:36 0.0318
Speed might be wrong
(1150 instead of 675
km/s)

The event on June 14th, 2012 is considered an ESP event, where the source of the
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Figure 4.9: On the top left, linear speed and half width are paired; similarly, on the top
right, longitude and latitude are paired. On the bottom left, the Richardson Formula
and Diffusive Shock are paired; on the bottom right, the Sunspot Number and Type
II Visualization Area features are paired. Refer to Figure 4.8 for the legend.

CME is close to a latitude and longitude of zero, and the elevation in proton flux occurs

over a long period of time. Figure 4.10 depicts the PHTX file from CDAW for the time

period of this event. In the case of this particular event, it takes almost a full 24 hours

for the proton flux to cross the 10 pfu threshold.

The common false positives are shown as red and orange circles in Figure 4.9. The

clearest observation from these plots can be seen on the top left, with CME half width

and speed. All false positives have a speed greater than the lowest speed false negative.

Considering the association between many high-speed CMEs and SEP events, at first

glance one may presume that speed drove up their predicted scores. The false positives
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Figure 4.10: PHTX file from CDAW depicting proton flux at various energy levels
(top plot), along with CMEs (middle plot) over June 14th-16th, 2012. The CME in
question is circled in red, starting around 12:00 on June 14th [10].

also have a half width greater than 30 degrees; again, this is unsurprising given our

previous analysis of the relationship between medium to large CME event half widths

and SEP events. Additionally, Those nine false positives are listed in Table 4.14 with

their scores and notes. An interesting observation is the high number of false positives

that are associated with some form of elevated proton intensity. When we observe

protons at 10 MeV, an SEP is defined when the proton intensity becomes 10 pfu or

higher. Although these CMEs are associated with some form of elevation in proton

intensity above background noise at 10 MeV, they do not meet or cross the 10 pfu

threshold. For example, Figure 4.11 shows the PHTX file from December 28th, 2015,

showing a peak proton intensity of around 3 pfu for 10 MeV. Additionally, the only

false positives that do not generate an elevation in proton intensity have high values

of important features, previously shown across both feature importance methods in

Tables 4.11 and 4.12.
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Table 4.14: The false positives typically seen when using the cRT+AE model with all
features and the random data partitioning technique.

Event Score Notes
9/22/11 11:24 0.9947 Elevated Proton Flux
12/28/15 12:39 0.9913 Elevated Proton Flux
5/14/13 1:30 0.9696 Elevated Proton Flux
5/15/16 15:36 0.9548 Elevated Proton Flux

11/11/11 7:09 0.9512
High Predicted Peak
Proton Flux Value

4/2/14 13:55 0.9071 High Speeds
8/17/13 19:24 0.8647 Elevated Proton Flux
12/26/13 3:40 0.8191 Elevated Proton Flux
11/7/13 0:00 0.7351 Elevated Proton Flux

Figure 4.11: PHTX file from CDAW depicting proton flux at various energy levels (top
plot), along with CMEs (middle plot) over December 27th-29th, 2015. The CME in
question is circled in red, starting around 12:00 on December 28th [9].

We additionally present common mistakes made using the chronological data par-

titioning scheme. Figure 4.12 shows the 4 error plots with paired up features. Similar

to the random partition common errors, all false positives have a high speed and large
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half width. Further, there is a false negative with a speed of 300 km/s, an outlier for an

SEP. All false positives additionally are associated with a Type II radio burst, and are

predicted to have a high peak proton intensity (Richardson Value). The high Richard-

son Value stems from the location of the false positives, because the Richardson Value

directly depends on the distance between the event and the 43 degree longitude line.

Figure 4.12: On the top left, linear speed and half width are paired; similarly, on
the top right, longitude and latitude are paired. On the bottom left, the Richardson
Formula and Diffusive Shock are paired; on the bottom right, the Sunspot Number
and Type II Visualization Area features are paired. Refer to Figure 4.8 for the legend.

After looking over the common errors, similar to the random partition results, we

make conclusions for each event. Table 4.15 shows the most common false negatives

produced, along with some additional context for each. Unlike the random partition
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results, there are three types of false negatives: ESP events, SEP events that barely

crossed the 10 pfu threshold, and SEP events associated with two or more CMEs.

Table 4.15: The false negatives typically seen when using the cRT+AE model with all
features and the chronological data partitioning technique.

Event Score Notes

6/18/15 1:25 0.3430
Flux Barely Crossed
the Threshold

6/21/15 2:48 0.0758 ESP Event
10/29/15 2:48 0.0021 Double CME

Although the speed for the SEP-related CME on June 18th, 2015 was around

1720 km/s, numerous other factors likely contributed to its classification as a non-SEP

event. The event had a recorded CPA of 279; in other words, it was not large enough to

constitute as a halo event. Further, the half width of the event was 40 degrees, which

we consider to be on the border of being considered a large event in size. Figure 4.13

shows the proton flux level for the event along with the CME associated with the SEP

event. The proton flux barely crosses the 10 pfu threshold. By June 19th, the level

was back below 10 pfu.

Another event of interest is the CME on October 29th, 2015. This event has

a recorded linear speed of 390 km/s, and stops before approaching 20 solar radii.

However, there was another CME event 2 hours prior, within the same geographic

vicinity, that had a linear speed of 402 km/s. Figure 4.14 shows the two CME events

in question; visually, they occur within the geographic vicinity of each other. Further,

the remnants of the first event can be seen slightly below the second CME in the

coronagraph on the right. This scenario is known as a Double CME event, which may

have the potential to cause an SEP event from the output of several smaller CMEs

within the vicinity of each other. In order to detect double CME events, we provide

the models with context in the form of the CME History features. Figure 4.15 shows
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Figure 4.13: PHTX file from CDAW depicting proton flux at various energy levels
(top plot), along with CMEs (middle plot) over June 17th-19th, 2015. The CME in
question is circled in red, starting at the beginning of June 18th [11].

the CME event of interest, along with the corresponding proton flux levels.

Figure 4.14: Coronagraph captures of a Double CME Event. The capture on the left
was taken at 1:48 on October 29th [2], showing the first CME starting at 1:25. The
capure on the right was taken at 3:12 on October 29th [3], showing the second CME
starting at 2:48.

Table 4.16 shows the most common false positives produced, with additional com-
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Figure 4.15: PHTX file from CDAW depicting proton flux at various energy levels (top
plot), along with CMEs (middle plot) over October 28th-30th, 2015. The CMEs in
question are circled in red, starting around the beginning of October 29th [8].

ments. Interestingly, all false positives within the chronological partitioning scheme

experiments correspond to an elevation in proton flux. We suspect that the majority

of false positives with elevated proton flux events may correspond to the addition of

feature learning into our model. Previously, false positives generally were associated

with large speeds. Although these two events had linear speeds of 850 and 1100 km/s,

some false positive mistakes made by the single-stage model, using the same data par-

titions, included events with speeds over 2000 km/s. This suggests that the cRT+AE

model may place more weight on non-speed based features compared to the single stage

model.

Table 4.16: The false positives typically seen when using the cRT+AE model with all
features and the chronological data partitioning technique.

Event Score Notes
12/28/15 12:39 0.9675 Elevated Proton Flux
9/20/15 18:12 0.9672 Elevated Proton Flux

62



Chapter 5

Conclusion

5.1 Summary of findings

In this work, we address the problem of forecasting the occurrence of upcoming SEP

events through measurements of CMEs and related space weather phenomena. We

introduce enhancements to the DONKI CME catalog through adding additional CME

measurements from the CDAW CME catalog along with other space weather phe-

nomena, such as Sunspot Number and Type II Radio Wave Bursts, previously linked

together by Torres [32]. While smaller in number of total events compared to both

DONKI and CDAW CME catalogs, the enhanced dataset includes measurements from

instruments orbiting Earth and the Sun. Additionally, the imbalance between SEP

and non-SEP related CMEs decreased compared to both original DONKI and CDAW

CME catalogs. Using the enhanced CME dataset, we create models to predict the

occurrence of future SEP events. We introduce the cRT+AE technique to learn better

features, thereby mitigating the data imbalance, and compare it to using only oversam-

pling SEP-related events. We show the advantage of using cRT+AE across different

input feature sets and data partitioning schemes. Further, we analyze the model using
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all input features and the cRT+AE method through two separate feature importance

techniques. We find that, using both methods, the ranking of feature groups are the

same. Finally, we discuss common types of errors, both false positives and negatives,

made by the cRT+AE all-feature model. These errors include elevated proton flux

levels seen within false positives, and associations with ESP and Double CME events

within false negatives.

5.2 Limitations and possible improvements

Currently, we only address predicting the occurrence of SEPs using CME and other

space weather phenomena measurements. Estimating future peak proton flux using

these measurements is a separate, albeit related, problem. Using machine learning

techniques, this may be modeled using regression. Data from GOES Energetic Parti-

cle Sensor [6] may be useful in replacing discrete target values used throughout this

work with continuous-valued particle flux measurements to create the regression model.

Further, a regression-based method may also double as an SEP event classifier by

thresholding its output at 10 pfu.

As of this writing, the CDAWCME catalog has a near 5 month time delay in provid-

ing CME event measurements. Further, Type II Radio Bursts are seemingly delayed by

a year, and are only officially linked to CDAW CME events [13]. In their current form,

the models introduced in this work would not be able to operate under near real-time

conditions due to these significant delays in publishing measurements. One potential

improvement would be to add these borrowed measurements when recording CME

events in the DONKI Catalog. This may be simple to implement, considering DONKI

often already uses the same Earth-based instrument that CDAW uses to record CMEs.

Another possibility to enable real-time use of these models would be to automate the
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analysis of CMEs through computer vision techniques. Instead of having a monolithic

model that uses coronagraph images as input and SEP occurrence as output, individual

models could be developed to estimate measurements such as height-time and width,

crucial for calculating the features used in this work. Therefore, one could still apply

the models developed in this work in order to preserve consistency with the physical

understanding of space weather phenomena, and their relationship to SEP events [27].

We find that our cRT+AE method results in a general increase in performance

over only using oversampling to handle the class imbalance inherent to the natural

occurrence of SEP events. However, the results are mixed when compared based on

rank-based metrics, namely HNR and LPR. Although the cRT+AE method is used

to learn better features than those provided as input, using a supervised contrastive

learning based approach [34] may learn features that help discriminate between the

classes.

The primary way we interpret our models is through ranking features, and sub-

sequently feature groups, against each other. This assumes that certain features are

more important than others. While this may be true, the associations between fea-

tures, and how they produce predictions, may be equally important. Currently, we

achieve this implicitly through plotting event scores against pairs of features. In or-

der to provide a more explicit explanation, symbolic regression techniques should be

explored [19] [31] [33].

As identified in Section 4.3.5.2, there are two main classes of False Negatives made

by our proposed model: ESP-related events, and Double CME events. Typical char-

acteristics of ESP events include an event location close to the geographical origin

of the Sun and potentially taking days for the proton flux to rise above 10 pfu near

Earth. Using our modification to the formula proposed by Richardson et al. [22] would

likely produce a low proton flux estimate, as the origin is 43 degrees away from the
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formula’s peak output. Considering the output of this formula is grouped into the lo-

cation feature group, and that the location group ranks second out of the five groups,

one possible explanation for missing SEP-related ESP events is a mismatch between

previously perceived versus additionally important locations. In order to mitigate this,

additional features that separate SEP-related ESP events from normal CME events

should be explored. For the second class of False Negatives, we already include the

CME History feature group in an attempt to catch Double CME events. Part of the

problem is the majority of Double CMEs, as we attempt to identify them through

features, are not related to SEP events. Further, a dilemma arises regarding find-

ing Double CMEs. For example, our proposed enhanced dataset may exclude certain

DONKI CME entries when multiple DONKI entries match a single CDAW entry. If we

only consider this enhanced dataset when computing these CME History features, we

may lose Double CMEs that were recorded in DONKI, but only one CME was recorded

in CDAW. Therefore, a two-step approach should be explored. First, an investigation

into which dataset is best in identifying Double CMEs should be conducted. Then,

using the optimal dataset, additional features in identifying Double CMEs that are

related to SEP events should be explored.
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Rune H Jacobsen, and Christoffer Karoff. Using machine learning methods to

forecast if solar flares will be associated with cmes and seps. The Astrophysical

Journal, 861(2):128, 2018.

[24] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani

Srivastava. How can i explain this to you? an empirical study of deep neural network

explanation methods. Advances in Neural Information Processing Systems, 2020.

69



[25] Kahler, Stephen W. and Ling, Alan. G. Forecasting solar energetic particle (sep)

events with flare x-ray peak ratios. J. Space Weather Space Clim., 8:A47, 2018.

[26] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi

Feng, and Yannis Kalantidis. Decoupling representation and classifier for long-

tailed recognition. In 8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[27] Anuj Karpatne, Gowtham Atluri, James H Faghmous, Michael Steinbach,

Arindam Banerjee, Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin

Kumar. Theory-guided data science: A new paradigm for scientific discovery from

data. IEEE Transactions on knowledge and data engineering, 29(10):2318–2331,

2017.

[28] E Lavasa, Georgios Giannopoulos, Aikaterini Papaioannou, A Anastasiadis,

IA Daglis, Angels Aran, David Pacheco, and B Sanahuja. Assessing the predictabil-

ity of solar energetic particles with the use of machine learning techniques. Solar

Physics, 296(7):1–47, 2021.

[29] Donald V Reames. The two sources of solar energetic particles. Space Science

Reviews, 175(1-4):53–92, 2013.
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Appendix A

Calculating Features Derived from

Physics

Here, we explain how we calculate the values for two separate features: peak proton

intensity from Richardson et al [22] (commonly referred to as Richardson’s Formula

or Value), and Diffusive Shock Acceleration from Drury [20] (commonly referred to as

Diffusive Shock or V V 2
).

A.1 Peak Proton Intensity

Richardson et al. [22] derived a formula to predict the peak proton intensity for 14-34

MeV using characteristics from the most recently-occurred CME event. Torres used

this for predicting the occurrence of an SEP event [32]. In this work, we modify the

formula slightly. In the works of Richardson et al. and Torres, they include a speed

term as input into Equation A.1. We decide to omit the speed input, as we include

various types of speed features elsewhere in our proposed models. Therefore, we use

the formula as follows:

72



Iϕ(MeV s ∗ cm2 ∗ sr)−1 ≈ 0.013exp(− ϕ2

2σ2
), (A.1)

where σ is set to 43 degrees and ϕ is the connection angle between the CME and the

magnetic field line connecting the Sun and Earth. The connection angle is calculated

as follows:

ϕ = arccos[sin(θ1) ∗ sin(θ2) + cos(θ1) ∗ cos(θ2) ∗ cos(θ1 − θ2)], (A.2)

where θ1 is the event latitude from DONKI, ϕ1 is the event longitude from DONKI, ϕ2

is fixed at 0 degrees similar to Torres’s work. However, dissimilar to Torres’s work, θ2

is calculated as follows:

θ2 =
27.2 ∗ 1.5 ∗ 108

VSWS ∗ 360
, (A.3)

where VSWS is the solar wind speed in km/day [12]. Further, θ2 is converted to degrees

in order to calculate the connection angle.

A.2 Diffusive Shock Acceleration

Torres additionally used Diffusive Shock Acceleration, referred to as V V 2
, as a feature

to predict SEP occurrence. Though there are many adjustable parameters, we only

vary the CME Linear Speed. In our case, we use the linear speed from each event’s

DONKI entry. We begin by showing the entire expression to calculate Diffusive Shock:

ηv
1

γ − 1

1

(1 +
v2inj

κv2inj
)κ+1

(
vinj
v

)γ+1, (A.4)

where ν is shock efficiency set to 0.1, v is particle speed set to 44,000 km/s for 10 MeV

protons, and κ is a distribution parameter set to 2. Then, vinj is calculated as follows:
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vinj = 2.5V, (A.5)

where V is the linear speed of the particular CME. Finally, before we compute γ, we

compute the Mach number of the CME event M as follows:

M =
V

VA

, (A.6)

where VA is the Alfven Speed set to 600 km/s. If M > 1.1, we calculate γ as follows:

γ =
4M2

M2 − 1
(A.7)

If M ≤ 1.1, we substitute 1.1 in for M and compute γ using the above equation.

In this case, this leads us to fix γ as 23.
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