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ABSTRACT

Title:

A Machine Learning Approach to Forecasting SEP Events

with Solar Activities

Author:

Jesse Scott Torres

Major Advisor:

Philip Chan, Ph.D.

Solar energetic particles (SEPs) are fast-moving events which can cause severe

damage to astronauts and their equipment, and can disrupt communications on

Earth. There are no clear patterns in solar activities which indicate whether

an SEP is about to occur, making physics-based methods inaccurate for SEP

forecasting. Therefore, in order to provide an advance warning so that astro-

nauts are able to get to safety, we apply neural networks to the problems of

forecasting SEP occurrence and intensity. Our algorithm for predicting SEP

occurrence uses a combination of observed CME properties and derived fea-

tures and achieves a TSS of 0.846 and an F1 score of 0.277. To forecast SEP

intensity, we use electron and proton flux time series data. The data is sepa-

rated into intensity ranges, which are used to train separate models. The model

can be selected either through manual thresholds or another model to predict

the intensity range. Doing so, we are able to accurately forecast proton flux

near the onset of each event with a small lag.
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Chapter 1

Introduction

Solar energetic particles (SEPs) are high-energy particles from the Sun which,

at a high enough intensity, can cause harm to astronauts and their equipment.

Additionally, they can impact radio communications and navigation signals on

Earth. Because of the danger presented by these events, it is essential to provide

an advance warning so that astronauts can move themselves and their equipment

to safety.

SEPs are commonly associated with solar flares or coronal mass ejections

(CMEs). However, less than 1% of CMEs result in SEP events. Because of how

rare SEPs are, physics-based methods are not yet able to accurately forecast

SEP events. Therefore, in this study, we apply machine learning algorithms to

forecast SEP events.

There are two main prediction tasks which we focus on. The first problem

is to determine whether or not an SEP will occur in the future. This task is

accomplished using properties of CMEs, plus some other features, to output

yes or no to answer whether the CME is associated with an SEP. The second

problem is to estimate the intensity of an SEP event. The predicted intensity is
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proton flux, which can be measured continuously over time. Therefore, we use

time series data for features which precede the event in order to predict a time

series of proton flux.

For the first problem, each instance is a set of CME properties and other

features measured at the time of the CME. Each of these instances is labeled

yes or no, and are used to train and test a multilayer perceptron neural network.

Different combinations of features and neural network parameters are used to

optimize performance. For the second problem, which uses time series data, a

fixed window of time containing past and current values of each feature is used

for input. The model predicts the proton flux at some number of timesteps into

the future. Again, we use the multilayer perceptron algorithm. Additionally,

we compare its performance with recurrent neural networks (RNNs); RNNs

contain additional weight matrices which model dependencies between inputs

across time, making them a good fit for time series forecasting problems.

One of the main contributions of our approach to the first problem is the

set of features used; in addition to the observed CME properties, some features

are derived from these observations, and some other features occurring at the

time of the CME are obtained from other sources. This results in a unique

set of features which attempt to obtain the best performance possible. We

also present a method for calculating feature importance within a feed-forward

neural network, which can further aid in a data-focused approach to improving

performance. The main contribution of our approach to the second problem is

the separation of data into different intensity ranges, which are used to train and

test multiple models. This is our approach’s way of addressing the imbalance

between SEP events and background values.

The rest of this paper is organized as follows: Chapter 2 discusses previous
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works and how they can apply to our studies. Chapters 3 and 4 discuss the

problems of predicting SEP occurrence with CME data, and predicting proton

flux time series, respectively. Both of these chapters are organized the same, giv-

ing details on the problem, approach, and experimental evaluation, along with

a summary. Finally, Chapter 5 summarizes the paper and discusses limitations

and potential improvements.
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Chapter 2

Related Work

Many researchers have used machine learning methods to predict solar flares.

Fewer have attempted to use machine learning methods for the prediction of

SEPs. This includes the two problems that our work addresses, which are fore-

casting SEP occurrence and forecasting SEP intensity. Generally, fewer works

attempt to forecast SEP properties such as intensity, while most predict SEP oc-

currence. Works forecasting SEP occurrence are discussed in Section 2.1, while

works which forecast SEP intensity are discussed in Section 2.2. Additionally,

some works are discussed in Sections 2.3 and 2.4 which provide more detail on

neural networks, which are the main type of machine learning model used in

our own works.

2.1 Forecasting SEP Occurrence

Among the works which forecast SEP occurrence, [5] uses a combination of X-

ray and proton flux data with decision trees to predict whether an SEP event

will occur. Features are generated by using a Vector Autoregression Model
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(VAR) to model interdependencies between the X-ray time series and multiple

channels of proton time series. They vary the span, or input window length,

from 3 (15 minutes) through 30 (2.5 hours), and find that a span of 30 gives

the best overall performance.

[6] uses peak X-ray flux and peak flux ratio features to predict SEP events

with neural networks. By line-fitting the data points for each feature, they show

that these features can separate SEPs from no SEPs or small SEPs well, as the

lines have very few intersections. The neural network gives a smooth separation

boundary between SEPs and non-SEPs/small SEPs, but misses some events.

They also apply the k-nearest neighbors algorithm, which gives a more ragged

boundary, and would be more difficult to use for forecasting.

Based on features from the active regions, [7] uses SVM and neural networks

to predict flares only, CMEs only, or flares+CMEs+SEPs. The input features

are delayed in intervals of 12 hours in order to test how far ahead the algorithm

can forecast events; the highest time delay tested was 120 hours. Measuring

the TSS and HSS with respect to each class, they find that the time delays of

36 hours and 96 hours gave the best performance for all classes using the SVM

algorithm. Similarly, the best performance for classifying flares with or without

CMEs and SEPs is found at a 96 hour delay using neural networks, although

the peak TSS and HSS for CMEs alone do not occur at a 96 hour delay (but

they are still relatively high).

[8] uses logistic regression, Adaboost, and SVM for SEP prediction. They use

the set of features from another work from Balch (2008) which includes X-ray

peak flux, integrated X-ray flux, and whether or not a type II or type IV radio

burst has occurred. This is built on by adding features including CME speed

and width, as well as flare persistence. They find that adding more features
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improves the performances of the logistic regression and SVM algorithms, but

lowers the performance of the Adaboost decision tree algorithm.

In [9], a formula is obtained which is used to predict the peak 14- to 24-MeV

proton intensity. Although the formula predicts intensity, they use it in order

to forecast SEP occurrence, using a threshold of 10−4 for SEP classification.

The predictor is evaluated using the false alarm rate (FAR) and probability of

detection (POD), among other metrics, and with different portions of the data

depending on which combinations of radio emissions are present.

2.2 Forecasting SEP Intensity

The works that have been discussed so far have only forecast whether or not an

SEP event will occur, but do not try to forecast characteristics of the SEP such

as proton flux. Among the few which predict SEP properties, [10] performs a

spectral analysis of hard x-ray bursts, and uses this to determine whether an

SEP will occur based on the hardening of the spectral index. Then, they predict

the magnitude of the event by applying an empirical function using the max

temperature and max x-ray flux.

In [11], the Proton Prediction System (PPS) uses peak x-ray flux and the x-

ray flare rise time in order to forecast peak proton flux. If the predicted proton

flux exceeds the 10 pfu threshold, which indicates that there is an SEP, then

the location of the solar flare is used by the PPS to predict the onset and peak

times of the SEP.

[12] uses relativistic electron onset observations to predict proton intensity

one hour ahead. Similarly to our work, they use time series data; however, they

use 1-minute increments rather than 5-minute increments like our work does.
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Each instance consists of the current electron intensity and the max electron

increase within a window from 5 minutes ago to 1 hour ago. These features

form a discretized 2D matrix, from which the average from the corresponding

cell is used to predict the proton intensity 1 hour ahead.

In [13], two models are used, one of which is for well-connected events and

one for poorly-connected events. An event is considered to be magnetically

well-connected if the first derivatives of x-ray and proton fluxes are correlated.

The well-connected model uses the correlation and the associated solar flare to

predict a well-connected SEP event. For poorly-connected events, an ensemble

of model trees is used for predicting future proton flux of a poorly-connected

event using past proton flux.

2.3 Multilayer Perceptron Neural Networks

Deep neural networks are the main types of machine learning models used in

our experiments; some of the previously mentioned works have also used neural

networks. Since they will be mentioned frequently in our work, it is important

to understand how they work, and the different variations of the algorithm that

are used.

2.3.1 Structure and Feed-Forward Procedure

The multilayer perceptron is the most basic form of a deep neural network. The

network contains input and output layers, as well as at least one hidden layer,

each having some number of units, or neurons. For every pair of adjacent layers,

every unit is connected via a weight. In Figure 2.1, the units are the circles and

the weights are the lines.
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Figure 2.1: Basic structure of a multilayer perceptron neural network.

To obtain an output prediction from some given input, the network goes

through a feed-forward procedure. This is done by taking all weights going into

a single unit and performing a dot product with the vector of inputs that are

connected to that unit. A bias term may also be learned, which is independent

of the inputs (that is, the bias is another weight and the input is fixed at 1)

and added to the dot product of weights and inputs. After performing these

operations, the result is passed to an activation function, or thresholding func-

tion, which restricts the result to a certain range (depending on the function) to

prevent further values in the network from becoming too small or too large. An

example of a neuron with an activation function is shown in Figure 2.2. Some

more commonly used activation functions are the rectified linear unit (ReLU)

function, which turns negative values to zero while retaining positive values,

and the sigmoid function which squeezes the input-weight product to a range of

0 to 1. In hidden layers, these activation functions allow the network to learn its

own representation of the input, which may be referred to as hidden features,

or new features.
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Figure 2.2: A single neuron with a thresholding activation function (obtained
from [1]).

2.3.2 Training Neural Networks

2.3.2.1 Stochastic Gradient Descent

In order for the feed-forward procedure to produce the correct output given some

input, the weights must be learned. This can be done through many different

weight-training algorithms. One of the most common algorithms is stochastic

gradient descent (SGD). [1] discusses the algorithm in detail, in which weights

are updated by iterating over the training set. For each instance, the gradient of

the loss function is computed, and the weights are moved against the gradient

in order to minimize the loss function. This can be formulated as:

∆w⃗ = −η∇E(w⃗) (2.1)

where ∆w⃗ is the weight update, ∇E(w⃗) is the gradient of the loss function

with respect to the weights, and η is the learning rate. The product on the

right-hand side is negative in order to minimize the loss function; to visualize

this, Figure 2.3 shows how the weights would update at a single point. Since the

gradient is negative at the red point, the weights after updating would move in

the positive direction so that the loss would decrease. This update is performed

for each instance in the training set, until the termination condition is met.
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Figure 2.3: Visualization of a weight update at a single point during stochastic
gradient descent.

2.3.2.2 Adam Optimization

Another algorithm for training weights is Adam, proposed in [14]. The al-

gorithm uses the first and second moments of the gradients in order to learn

adaptive learning rates. First, the biased moment estimates are calculated as:

mt = β1 ∗mt−1 + (1− β1) ∗ gt (2.2)

vt = β2 ∗ vt−1 + (1− β2) ∗ g2t (2.3)

where t is a timestep, gt is the gradient with respect to the target at timestep

t, and β1 and β2 are exponential decay rates for the moment estimates, generally
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set to 0.9 and 0.999, respectively. Then, the bias-corrected moment estimates

are calculated as:

m̂t = mt/(1 + βt
1) (2.4)

v̂t = vt/(1 + βt
2) (2.5)

Finally, the weight update is calculated as:

θt = θt−1 − α ∗ m̂t/(
√
v̂t + ϵ) (2.6)

where α is the step size (similar to SGD’s learning rate), and ϵ is a small

constant (usually set to 10−8) to prevent division by zero.

2.4 Recurrent Neural Networks

2.4.1 Basic RNNs

While the basic neural network structure may do well with handling data con-

taining characteristics of an instance at a single point in time, some data such

as time series contain dependencies between instances, which would not be pos-

sible to learn using a multilayer perceptron. Therefore, an improved network

structure called recurrent neural networks (RNN) are used for learning depen-

dencies between instances. In the left picture in Figure 2.4, in addition to the

input-to-hidden and hidden-to-output weights, an additional weight matrix can

be seen looping to itself in the hidden layer. When unfolded in the right picture,

it becomes clearer that the weights are directed from one timestep of the hidden
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layer to the next, as t is a timestep. Each of the weight matrices U, V, and W

are shared across timesteps.

Figure 2.4: Two visualizations of a recurrent neural network, one containing
a self-loop in the hidden layer and the other showing the individual timesteps
(obtained from [2]).

Based on the above diagram, the feed-forward equation becomes:

st = f(Uxt +Wst−1) (2.7)

where st is the hidden unit’s value at timestep t, and f is the hidden acti-

vation function. From this, it can be seen that hidden units at each timestep

depend not only on the input, but also the previous hidden unit. Since the

previous hidden unit depends on the input at the previous time and the hidden

unit before it, a hidden unit depends on all prior timesteps; that is, all previous

hidden units, and all previous inputs plus the current input.

2.4.2 Gated Recurrent Unit

Although the standard RNN structure may appear to work well, it can run into

problems as the length of the input time window increases. Specifically, if several

large values are multiplied together, then the gradient can grow very large, and

if several small values are multiplied together, the gradient will shrink towards
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zero. These are commonly referred to as exploding and vanishing gradients,

respectively. A recurrent structure called the Gated Recurrent Unit (GRU)

addresses this issue by modulating the flow of information within the unit. A

visualization of a GRU layer can be seen in Figure 2.5.

Figure 2.5: The structure of a GRU layer (obtained from [3]).

Formally, the procedure can be defined in terms of the following equations,

taken from [3]. The candidate activation h̃ is computed similarly to a regular

recurrent unit:

h̃j
t = tanh(Uxt +W (r ⊙ ht−1))

j (2.8)

in which t is a timestep, j indicates the jth GRU unit, U is the input weight

matrix, W is the hidden weight matrix, and r is a set of reset gates which

depends on the previous hidden unit. The reset gate allows the unit to forget

the previously computed state and act as though it is reading the start of a new

input sequence, which keeps the network from multiplying too many small or

large values consecutively. The reset gate is defined as:

rjt = σ(Urxt +Wrht−1)
j (2.9)

Additionally, there is an update gate zjt which determines the extent to which
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a hidden unit is updated:

zjt = σ(Uzxt +Wzht−1)
j (2.10)

Finally, the above information can be used to calculate the hidden activation

at time t, which is a linear interpolation of the previous hidden unit and the

candidate activation:

hj
t = (1− zjt )h

j
t−1 + zjt h̃

j
t (2.11)
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Chapter 3

Predicting SEP Occurrence with

CME Properties

3.1 Problem

The first problem studied in this work is, given the characteristics of a CME, to

predict whether or not the CME has an associated SEP event. Each instance in

this problem has a value for each feature at the time of the CME, and a label

of either yes or no, indicating whether or not the CME has an associated SEP

event. The objective is for the algorithm to correctly label instances it has not

seen before as either yes or no.
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3.2 Approach

3.2.1 Input and Output

To form a baseline, we use a set of basic features from [15] as inputs to the

algorithm; these features include:

• Linear speed

• Width

• Acceleration

• 2nd order speed initial

• 2nd order speed final

• 2nd order speed at 20 solar radii

• Central position angle (CPA)

• Measurement position angle (MPA)

The output of the task is the yes or no label mentioned in Section 3.1.

Numerically, the labels are treated as 0 or 1. A label of 0 means that there is

no SEP event, while a label of 1 means that there is an SEP event. These are

referred to as the negative and positive classes.

After forming a baseline, more features are added in order to improve per-

formance. These features can be derived from the above features or obtained

from other sources. Some features which were added involve information about

CMEs which occurred some time before the CME began; this is done in order
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to test whether recent CME activity provides more information about whether

the current CME will be associated with an SEP. These features include:

• The number of CMEs in the past month

• The number of CMEs in the past 9 hours

• The maximum speed of all CMEs in the past day

• The number of CMEs in the past 9 hours with a speed greater than 1000

km/s

Another group of features is derived from the baseline feature set; these

derived features have physical meanings which can help with SEP classification.

These features include:

• V * log(V), where V is the linear speed

• Whether or not the CME is a Halo (CPA = 360◦)

• A formula to replace V (V 2), derived from diffusive shock acceleration the-

ory (more details can be found in Appendix A)

A final group of features is added and derived from other sources [4] besides

the baseline, which provide information related to location and Type II radio

bursts corresponding to the CME. These are expected to help with predicted

SEPs where the CME has similar properties to a CME without an SEP (such

as low speed), which would otherwise be missed by the algorithm. The features

include:

• The sunspot number at the time of the CME
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• The area in the visualization (duration * frequency range) of a Type II

burst occurring during the CME, or 0 if no Type II burst occurred; an

example visualization is shown in Figure 3.1

• The formula from [9] which predicts peak 14- to 24-MeV proton intensity;

we use location features from [4] to estimate the connection angle and

refer to this as Richardson’s formula throughout the rest of the paper

Figure 3.1: An example visualization of a Type II radio burst. The area is cal-
culated as the product of the difference between ending and starting frequencies
and the duration of the burst (obtained from [4]).

3.2.2 Algorithm

3.2.2.1 Neural Networks

In order to learn to classify each instance as SEP or non-SEP, the multilayer

perceptron neural network algorithm is applied to the data, using the imple-
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mentation from scikit-learn in Python. In this algorithm, each of the features

has a weight at the input layer, and internal representations of the features

are contained in the hidden layers. For each iteration, every training instance is

presented to the network, and the weights are updated through weight-updating

procedures such as stochastic gradient descent. This continues for a fixed num-

ber of iterations or until convergence (little change in loss between iterations).

The end result is a set of weights which minimize the loss function, which in

this case is the binary cross-entropy function.

At the output layer is a single unit, which is thresholded by the sigmoid

function. This function outputs a value between 0 and 1, which in this case

represents the probability of the instance being associated with an SEP. A

value of 0 or 1 is obtained by comparing the probability with a value of 0.5

(the midpoint between the two labels of 0 and 1); the result is 0 if the value is

less than 0.5 and 1 if the value is greater than 0.5. The result is then used to

determine whether or not the instance has an SEP.

Before being passed to the algorithm, the inputs are scaled to a range of 0 to

1 so that the algorithm can work more easily with smaller values. This is done

by dividing each value of each feature by the maximum value of that feature.

Features in which the difference between the maximum and minimum values is

greater than 1000 are log-scaled before dividing by the maximum; this way, the

smaller values are emphasized and the algorithm does not focus solely on the

largest values.

3.2.2.2 Feature Importance

In order to inform the user of whether adding features will be helpful in clas-

sifying SEPs, and to better understand what the neural network has learned
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(rather than just its output), we calculate the relative importance of each fea-

ture. For each feature, the weights along each path from the input to the output

are multiplied together, and the sum of all of these products is the importance;

each of the weights are normalized per layer.

The above procedure can be formulated in terms of matrix multiplication as

follows: first, let l be the number of layers in the network, and let W (k) be the

weight matrix from layer k to layer k + 1, with layer 1 being the input layer,

layers 2 through l − 1 being each of the hidden layers, and layer l being the

output layer. Let nk be the number of units in layer k. Let W
(k)
ij be the weight

between feature i in layer k and feature j in layer k+1, and assume the network

is fully connected. The columns of W (k) are normalized by dividing by the sum

of each column, which corresponds to the sum of the inputs to each unit in layer

k + 1. The values of the resulting normalized matrix Ŵ are:

Ŵ
(k)
ij =

W
(k)
ij

nk∑
x=1

W
(k)
xj

(3.1)

This is done for all k from 1 to l−1, and for all i and j inW (k)’s size. The new

weight matrices Ŵ are multiplied together to obtain the feature importances,

denoted as S. S is a column vector (assuming that there is only one output

unit) with the number of rows being the number of input units (or equivalently,

n1). Sf is the importance for feature f in the input layer.

S =
l−1∏
k=1

Ŵ (k) (3.2)

Because the values sum to 1, they can be interpreted as the percentage

of importance for each feature. This vector will always be normalized after
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performing the operations above, which will be proven later in this section.

To demonstrate our feature importance procedure with an example, we show

a simple neural network in Figure 3.2. If W
(k)
ij is the weight from unit i of layer

k to unit j of layer k + 1, then the weight matrices are:

W (1) =

⎡⎢⎢⎢⎢⎣
1 2

3 2

4 5

⎤⎥⎥⎥⎥⎦, W (2) =

⎡⎢⎣2
1

⎤⎥⎦

Figure 3.2: A neural network with a single hidden layer.

Then, normalizing the columns gives:

Ŵ (1) =

⎡⎢⎢⎢⎢⎣
1/8 2/9

3/8 2/9

1/2 5/9

⎤⎥⎥⎥⎥⎦, Ŵ (2) =

⎡⎢⎣2/3
1/3

⎤⎥⎦

Multiplying these two matrices gives the importance vector S:
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S =

⎡⎢⎢⎢⎢⎣
17/108

35/108

14/27

⎤⎥⎥⎥⎥⎦
The first value in S is x1’s importance, the second is x2’s importance, and the

third is x3’s importance. This shows us that x3 is about three times as important

as x1, and x2 is about twice as important as x1, which is expected partly based

on the input-to-hidden weights being largest for x3 and smallest for x1.

This vector is already normalized, as was expected. It can be proven that S

will always be normalized through a small example using variable names rather

than numerical values for the weight matrices. For this example, a network with

two input units, two hidden units, and one output unit will be used. Let A be

the weight matrix between the input and hidden layers, and B be the weight

matrix between the hidden and output layers. Then,

A =

⎡⎢⎣A11A12

A21A22

⎤⎥⎦, B =

⎡⎢⎣B11

B21

⎤⎥⎦
Following the same procedure as the previous example, normalizing the

columns gives:

Â =

⎡⎢⎣ A11

A11+A21

A12

A12+A22

A21

A11+A21

A22

A12+A22

⎤⎥⎦, B̂ =

⎡⎢⎣ B11

B11+B21

B21

B11+B21

⎤⎥⎦
Then multiply the two matrices to obtain the feature importance:

S =

⎡⎢⎣ A11B11

(A11+A21)(B11+B21)
+ A12B21

(A12+A22)(B11+B21)

A21B11

(A11+A21)(B11+B21)
+ A22B21

(A12+A22)(B11+B21)

⎤⎥⎦
=

⎡⎢⎣A11B11(A12+A22)(B11+B21)+A12B21(A11+A21)(B11+B21)
(A11+A21)(B11+B21)(A12+A22)(B11+B21)

A21B11(A12+A22)(B11+B21)+A22B21(A11+A21)(B11+B21)
(A11+A21)(B11+B21)(A12+A22)(B11+B21)

⎤⎥⎦
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=

⎡⎢⎣A11B11(A12+A22)+A12B21(A11+A21)
(A11+A21)(A12+A22)(B11+B21)

A21B11(A12+A22)+A22B21(A11+A21)
(A11+A21)(A12+A22)(B11+B21)

⎤⎥⎦
In order for S to be normalized, all of its elements must sum to 1. In

other words, all of the elements have a common denominator, and all of the

numerators must sum to that denominator. This can be shown as follows:

A11B11(A12+A22)+A12B21(A11+A21)+A21B11(A12+A22)+A22B21(A11+A21) =

B11(A12 + A22)(A11 + A21) +B21(A11 + A21)(A12 + A22) =

(A11 + A21)(A12 + A22)(B11 +B21)

The two numerators sum to the common denominator, showing that S is

normalized. In fact, the common denominator is the product of the sums of all

columns of all matrices; matrix multiplication will always result in this product

for the common denominator and a set of numerators summing to this denom-

inator, even if the dimensions are extended. Therefore, the feature importance

vector will always be normalized when following our method.

It is important to note that this approach to computing feature importance

only uses the learned weights of the model. However, the procedure could

potentially be modified to incorporate not only the weights, but also the data

instances (which can be either from training or testing). Each has its advantages

and disadvantages.

When only using the model, the presented method of calculating feature

importance analyzes the model’s weights, which are the representation of the

model’s knowledge; that is to say that the method asks what the network has

learned. However, although the method multiplies the weight matrices similarly

to the feed-forward used for learning weights, it does not account for non-linear

activations in the hidden layers; the method works since the activation is the
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same within a layer, but may not give the most accurate approximation, and

would not work if the activations were different between different units of a

hidden layer.

Incorporating data into the feature importance method can help to under-

stand what features contribute the most to a prediction. For example, if the

network is given an instance and predicts that there will be an SEP, and CME

width ranks the highest, then it shows that CME width is important to a posi-

tive prediction. This conclusion, however, cannot be generalized to all instances.

To do so, some aggregation must be done for all feature importances of all in-

stances. The disadvantage is that, for an imbalanced dataset (to be discussed

further in the next section), the aggregated feature set will be biased towards

the majority class, so it would not be clear which features contribute the most

to predictions of the minority class.

3.2.3 Missing and Imbalanced Data

Since the data contains some missing values, these needed to be filled in order

for the algorithm to process them. This was done by finding the median of the

values which were available for each feature, and replacing the missing values

for that feature with the median. An exception to this process is made for the

Central Position Angle feature, which in most cases was missing due to being a

Halo, which occurs when the central position angle is 360◦; these missing values

are filled with 360 instead of the median.

SEP events are relatively rare compared to CMEs; in our data, there is a

roughly 1 to 300 ratio of positive (SEP) to negative (non-SEP) instances. Due to

the imbalance in the data, the algorithm needs more positive-class data on which

to train. There are two options we considered for this purpose: oversampling
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and undersampling. Oversampling duplicates minority instances in the training

set so that the number of majority instances is a larger multiple of the number

of minority instances. Since we have a roughly 1 to 300 ratio of positive to

negative instances, duplicating each positive instance 300 times provides a one-

to-one ratio. We experimented with different ratios and found that a 1 to 3

ratio of positive to negative instances gave the best results.

Undersampling creates multiple training sets containing all minority in-

stances and some portion of the majority instances until all majority instances

are used, and trains multiple models with each of these sets. A majority vote

is taken among the results of all of the models in order to produce the over-

all prediction. In our experiments, undersampling did not perform as well as

oversampling for all ratios of negative to positive instances, so results using

undersampling are not shown in this paper.

3.3 Experimental Evaluation

3.3.1 Data

The data used for the baseline experiments comes from the SOHO/LASCO

CME catalog, which was collected by the CDAW Data Center. The dataset is

available through [15]. This dataset was selected primarily due to the amount

of data available compared to other sources. We used 28872 CMEs from Jan-

uary 1996 through September 2017; the labels for the instances after September

5, 2017, are unreliable, so data after that date is not used. Out of the 28872

selected CMEs, 108 of them have associated SEP events. The catalog also

provides mass and kinetic energy as features; however, a large number of val-

ues are missing compared to other features, so these are not included in our

25



experiments.

Additionally, we use the Wind/WAVES Type II Burst catalog, which is

available through [4]. This dataset provides time and frequency data which are

used for finding the area of their frequency visualizations. The location data

provided in this dataset is used for calculating the connection angle used in

Richardson’s formula.

3.3.2 Evaluation Criteria

Many machine learning classification tasks use accuracy as their criteria for

evaluation. However, in this task, accuracy would not be a good performance

measure due to the imbalanced dataset (i.e., less than 1% of the data is labeled

as an SEP). The algorithm could then achieve over 99% accuracy by simply

predicting that there will never be an SEP, but would miss all of the actual

SEP events, defeating the purpose of these experiments. Therefore, we use

other metrics which are better suited for imbalanced datasets.

Before discussing the main metrics we use for evaluation, some intermedi-

ate metrics will be discussed. These metrics come in pairs, and usually have a

trade-off between each other. All of the metrics which will be discussed consist

of terms from a confusion matrix; a confusion matrix with two classes is shown

in Table 3.1.

Table 3.1: A confusion matrix with two classes

Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)
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Given a confusion matrix such as the one in Table 3.1:

recall = TPR = POD =
TP

TP + FN
(3.3)

FPR =
FP

FP + TN
(3.4)

precision =
TP

TP + FP
(3.5)

PFA =
FP

TP + FP
= 1− precision (3.6)

The first pair to be discussed is true positive rate (TPR) and false positive

rate (FPR). Both of these metrics have fixed denominators (total actual posi-

tives and total actual negatives, respectively); given that the data and algorithm

are adjusted to increase the likelihood of positive prediction, both metrics would

increase since TP and FP both increase, but TPR is optimal when maximized

while FPR is optimal when minimized, causing a trade-off. The next pair is

recall and precision. Both are optimal when maximized, so FN and FP should

be minimized; FN is inversely related to TP, and FP cannot be minimized while

also maximizing TP, as discussed for the previous pair. The last pair is prob-

ability of detection (POD) and probability of false alarm (PFA). POD is the

same as recall and TPR, and PFA is inversely related to precision and is optimal

when minimized, so they trade off for the same reason as recall and precision.

The metrics we use for evaluation can be optimized, and are combinations of

some of the aforementioned metrics. The metrics are True Skill Statistic (TSS)
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and F1 score, and are defined in Equations 3.7 and 3.8:

TSS =
TP

TP + FN
− FP

FP + TN
= TPR− FPR (3.7)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(3.8)

TSS accounts for the accuracy with respect to each of the positive and

negative classes, and is commonly used among astrophysicists. The two terms

of TPR and FPR measure accuracy with respect to the actual instances, as

the denominators are the number of actual instances in each class. F1 score,

rather than using the FPR, considers precision, or the accuracy with respect

to the predicted instances rather than actual. F1 is the harmonic mean of

precision and recall. In our task of SEP prediction, precision gives a measure

of how accurate the prediction is when SEPs are predicted, while recall gives a

measure of accuracy among the actual SEP events. An algorithm which predicts

most actual SEP events correctly but gives many false alarms is not very useful,

so we generally try to improve the F1 score.

3.3.3 Procedures

The data is chronologically split into training and test sets such that the train-

ing set contains the first 70% of the data and the test set contains the remaining

30%. The algorithm does not see the test data before evaluation. The neural

network uses a single hidden hidden layer of 30 units and a ReLU activation, a

learning rate of 0.1, L2 penalty of 0.1, momentum coefficient of 0.9, and is al-

lowed up to 2000 iterations before stopping unless it converges earlier. Stochas-

tic gradient descent is used for weight updates. Each set of features is run 5
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times, and the results of these runs are averaged. The sets of features include

only baseline features, baseline and additional features without Richardson’s

formula, and all features including Richardson’s formula.

3.3.4 Results

The results for TSS, F1, and the corresponding confusion matrix values are

summarized in Table 3.2, using the default classification threshold of 0.5.

Table 3.2: Classification results for each set of features

TSS F1 TN FP FN TP
Baseline 0.908 0.128 8429.2 217.8 1.0 14.0

Baseline + Added features 0.869 0.240 8550.2 96.8 1.8 13.2
Baseline + Added features + Richardson 0.846 0.277 8579.0 68.0 2.2 12.8

By looking at the TSS column, it can be observed that adding features

beyond the baseline caused a slight decrease in performance. However, the

F1 column shows higher improvement in performance with additional features,

with the F1 score nearly doubling after adding all of the features except for

Richardson’s formula. Corresponding to these changes are the changes in the

false positive and false negative columns (mistakes made by the algorithm).

The number of false negatives increases after adding features, lowering recall

and therefore TSS. On the other hand, the number of false positives decreases

as features are added, leading to increased precision; for the F1 score, this

increase outweighs the decrease in recall, leading to higher F1 scores. It is

expected that including Richardson’s formula would help with reducing false

negatives, but the results show that this is not the case. However, some values

used for the connection angle calculation are missing, so once this is addressed

in future works, we expect to see both the TSS and F1 score increase, and the

false negatives decrease.
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3.3.4.1 Varying Decision Thresholds

By default, the threshold for determining whether an instance is positive or

negative from the sigmoid output is 0.5. Varying this threshold can potentially

show relationships between the different metrics we measured. Figure 3.3 shows

the precision versus the recall for a single run of each feature set when varying

the thresholds.

Figure 3.3: Precision vs. Recall for each of the three feature sets

The optimal value for both precision and recall is 1, so the best position in

the plot is the value furthest up and to the right. However, there is a significant

drop in precision as the recall increases; the precision is higher as more features

are added. Which point in these plots is ideal depends on the user’s needs; if

reducing false alarms is a priority, one may opt for a higher precision at the

expense of recall.

The next type of plot we look at is the ROC curve, which shows the tradeoff

between TPR and FPR with respect to the threshold.
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Figure 3.4: ROC curves for each of the three feature sets

For these plots, the optimal value would be the one furthest up and to the

left, since we want to maximize TPR and minimize FPR. The points where FPR

exceeds 0.05 are not shown since all curves maintain a TPR of 1 regardless of

the FPR; this allows us to zoom in on the points on the left. It can be observed

that the curves further to the left are those which use more features in the

input. When shown without zooming in, all three curves look like an optimal

ROC curve which has minimal FPR and maximum TPR. Our main concern is

the mistakes made by the algorithm, which are not reflected in these curves, as

the mistakes are relatively few compared to the size of the test set but large

with respect to each class.

Finally, we look at the TSS and F1 when varying the threshold. Doing so,

we can find the threshold which maximizes both of these values, and use this

to optimize performance in future experiments. These plots are split by feature

set since each contains two curves; the baseline feature set is the leftmost plot,

31



the baseline and added features in the middle, and all features on the right.

Figure 3.5: TSS and F1 versus threshold for each of the three feature sets

For these plots, it is expected for there to be a peak at some threshold

which maximizes both the TSS and F1. However, in all three plots, the two

curves are moving in opposite directions (the TSS is decreasing and the F1 score

is increasing) as the threshold increases, with both dropping as the threshold

nears the maximum. Another aspect of these plots worth mentioning is the

“staircase” pattern shown in the TSS curves. The sudden drops occur because

there are only a few discrete values for the TPR, which are 15/15, 14/15... 0/15.

Between these drops, the TSS increases slightly, which is due to the fact that

increasing the threshold results in fewer positive predictions, and therefore a

lower FPR while the TPR remains the same between drops. The maximum

TSS would then occur at the threshold where the first drop occurs, which is

around 0.6 with the baseline and with all features, and around 0.3 with only

the added features. The threshold for maximum F1 score tends to be higher

than the threshold for maximum TSS. However, the maximum F1 scores are

only around 0.4 to 0.5, so other changes would be necessary beyond simply

changing the threshold.

In Tables 3.3 and 3.4, we show the POD and PFA corresponding to the best

thresholds for TSS and F1 score. This will illustrate the trade-off between POD

and PFA based on the threshold; these two metrics were not shown in Table 3.2
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since those results only looked at metrics which could be optimized, and used

the default threshold of 0.5.

Table 3.3: POD and PFA corresponding to thresholds which provide the maxi-
mum TSS

TSS POD PFA Threshold

Baseline 0.908 0.933 0.940 0.586

Baseline + Added features 0.920 0.933 0.893 0.329

Baseline + Added features + Richardson 0.927 0.933 0.800 0.590

Table 3.4: POD and PFA corresponding to thresholds which provide the maxi-
mum F1 score

F1 POD PFA Threshold

Baseline 0.444 0.400 0.571 0.974

Baseline + Added features 0.421 0.267 0.333 0.989

Baseline + Added features + Richardson 0.500 0.467 0.533 0.962

Using the best threshold for TSS, the POD is always the same (14 out of

15), so further improvements must be done to detect the one SEP that cannot

currently be detected. As expected, including more features decreases the PFA.

For the F1 table, the highest F1 scores are not as high as we would like them

to be, as the PODs are low and the PFAs are high. The POD and PFA are not

strictly correlated in this case, as using all features results in a higher POD but

a lower PFA than the baseline. The trends may also not be consistent with the

results of the default threshold since the results with the best thresholds are

only for one run.

3.3.5 Analysis

The feature importances are shown in Table 3.5 for the set of features which

obtained the highest F1 score, which in this case is all of the features. These
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are averaged over the same 5 runs which produced the results in Table 3.2.

Table 3.5: Feature importances for the feature set with the highest F1 score

Rank Feature Importance
1 Sunspot number 0.0927
2 Type II visualization area 0.0918
3 Width 0.0913
4 Acceleration 0.0657
5 Richardson formula 0.0647
6 MPA 0.0640
7 2nd order speed 20R 0.0582
8 Diffusive shock acceleration formula 0.0526
9 Max speed in the past day 0.0522
10 Linear speed 0.0486
11 Number of CMEs in past month 0.0462
12 CPA 0.0456
13 V * log(V) 0.0449
14 Number of CMEs in past 9 hrs 0.0434
15 Number of CMEs with V >1000 in past 9 hrs 0.0405
16 2nd order speed initial 0.0395
17 2nd order speed final 0.0344
18 Halo 0.0237

Some observations of the feature importances in Table 3.5 can help explain

the results shown in Table 3.2, particularly that adding features improved the F1

score. First, it can be observed that two out of the top three features were added

beyond the baseline. The top three features were in the top 5 most important

features in all 5 runs, with Acceleration having been in the top 5 in four out of

the five runs and sixth most important in one run. Additionally, CME speed

is divided into multiple features, including linear speed and three different 2nd

order speeds. The top two of these speed-related features (2nd order speed at 20

solar radii and linear speed) have a total importance of 0.1068, which is greater

than the highest importance of 0.0927, indicating that although the individual

speed-related features appear to rank towards the middle and bottom of the
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list, speed is actually quite important for SEP prediction.

However, while the ranking itself shows certain features consistently being

considered more important than others, they are not actually that much more

important than the other features. Comparing the Sunspot number’s impor-

tance value to the Halo feature’s importance value, Sunspot number is only

about four times as important as whether or not the CME is a Halo. This

indicates that even the lowest ranking feature is not that unimportant.

Furthermore, we have experimented with some features which did not sig-

nificantly improve performance; for example, each of the time-related features

has been tested with 9 hours, 1 day, and 2 days, and only the best-performing

(in terms of TSS, which was our focus at the time of those experiments) of these

time intervals was used for each feature, while the others have not been included

in any further experiments. All of this demonstrates that no single feature is

a strong classifier, and that carefully selecting the right features can help with

improving the algorithm’s performance.

3.4 Summary

To summarize, the problem studied in this chapter is the forecasting of SEP

occurrence given the characteristics of a CME. This is approached as a classi-

fication problem in which a yes or no label is predicted, and a neural network

is trained on a portion of the data and evaluated on the rest. We use both ob-

served and derived features, and demonstrate that adding derived features can

improve performance. By analyzing the feature importance, it is shown that

all of the features used are relatively important to the algorithm. Although the

algorithm correctly classifies most of the events, there is still a large number of
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false alarms, which will be addressed in future works.
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Chapter 4

Forecasting Proton Intensity

with Time Series Data

4.1 Problem

The second problem studied in this work is the forecasting of future proton

intensity given a time series of past and current electron and proton flux values.

In contrast to the first problem in which we predict whether or not there will

be an SEP based on CME properties, this work does not make any assumptions

about solar activity, and predicts a continuous value rather than a yes or no an-

swer; the algorithm works continuously over time using continuous past values,

but the user does not know whether or not anything is going on yet (such as a

CME in the other problem).
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4.2 Approach

4.2.1 Input and Output

Given the past two hours up to the current time as input time windows, we

want to predict an output proton flux at 30 minutes or 1 hour from the current

time. Let t be the current time, t+1 to be 5 minutes after the current time,

and t-1 to be 5 minutes before the current time. Then the input time window

is from t-24 through t, and the output is either at t+6 or t+12.

The features used are the electron intensities from the >0.25 and >0.67

MeV channels and the proton intensities from the >10 MeV channel. Each of

these values are given in the natural-log scale. Additionally, the natural log

of the derivatives of the intensities was obtained using Holt double exponential

smoothing with a 15 minute exponential time constant. However, many of these

derivative values had large error bars, and worsened performance, so only the

intensities are used in our results.

In addition to the above features, we add phases to the input for each

timestep of the past 2 hours in order to help the model. These phases are

determined by a separate program designed for identifying the times that each

SEP event occurs in the data, which outputs the onset, threshold, peak, and end

timestamps of each event. Using these, we can determine when the intensity

is rising (between onset and peak), falling (between peak and end), and back-

ground (everywhere else), and use these as the phase inputs; these inputs are

one-hot encoded. However, when an event occurs in practice, it is not known

that the intensity is rising or falling until some time after the transition. There-

fore, for any change of phase in the input, we use the previous phase as the

label until 30 minutes pass, after which we replace them with the true phase.
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This is done for both the training and testing sets.

After experimenting with the above features, we also experiment with x-

ray related features, including raw x-ray intensity, ln-scaled x-ray intensity, and

integral x-ray intensity. Since increases in x-ray intensity usually occur earlier

than increases in electron intensity, we extend the beginning of the input time

window to t-60, or 5 hours prior to the current time. Electron and proton

intensities are still used in the input in addition to the x-ray features, but phase

inputs are not used in these experiments. The output remains the same as the

other experiments: proton intensity at t+6 or t+12.

4.2.2 Basic Approach

To form a baseline, we apply a single neural network model to the whole dataset;

this approach will be referred to as M1. We compare the multilayer perceptron

algorithm (which from here on will be denoted as NN, or neural network) to

recurrent neural networks (RNNs); recurrent neural networks are designed to

work with time-series data, so they are expected to perform better. The Keras

implementation in Python is used to create our models, with the GRU layer

for the recurrent neural network model. During training, the neural network

minimizes the loss function, which is the mean square error (MSE) between the

target proton intensity and the predicted proton intensity.

4.2.3 Multiple Models

However, there is imbalance between background flux and SEP events within

the data. A single neural network learning on all of this data would mostly

predict based on the background information it has seen rather than the events
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we are more interested in. Methods such as oversampling could address this

issue, but are computationally expensive when there is a large amount of data.

The approach we use is to split the data into different intensity ranges, and

apply separate models to each of these sets. There are two different ways of

splitting the data, which are by setting thresholds which decide the intensity

range, or by using a separate machine learning model to predict which model

to use.

4.2.3.1 Manual Thresholds for Selecting a Model

Figure 4.1: A visualization of the model selection procedure for M3-MT.

For this approach, which we will call M3-MT, the three intensity ranges are

high, medium, and low. A pair of minimum thresholds for the medium and

high intensity ranges are found for each input feature. To set the thresholds,

we look at the input time windows at each time, and find the maximum of each

feature when the feature at the output time exceeds 0 for medium intensity,

and ln(10) for high intensity. Out of these maximum values, the minimum is
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found to create a threshold for each feature so that no events are missed. Since

these thresholds are only an estimate, we fine-tune them in order to optimize

the performance, ensuring that each model is selected at the right time. When

splitting the training set (or the test set) into the three models, the high intensity

model is selected when any of the input features exceed their respective high

thresholds for a given instance. If not, the same check is performed for the

medium intensity model. If the medium intensity thresholds are not exceeded,

the instance is given to the low intensity model. The model selection procedure

is visualized in Figure 4.1, in which the red box selects the model and the blue

boxes are the models which are either trained or tested on the data.

4.2.3.2 Machine Learning for Selecting a Model

Figure 4.2: A visualization of the model selection procedure for M3-ML.

Using thresholds may work well based on the data, but in an operational

situation, the thresholds may not be correct, so an alternative approach is to

use another machine learning model to determine which intensity model to use;

we refer to this approach as M3-ML. Since generating labels for low, medium,

and high intensity is not straightforward, we use the program mentioned earlier
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in order to create background, rising, and falling labels, and split the data into

these three models. This splitting procedure is visualized in Figure 4.2; similarly

to Figure 4.1, the red box selects the model and the blue boxes are the models.

Since phase selection is a classification task, categorical cross-entropy is used

as the loss function rather than MSE. Additionally, phase outputs are one-hot

encoded, and the maximum output of a softmax layer is used for the classifi-

cation. Since the data is imbalanced and we cannot split it for this model, we

set class weights such that there is a one-to-one weight ratio between falling

and background instances, and a three-to-one ratio between rising and back-

ground. Additionally, we experiment with setting the sample weights to be 4

times higher than other instances for all samples between the onset of an event

and when the intensity reaches ln(10). Larger weights are given to the rising

class in order to help the algorithm with on-time prediction of the onset through

the rising edge.

4.2.4 Adding X-ray as Input

4.2.4.1 Timestamp Interpolation

X-ray features are added to the electron and proton features for another set

of experiments using the three approaches above. However, the timestamps of

the x-ray data do not match the timestamps of the electron and proton data.

Therefore, one set of timestamps must be interpolated with the other set of

timestamps as a reference. If the x-ray timestamps are interpolated with the

electron and proton timestamps as the reference, then the intensities to be pre-

dicted remain intact, and other features with different timestamps can be easily

added. However, the electron and proton timestamps contain data gaps from
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periods during which the measurement instrument malfunctioned; interpolating

the electron and proton timestamps with the x-ray timestamps as the reference

fills in these gaps while keeping the remaining intensities similar to before inter-

polation. Therefore, the electron and proton timestamps are interpolated with

the x-ray timestamps as the reference, using linear interpolation.

4.2.4.2 Features

X-ray intensity does not correlate well with proton intensity like electron inten-

sity does. Instead, x-ray intensity has tall, narrow spikes which usually occur

prior to the proton intensity beginning to rise. Adding x-ray features to the

input was motivated by the analysis performed in Table 4.1. This analysis was

done by looking at the event plots and recording where the x-ray spikes occur in

each event relative to the proton rising edge. The main conclusion that can be

drawn from the table is that for many of the events, the x-ray spike precedes the

proton rising edge; from the two right-most columns, 31 of these have a single

spike, while 3 have multiple spikes before the proton rising edge. The other

5 events have no x-ray spike before the proton, but rather during the proton;

these events are more difficult to predict using x-ray inputs. Roughly half of the

events have an x-ray spike during the proton rising edge while the other half do

not, and although the model may potentially learn how to use the x-ray during

the event, the most important usage of these spikes is to predict the onset of

the event.
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Table 4.1: Counts of the number of times x-ray spikes occur before or during
the rising portion of the proton.

No x-ray spike

before proton

rising edge

Single x-ray

spike before

proton rising

edge

Multiple x-ray

spikes before

proton rising

edge

No x-ray spikes

during proton

rising edge

0 17 1

X-ray spikes

during proton

rising edge

5 14 2

There are many ways of using x-ray as an input feature. One way is to

simply pass the raw x-ray intensity to the algorithm without any changes be-

sides normalization. Another is to pass in the ln-scaled x-ray intensity, since

the electron and proton intensities are also ln-scaled. Since noisy spikes are

generated around smaller values, as shown in the middle plot of Figure 4.3, we

replace values below 10−8 with a constant of 10−10 before taking the natural

log. Finally, the integral of the x-ray intensity can be used; that is, the sum of

all x-ray intensity values from 5 hours ago up to the current time, leading to a

higher correlation with the proton time series.

Another consideration is how to use x-ray features for switching models.

While it would be simplest to use the same feature for both model selection and

intensity prediction, this may not provide the best results. First, experiments

were run with the M1 approach in order to determine which x-ray feature gives
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Figure 4.3: The red line in each plot shows each of the x-ray features for one
event. Raw x-ray intensity (left) has a narrow spike before proton (the blue
line), ln(x-ray) intensity (middle) emphasizes smaller values, and integral x-ray
(right) extends the duration of the x-ray peak intensity.

the best performance; unexpectedly, the best x-ray feature for proton intensity

prediction is raw x-ray intensity, despite the fact that it does not correlate with

proton intensity as well as integral x-ray does. Then, we test different x-ray

features for switching, while fixing the x-ray feature for intensity prediction as

raw x-ray intensity.

When using the integral of x-ray intensity for switching, we do not sum up

everything within the window, but only values above the average of the win-

dow. This ignores low, background values while emphasizing x-ray intensities

which occur during an event. Taking the average can be performed using either

before- or after-log x-ray intensities, but the integration is always performed

with before-log values. When using the after-log average, after-log values are

compared with the average and before-log values are integrated.

The x-ray intensities occur at a much smaller range of values than the elec-

tron and proton intensities; background values are around 10−9 and peak values

are around 10−3 at maximum. In order for the algorithm to more effectively

learn using these x-ray features, the features must be normalized. For all x-ray

features except for ln-scaled x-ray intensity, we divide by the maximum of the

feature, scaling the feature to a range of 0 to 1, similarly to what was done with
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the features in the first problem. Since taking the natural log of the original

x-ray intensity results in all negative values, we do not divide by the maximum,

but instead subtract the midpoint of the minimum and maximum values. This

centers the values at zero, ensuring the values are not too small and providing

a balance of positive and negative values.

In addition to normalizing the x-ray features, we perform experiments both

with and without normalizing the electron and proton features. Since those

features are log-scaled, we normalize them by first finding the minimum value.

Since the minimum is known to be negative, we take the floor of the minimum

and add the negative of the floor to all values for that feature. For example, if

the minimum proton value is -8.5, the floor is -9, and we add 9 to all proton

values so that the minimum becomes 0.5, which is slightly above 0. After all

the values become positive, we then divide by the new max; if the largest raw

proton value is 7, the new max is 16. This results in all values being between

0 and 1, which matches the range of the normalized x-ray features. Since this

procedure also normalizes the outputs, the normalization must be undone on

the predictions and the test set targets, allowing us to compare the performance

of normalized inputs with the performance of other feature sets.

4.3 Experimental Evaluation

4.3.1 Data

The data used for these experiments are the electron and proton intensities

obtained from the SOHO COSTEP EPHIN instrument from 1995-2002. The

electron intensities are from the >0.25 and >0.67 MeV channels, and the pro-

ton intensities are from the >10 MeV channel. The values are measured at
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approximately 5-minute increments, in the natural-log scale. Although a >25

MeV proton channel was also provided, it was not used as it does not provide

much additional information about the >10 MeV proton intensities which we

are trying to predict.

The x-ray data was provided by NOAA and obtained from the GOES-8 X-

ray Sensor; the data can be obtained through [16]. Two wavelength channels

are provided for x-ray data, which are xs (0.05-0.3 nm) and xl (0.1-0.8 nm);

our experiments only use the xs channel. The x-ray data was obtained at 5-

minute intervals, and the same date range that was used for electron and proton

intensities is also used for x-ray intensity.

4.3.2 Evaluation Criteria

The intensity models are primarily evaluated using mean absolute error (MAE).

This calculates the absolute difference between the actual and predicted values

at each timestamp. Since we are only interested in the SEP events, we calculate

MAE only for the events found by the event-finding program that occur within

the test set, and average over all of these events. For the purposes of evaluation,

we consider an event to be the rising portion, from onset to peak. In Figure 4.4,

the vertical teal arrow shows the error at one timestamp; this is calculated for

all timestamps between the onset and the peak and averaged to obtain MAE.

Another factor we want to look at is whether the predictions are on-time or

too late. To do this, we measure lag by shifting the predictions back to align

with the targets, and measuring MAE at each shift. The shift with the lowest

MAE is considered the lag, or x-axis error, between the targets and predictions.

In Figure 4.4, the procedure can be visualized as incrementally shifting the solid

red line left and measuring MAE between the red and blue lines at each shift,
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with the dashed red line being the lag with the minimum MAE. Similarly with

MAE, this is done only for the events in the test set rather than the entire test

set, and between the onset and the peak. We refer to this as O2P lag as a

shorthand, and to distinguish it from other lags.

In addition to measuring the lag between the onset and peak, it is also mea-

sured and between the onset and threshold (referred to as O2T lag). While

measuring between the onset and peak captures the entire rising edge, we are

primarily interested in whether the earlier portions of the rising edge are de-

tected (that is, whether the start of the SEP event was detected on time), which

is why we measure lag from the onset to the threshold. The procedure is the

same as O2P lag, but in terms of Figure 4.4, only the portion of the solid red

line between the onset and the point at which it crosses the dashed black line

is shifted, and the MAE would be calculated with the portion of the blue line

between the onset and the point where it crosses the dashed black line.

One more metric which is used is the time difference between when the

targets reach ln(10) and when the predictions reach ln(10), illustrated by the

horizontal brown line in Figure 4.4. This is the threshold for SEP classification,

and would be useful in an operational situation to alert the user whether an SEP

event is about to occur. In the case where no prediction reaches ln(10) during

an event, then the detection time is considered to be the end of the event, and

the lag is calculated between the time of ln(10) in the actual event and the last

timestamp of the event.

To evaluate the machine learning-based phase selection model, we look at

a 3x3 confusion matrix for the three classes of background, rising, and falling.

We emphasize on-time classification of the rising class since the main goal is

to identify the start of events, so we look at precision and, more importantly,
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Figure 4.4: A diagram to illustrate the metrics for evaluating intensity predic-
tions

recall for the rising class. We also look at the F1 score, which is the harmonic

mean of the precision and recall.

4.3.3 Procedures

The training and testing sets are split chronologically such that the first 80%

of the usable data is for training and the last 20% is for testing. (Note on

usable data: since each instance requires 2 hours of data before it, and either 30

minutes or 1 hour after, the first 24 and the last 6 or 12 timestamps are unusable

as the current time.) In each of the three approaches, the features used are the

>0.25 MeV electron intensities, >0.67 MeV electron intensities, and >10 MeV

proton intensities, and all are tested with and without phase inputs, with both

NN and RNN algorithms. The machine learning phase-selection model is tested
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without class weights, with class weights, and with sample weights for the NN

algorithm; RNN was only tested with class weights, which was determined to

be the best at distinguishing background from rising instances by the time we

tested with RNNs. When testing with the RNN, both the phase-selection model

and the intensity models are RNNs.

For each of the intensity models, a single hidden layer with 30 units is used;

this layer is changed from fully-connected to recurrent for the RNN experiments.

For both regular and recurrent neural networks, the hidden layer uses a sigmoid

activation. Weight updates are done using the Adam optimizer, and up to 1000

iterations are allowed unless the network converges before then. Each experi-

ment is run five times, and the average and standard deviation are reported for

each metric.

The experiments including x-ray features are reduced to a smaller set of

feature combinations based on preliminary experiments. These include electron

and proton only (as a baseline), non-normalized electron and proton and nor-

malized x-ray intensity, and all features normalized. Since the timestamps are

different when using x-ray data, splitting into training and testing data at the

same ratio as before would result in different data in each set. Therefore, the

data is split into training and test by the same timestamp as without x-ray,

rather than the same ratio; this results in the same date ranges being used for

each set and the same events used for evaluation. Additionally, class weights for

the phase-selection model are adjusted such that rising instances are weighted

as 10 times more important than background instances. The hidden activation

for NN is changed to ReLU for these experiments, and RNN is only used when

all features are normalized. Again, each experiment is run five times.
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4.3.4 Evaluation of Electron and Proton Intensities as

Input

4.3.4.1 Results of Predicting Proton Intensity

Tables 4.2 and 4.3 compare the three different approaches at t+6 and t+12,

respectively. We also look at how each performs with and without phases in the

input, as well as how each performs using NN or RNN as the algorithm. The

results for M3-ML use class weights since the RNN was only tested with class

weights for that approach.

Table 4.2: Comparison of the three approaches predicting intensity at t+6 (val-
ues in parentheses are standard deviations)

MAE O2P lag O2T lag ln(10) lag
Input Approach NN RNN NN RNN NN RNN NN RNN

No phases

M1
0.441 0.379 4.444 5.222 0.3667 4.078 -3.722 4.066

(0.018) (0.025) (0.396) (0.396) (0.897) (0.444) (2.769) (2.121)

M3-MT
0.380 0.424 5.144 5.767 3.855 4.289 -1.433 2.089

(0.017) (0.034) (0.391) (0.381) (0.323) (0.598) (0.658) (2.054)

M3-ML
0.432 0.433 5.211 6.133 4.678 4.644 3.856 -0.544

(0.015) (0.042) (0.654) (0.665) (0.816) (0.764) (3.569) (4.324)

Phases

M1
0.475 0.405 5.289 4.589 4.644 3.067 -12.033 -5.877

(0.012) (0.033) (0.512) (0.655) (0.977) (0.282) (1.628) (1.860)

M3-MT
0.449 0.489 4.656 5.478 4.278 3.900 -9.778 -4.778

(0.018) (0.031) (0.373) (0.621) (0.666) (0.603) (2.258) (3.501)

M3-ML
0.448 0.470 4.500 4.744 3.589 3.356 -7.100 -7.833

(0.023) (0.026) (0.846) (0.547) (0.761) (0.433) (4.223) (2.328)

Table 4.3: Comparison of the three approaches predicting intensity at t+12

MAE O2P lag O2T lag ln(10) lag
Input Approach NN RNN NN RNN NN RNN NN RNN

No phases

M1
0.690 0.599 9.600 9.722 7.978 7.167 3.956 2.533

(0.037) (0.016) (0.422) (0.798) (0.696) (0.408) (4.723) (3.496)

M3-MT
0.638 0.654 9.500 11.289 7.378 8.178 3.667 1.967

(0.005) (0.019) (0.268) (0.403) (0.373) (0.675) (1.444) (3.683)

M3-ML
0.652 0.680 10.111 10.367 8.100 7.689 5.011 -1.533

(0.020) (0.036) (0.674) (0.302) (0.482) (0.428) (4.121) (2.635)

Phases

M1
0.653 0.648 7.956 8.733 6.156 6.433 -10.900 -4.289

(0.036) (0.041) (0.523) (0.577) (0.638) (0.744) (2.898) (3.057)

M3-MT
0.683 0.683 9.333 8.900 6.966 6.356 -9.200 -6.989

(0.020) (0.049) (0.450) (1.015) (0.224) (0.606) (4.543) (4.825)

M3-ML
0.677 0.700 8.922 8.489 6.578 6.322 -16.133 -7.545

(0.024) (0.018) (0.567) (1.191) (0.568) (1.250) (2.823) (6.700)
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The bold values indicate that the value is the lowest (best) out of all values

for a given metric, while the underlined values indicate the best value in each

column. In Table 4.2, all of the bold and over half of the underlined values are

from M1 as the approach, which is unexpected since the other two approaches

were designed to minimize errors. Table 4.3 also has all of its bold values in

M1 rows, but there are more underlines in other approaches than in Table 4.2.

To select a single best approach, it can be observed that in Table 4.3, there are

two bold values in the cells for M1 using NN and phases. However, these cells

are not bold in Table 4.2, which has underlines in two values for RNN rather

than NN. Given that, for all metrics in both tables, the standard deviations of

M1 with RNN and phases overlap with the bold values, it can be considered

the overall best approach.

Looking at the MAE columns, M1 usually has the highest value, with the

exception of t+12 with phases. When phases are not included in the input,

M3-MT performs better than M3-ML. However, when phases are used, M3-

ML performs better than M3-MT. Generally, the MAE values obtained with

phases tend to be higher than those obtained without phases, demonstrating

that phases did not help with improving MAE. The MAE improves when RNN

is used for M1, but not for M3-MT and M3-ML.

For the onset-to-peak lag, there is no clear trend between the three ap-

proaches, but M1 has the best value in three out of four cases, with M3-ML

having the lowest lag with RNN and phase inputs when predicting t+12. Phase

inputs almost always help to improve the O2P lag. RNN only improves over

NN in half of the cases where phase inputs are used, and never improves when

phase inputs are not used.

The onset-to-threshold lags are always smaller than the onset-to-peak lags,
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which indicates that the early part of the event can be detected with lower lag

than the entire rising edge. Phase inputs improve the onset-to-threshold lag in

almost all cases, and RNN improves over NN in some cases.

The ln(10) lags do not show any trend between approaches, inputs, or algo-

rithms, so it is difficult to compare them with each other. Additionally, some of

the values are negative, which indicates that the ln(10) threshold was exceeded

by the predictions before the actual proton intensity exceeded the value. This is

not desirable, as we want the prediction of the threshold to be on time. It will

be later shown in Analysis how it is possible for so many of these values to be

negative, and why the values could be so mixed across approaches, inputs, and

algorithms. Because the ln(10) lag results are not consistent, the best values

are not underlined or bold.

Although using phase inputs helps to improve the onset-to-peak and onset-

to-threshold lags, they may still not be suitable for deployment. Using adjusted

phases in practice would require human intervention; it is assumed that humans

can verify the actual phases in 30 minutes after a phase transition, which may

not always be the case depending on the event. Given this issue, it is uncertain

whether adjusted phases can be used when the algorithm is deployed.

4.3.4.2 Sample Prediction Plots

In addition to the tables, prediction plots for some of the events are shown in

Figures 4.5 and 4.6, using the M1 approach with the overall best results as seen

in Tables 4.2 and 4.3.

Figure 4.5 shows four of the 18 events in the test set, in which different types

of events are represented. The upper-left plot is a relatively-fast rising event,

while the upper-right is a slower-rising event. The lower-left reaches very high
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Figure 4.5: Plots of event predictions using the M1 with RNN and phase inputs
predicting t+6. The arrows point out the times of crossing the ln(10) threshold.

intensities, while the lower-right is just barely above the threshold of ln(10).

Each of the plots shows three hours of background before the event, which are

not used during evaluation. These plots show fairly small errors on both the x-

and y-axes, which is consistent with the results in Table 4.2 for MAE and lag.

Figure 4.6 shows the same events as Figure 4.5, but now the predictions

are for one hour ahead rather than 30 minutes ahead. Consequently, the x-axis

error is roughly twice as large in these plots than it was in Figure 4.5, and the

y-axis error is slightly higher.
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Figure 4.6: Plots of event predictions using M1 with RNN and phase inputs
predicting t+12.

4.3.4.3 Analysis

Figure 4.7: Comparison of lag and max correlation for each event between
electron and proton (left) and between high energy electron and proton (right).
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The plots in Figure 4.7 can help to better understand why it is difficult to

achieve low lag in the predictions for some events. To generate these plots, a

similar procedure is done for calculating lag between the actual and predicted

values, but this is done for electron and proton values instead, and uses Pearson

correlation rather than MAE to choose the best lag since the actual electron and

proton values cannot be compared with each other. Additionally, correlations

are calculated for all 5-minute shifts up to 6 hours, rather than only 2 hours.

Based on these plots, it can be observed that most events have little to no lag

between the electron and proton, meaning that there is not much information

that can be used ahead of the SEP event for prediction. It would be more

desirable if more of the dots were clustered toward the upper-right of the plots,

as this would allow for earlier predictions than what the algorithm is currently

capable of, while the electron and proton are still highly correlated.

Figure 4.8: Comparison of lag between electron and proton and lag between
predicted and actual, from onset to peak (left) and onset to threshold (right).

Furthermore, we analyzed how the electron-to-proton lag compares to the

actual-to-predicted lag, as shown in Figure 4.8; this was done for both the onset-

to-peak lag and onset-to-threshold lag with a prediction time of t+6, with the

best-performing configuration. It is expected that if the electron is ahead of
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the proton by some number of timesteps, then the prediction will most likely

be not be able to give an on-time prediction for any more than that number

of timesteps. This is true for the events with low lags between electron and

proton, as the predictions are behind the actual values by more than zero.

Some events have larger electron-to-proton lags, which is possible due to the

electron and proton not being well correlated and the highest correlation still

being low. For these events, the predictions tend to have higher lags in the onset-

to-peak lag plot, but still not more than 30 minutes, which is the amount of

time being predicted ahead. Onset-to-threshold lags tend to be smaller for both

the electron-to-proton lag and actual-to-predicted lag, as more of the points are

towards the lower-left corner.

Figure 4.9: An event with a large negative ln(10) lag

To explain the negative ln(10) lags seen in many of the result tables, Figure

4.9 is presented which shows how this can be possible. The dashed line repre-

sents the ln(10) threshold, which is crossed by the red curve (the predictions)
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earlier than the blue curve (the actual value). However, around the time the

predictions crossed the threshold, the actual values approached but did not ex-

ceed the threshold. This indicates that the predictions crossing the threshold

earlier occurred due to fluctuations in the predictions, which could happen in

any event due to the randomness of the algorithm. In this particular event,

the ln(10) lag was -89, which, when there are 18 events with small ln(10) lags,

causes the average ln(10) lag of these events to tend more towards becoming

negative.

4.3.5 Evaluation of Electron, Proton and X-ray Intensi-

ties as Input

4.3.5.1 Results

Tables 4.4 and 4.5 show the results of adding x-ray intensity to each of the

three approaches. The feature listed in the input column is added to electron

and proton intensity, and indicates which features are normalized, if any. Since

RNN is only used for all features normalized but not the other two feature

sets, these experiments are added as additional rows rather than having NN

and RNN columns. Underlined values are the best value for the metric for NN

(across all feature sets) or RNN, and the bold value is the best value between

the two.
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Table 4.4: Comparison of different x-ray features for each approach at t+6

Input Approach MAE O2P lag O2T lag ln(10) lag

No x-ray

M1
0.343 4.822 4.200 3.856

(0.023) (0.698) (0.574) (4.747)

M3-MT
0.344 5.044 4.189 2.689

(0.008) (0.367) (0.317) (0.879)

M3-ML
0.344 4.456 4.033 0.878

(0.017) (0.336) (0.245) (2.308)

X-ray (normalize x-ray only)

M1
0.365 5.200 4.533 7.000

(0.034) (0.374) (0.593) (2.804)

M3-MT
0.359 5.144 4.344 3.256

(0.010) (0.207) (0.373) (1.927)

M3-ML
0.350 5.189 4.756 4.511

(0.022) (0.378) (0.704) (2.921)

X-ray (normalize all features)

M1
0.389 4.556 4.411 0.956

(0.026) (1.077) (1.357) (4.574)

M3-MT
0.345 5.044 4.544 4.356

(0.008) (0.124) (0.432) (1.336)

M3-ML
0.390 5.156 4.278 5.000

(0.051) (0.403) (0.747) (1.433)

X-ray (normalize all features)

M1 0.324 4.756 4.000 4.700

(RNN) (0.021) (0.178) (0.437) (0.973)

M3-MT 0.321 4.933 4.056 3.989

(RNN) (0.003) (0.113) (0.357) (0.460)

M3-ML 0.311 4.556 3.733 1.578

(RNN) (0.033) (0.348) (0.721) (3.020)
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Table 4.5: Comparison of different x-ray features for each approach at t+12

Input Approach MAE O2P lag O2T lag ln(10) lag

No x-ray

M1
0.602 10.178 8.778 7.067

(0.027) (0.711) (0.586) (2.689)

M3-MT
0.598 9.456 8.267 8.156

(0.028) (0.534) (0.513) (3.702)

M3-ML
0.597 9.856 8.511 7.811

(0.036) (0.455) (0.448) (1.953)

X-ray (normalize x-ray only)

M1
0.602 9.744 8.667 4.744

(0.051) (0.686) (0.757) (3.071)

M3-MT
0.610 9.956 8.556 7.144

(0.021) (0.499) (0.261) (2.013)

M3-ML
0.576 8.800 7.767 3.789

(0.018) (0.921) (0.700) (1.567)

X-ray (normalize all features)

M1
0.597 9.567 8.589 6.011

(0.030) (1.073) (1.039) (2.774)

M3-MT
0.605 9.811 8.178 9.022

(0.026) (0.529) (0.634) (2.099)

M3-ML
0.615 9.089 7.978 7.511

(0.048) (1.632) (1.475) (3.580)

X-ray (normalize all features)

M1 0.538 8.722 7.267 4.922

(RNN) (0.028) (0.637) (0.532) (3.425)

M3-MT 0.554 9.244 7.633 5.133

(RNN) (0.051) (0.930) (1.005) (4.075)

M3-ML 0.531 8.822 7.644 3.078

(RNN) (0.017) (0.771) (0.174) (3.999)

Provided that M3-ML has the most underlined and bold values, it is the

overall best approach for both t+6 and t+12. However, for t+6, the best results

for NN are achieved without using x-ray, while the best results for NN for t+12
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are from including x-ray. Almost all of the bold values occur in the RNN rows,

showing that RNN helps when used in conjunction with x-ray inputs. Despite

this, most of the values are not significantly different from each other, as the

standard deviations cause the values to overlap with each other. Compared to

the results from Tables 4.2 and 4.3, in which the best MAEs were 0.379 and

0.599, respectively, the MAEs are improved in these results, in which the best

MAEs are 0.343 and 0.576. However, the newly obtained O2P lags of 4.456 and

8.722 do not improve on those from the previous results (4.444 and 7.956), nor

do the O2T lags of 3.733 and 7.267 improve on the previous results of 3.067 and

6.156. This is unexpected since x-ray usually rises earlier than electron rises,

and is something we continue to study.

4.3.5.2 Sample Plots

Plots of a single event are shown in Figure 4.10, with and without x-ray since

the performance differs depending on the prediction time and the presence or

absence of x-ray.
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Figure 4.10: Plots of event predictions using M3-ML without x-ray (top) and
with x-ray (bottom), at t+6 (left) and t+12 (right).

4.3.5.3 Analysis

In order to understand the performance of the models including x-ray features,

we can apply the same feature importance method used in 3.2.2.2; this is only

applicable for M1 with NN, since the feature importance approach only works

for a single feed-forward network. First, we look at the importance of each

feature over time; similarly to the sample plots, we analyze both with and

without x-ray, at t+6 and t+12.
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Figure 4.11: Plots of feature importance over time, without x-ray (top) and
with x-ray (bottom), at t+6 (left) and t+12 (right). Each plot is from a single
run, and the plots with x-ray have all features normalized.

As expected, the most recent values have the highest importance. Further-

more, current proton intensity is much more important than the other features,

although x-ray and electron can be more important than proton at some recent

timesteps.

To understand the feature importance in terms of all five runs, we look at

which features have high importance consistently across runs. To do so, we look

at the top 20 features of each run, and report the frequencies of features which

occur multiple times in the five runs. As with the plots, this is done with and

without x-ray, at t+6 and t+12.

In Tables 4.6 and 4.7, all features from the current time and 5 minutes ago

63



Table 4.6: Consistent features without x-ray, t+6

Feature Frequency
Electron t 5

Electron high t 5
Proton t 5

Electron t-1 5
Electron high t-1 5

Proton t-1 5
Electron t-2 5

Electron high t-2 4
Proton t-2 2
Electron t-3 2
Proton t-3 3
Proton t-4 2
Proton t-5 2

Electron high t-6 2
Electron t-7 2
Proton t-7 3
Proton t-8 2
Proton t-9 2
Proton t-10 2
Proton t-44 3

Table 4.7: Consistent features without x-ray, t+12

Feature Frequency
Electron t 5

Electron high t 5
Proton t 5

Electron t-1 5
Electron high t-1 5

Proton t-1 5
Electron t-2 2

Electron high t-2 4
Proton t-2 4
Proton t-3 3
Electron t-4 2
Proton t-4 3

Electron high t-5 2
Electron high t-7 2
Electron t-12 2
Proton t-19 2
Electron t-22 2
Proton t-28 3
Proton t-35 3
Proton t-39 2
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Table 4.8: Consistent features with x-ray, t+6

Feature Frequency
Electron high t 4

Proton t 5
Electron t-1 2
Proton t-1 2
Proton t-4 2
Electron t-7 3
X-ray t-8 2

Electron high t-12 2
X-ray t-26 2

Electron t-37 2
Electron t-41 2
X-ray t-41 2

Electron high t-60 2

Table 4.9: Consistent features with x-ray, t+12

Feature Frequency
Electron t 2

Electron high t 4
Proton t 5
X-ray t 5

Proton t-1 3
Proton t-2 3
X-ray t-3 3
X-ray t-5 4

Electron high t-8 2
X-ray t-8 2

Proton t-21 2
Proton t-43 2
X-ray t-44 2

Electron high t-46 2

appear in every run, and features from 10 minutes ago appear in most runs.

From timesteps older than 10 minutes ago, there tends to be more proton than

electron for t+6, and most of these are within the past hour. On the other hand,

for t+12, there is a mixture of electron and proton in recent timesteps, and a

few which are older than 1 hour; this makes sense given that the prediction

time is further away, so the electron gives an earlier indication of the proton

beginning to rise.

Tables 4.8 and 4.9 contain fewer consistent features than the tables without
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x-ray. In addition to these tables being shorter, there are more features which

only appear in 2 or 3 runs as opposed to 4 or 5 runs as in the other tables. Still,

current proton appears in every run in both tables, which makes sense as it is

the closest to the value we are trying to predict. X-ray appears less frequently

for t+6 than it does for t+12, which could possibly help to explain why x-ray

improved the results at t+12 but not t+6.

Figure 4.12: Learned input-to-hidden weights for two hidden units

In Figure 4.12, we visualize the learned weights for two of the hidden units.

These plots were created for all of the hidden units in order to understand what

the network has learned at the lowest level, but very few showed meaningful

trends; the plots shown are two of the plots which do show meaningful trends.

Similarly to the feature importance plots from Figure 4.11, the curves show an

upward trend towards the most recent timestamps, as early as t-20, demon-

strating that the most recent timestamps are the most important features for

prediction.
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4.4 Summary

In this chapter, we forecast the proton flux at 30 minutes or 1 hour in the future

using a time series of past and current electron and proton flux. We compare

regular neural networks with recurrent neural networks, and experiment with

adding phase inputs. The basic approach uses a single model, and two more

approaches are presented which separate the data based on intensity ranges, and

select a model using either manual thresholds or a separate machine learning

model. We are able to obtain MAEs as low as 0.379 and 0.599 when predicting

proton flux at t+6 and t+12, respectively. Phases are shown to improve the lags,

but might not be applicable in practice since they require human intervention.

A lag of zero cannot be obtained using only electron and proton inputs since the

electron does not lead the proton by much in many of the events. We perform a

separate set of experiments which add x-ray features, which lead the proton by

more than electron does, but do not correlate as well. These experiments use

the same three approaches as the experiments not using x-ray. Adding x-ray

features improves on the MAEs, but not the lags.
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Chapter 5

Conclusion

In this paper, we studied two SEP prediction problems, which are to predict SEP

occurrence given CME properties, and to predict future proton flux given a time

series of past and current electron and proton flux, as well as x-ray features. For

the first problem, we apply a neural network to classify instances as yes, there

will be an SEP, or no, there will not be an SEP. We find that careful selection of

the input features leads to improvement in the F1 score, without decreasing the

TSS by much. By analyzing the feature importance, we are able to see that all

of the features used are relatively important. For the second problem, we use

electron and proton time series to forecast future proton flux. We use a single

model as the basic approach, and present two more approaches which split the

data by intensity ranges and select the model using either manual thresholds or

a separate machine learning model. We compare regular neural networks and

recurrent neural networks, and experiment with phase inputs; additionally, a

separate set of experiments is performed using x-ray features.

While the approach to the first problem is able to accurately detect SEP

events, this approach depends on the presence of a CME in the first place. On
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rare occasions, SEPs can occur without being preceded by a CME, in which case

our algorithm would be unusable. As mentioned previously, phase inputs, which

yielded some of the best results, require human intervention. If we wanted to

deploy a system to automatically and continuously predict proton flux in real-

time, it may not be practical to have someone manually adjusting the phases at

every transition. Based on our analysis of the electron and proton time series,

obtaining a lag of zero in our results is not feasible with just electron and proton

time series, and other features preceding the proton event would be required in

order to achieve a lag of zero between the predicted and actual future proton

values.

Although the algorithm for predicting SEP occurrence is able to classify

most SEPs correctly, it still gives many false alarms. Future works can continue

to reduce this number by adding more features, particularly those which can

distinguish SEPs with features that are similar to non-SEPs, such as low speed.

Connection angle is one example of a feature which can help for this purpose; we

approximate it using some features from the Type II burst dataset, but do not

have this information for all instances. One possible improvement to predicting

proton flux is to use a longer dataset; our current data does not cover an entire

solar cycle, and ends on a solar maximum. This means that the algorithm is

trained on few events and evaluated on many events; the algorithm would be

more effective when the distributions of events in the training and test sets are

similar.
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Appendix A

V (V 2) Replacement Formula

Originally, we had intended to use V (V 2) as a feature for predicting SEP occur-

rence. However, this equation grows very fast, and cannot be represented by

a computer as V grows larger. Therefore, we derive a formula based on diffu-

sive shock acceleration theory in order to replace V (V 2). First, there are several

constants involved in the formula which must be defined:

• v is particle speed; for 10 MeV protons, v = 44000 km/s

• VA is Alfven speed, which is typically between 500 and 2000 km/s; we fix

this value at 600 km/s

• vth is proton thermal speed, which is around 150 km/s

• η is shock efficiency, which is around 0.1

• κ is the distribution parameter, which is between 1.5 and 3; we fix this

value at 2
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Additionally, Vsh is shock speed, or the list of Linear Speed values for each

CME from [15]. Then, we compute the quantity M :

M =
Vsh

VA

(A.1)

Since Vsh is a list of multiple values (one for each CME event), M is also a

list, in which each element of Vsh is divided by VA. M is then used, along with

a threshold of 1.1, to compute the quantity γ which is used in a later equation.

If M >1.1, then:

γ =
4M2

M2 − 1
(A.2)

Otherwise:

γ =
4 ∗ 1.12

1.12 − 1
≈ 23 (A.3)

Similarly to Equation A.1, this is done for each element of M , and γ is a list

of the same length as M . In addition to γ, another quantity vinj is required for

the overall result.

vinj = 2.5Vsh (A.4)

Finally, the overall result is computed by the equation below:

ηv
1

γ − 1

1

(1 +
v2inj

κv2th
)κ+1

(
vinj
v

)γ+1 (A.5)
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Appendix B

Including Richardson’s Formula

as a Feature

In [9], a formula is presented which calculates peak proton intensity; we use this

formula as a feature for forecasting SEP occurrence. The formula is as follows:

I(ϕ)(MeV s ∗ cm2 ∗ sr)−1 ≈ 0.013exp(0.0036V − ϕ2/2σ2)), σ = 43◦ (B.1)

V is the linear speed, ϕ is the connection angle, and σ is the Gaussian

width. In our usage of the formula, we negate the effects of speed by setting

V=0, such that the formula relies only on connection angle. Since we do not

have connection angle in our data, we approximate it using location features

from [4]. An example of one of these locations is S25E16. Let south be negative,

north positive, east negative, and west positive; we can then derive two values:

θ1 = -25◦, and ϕ1 = -16◦. Additionally, the value θ2 is between -7◦and 7◦based

on seasons; we fix it at zero for ease of implementation. Finally, we obtain the
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value ϕ2 based on solar wind speed; this value is typically around 57◦, but can

differ. After obtaining these values, we approximate the connection angle as:

ϕ = arccos[sin(θ1) ∗ sin(θ2) + cos(θ1) ∗ cos(θ2) ∗ cos(ϕ1 − ϕ2)] (B.2)

Some location features are from the back of the Sun, and may be missing

values for θ1 or both θ1 and ϕ1. In these cases, we estimate the connection angle

based on the CPA.

• If CPA is missing, then connection angle = 45◦

• If CPA is between 90◦and 270◦, then connection angle = CPA - ϕ2

• If CPA is less than 90◦or above 270◦, then connection angle = 90◦
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Appendix C

Results of M3-ML with Different

Input Weighting

Before choosing to use class weights in the M3-ML results in Tables 4.2 and 4.3,

we experimented with three different input weightings, as discussed in Section

4.3.3. As in other experiments, each weighting was tested both with and without

phase inputs, predicting t+6 and t+12.

Table C.1: Comparison of different input weightings when predicting model at
t+6

Input Weighting Precision Recall F1 Score

No phases
No class weights 0.589 0.275 0.374
Class weights 0.140 0.599 0.227

Class and sample weights 0.160 0.867 0.271

Phases
No class weights 0.936 0.936 0.936
Class weights 0.578 0.983 0.728

Class and sample weights 0.227 0.986 0.369

The results in Tables C.1 and C.2 were obtained for the phase-selection

model predictions only using the NN algorithm. When looking at the precision,

it can be observed that the highest precision is obtained when not using class

77



Table C.2: Comparison of different input weightings when predicting model at
t+12

Input Weighting Precision Recall F1 Score

No phases
No class weights 0.533 0.273 0.361
Class weights 0.130 0.729 0.221

Class and sample weights 0.102 0.762 0.180

Phases
No class weights 0.908 0.903 0.906
Class weights 0.155 0.970 0.267

Class and sample weights 0.285 0.958 0.439

weights. Class weights, and class and sample weights, both perform worse than

no class weights, which is expected since placing more attention on the rising

instances during training can cause the algorithm to over-predict rising during

testing. Between class weights and class and sample weights, there is not much

of a trend for precision, as each type of weighting is better than the other two

out of four times. Adding phase inputs leads to improvement with every type

of weighting.

Recall should follow the opposite trend of precision in terms of weighting:

since more weight is added to rising instances in training, then more rising

instances should be classified correctly in testing, improving recall. This is the

case for all configurations except for using phase inputs at t+12, where the recall

with class and sample weights is closely behind the recall with class weights.

Again, using phase inputs improves the recall compared to not using phase

inputs in all cases. Since F1 score is a combination of the above two metrics,

it will not be discussed in detail; we are more concerned with the recall as it is

more relevant to prediction timing.

Tables C.3 and C.4 show each of the metrics for intensity predictions for

all of the different configurations using the NN algorithm. For these tables,

the class weight columns specify the weighting type used for the phase-selection

78



Table C.3: Comparison of different input weightings when predicting intensity
at t+6

Input Weighting MAE O2P lag O2T lag ln(10) lag

No phases
No class weights 0.581 6.056 6.556 -0.333
Class weights 0.395 4.556 4.167 3.556

Class and sample weights 0.393 4.389 4.000 -1.944

Phases
No class weights 0.442 5.389 4.722 -1.889
Class weights 0.381 4.667 2.889 -1.111

Class and sample weights 0.385 5.111 3.444 -0.389

Table C.4: Comparison of different input weightings predicting intensity at t+12

Input Weighting MAE O2P lag O2T lag ln(10) lag

No phases
No class weights 0.786 11.722 10.278 6.333
Class weights 0.685 9.833 8.444 2.833

Class and sample weights 0.635 9.389 7.667 2.167

Phases
No class weights 0.669 10.167 7.500 -3.611
Class weights 0.651 8.278 6.667 -10.333

Class and sample weights 0.637 7.167 5.722 -4.333

model which selects the intensity models; the intensity models themselves do

not have class or sample weights as they are already split by phase. Adding

phase inputs almost always improves performance, while the ln(10) lag results

are mixed, similarly to the results in Tables 1 and 2. Adding more weights

generally improves the MAE, which is expected since more emphasis is placed

on the events than on the background. For the same reason, the lags should

be improved with higher weights, which is true in all cases except for t+6 with

phase inputs, in which class weights gives a better lag than class and sample

weights. The results using either no phase inputs or no class weights tend to

be worse than the results of the other two approaches shown in Tables 4.2 and

4.3; however, after adding phase inputs and either class weights or class and

sample weights, we can start to see improvement over the other two approaches

in MAE and the onset-to-peak and onset-to-threshold lags.

Although class and sample weights tends to perform better in some metrics
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than only class weights, we still chose to use class weights only for the results

in Tables 4.2 and 4.3 because based on the confusion matrices (not shown in

this paper), it can be seen that only using class weights gives fewer errors in

which the predicted model is background but the actual model is rising. This

is a value which we try to reduce as much as possible in order for the algorithm

to detect the start of events on time.
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