
Program Correctness © 22 February 2024 1 / 42

C. A. R. Hoare

Emeritus Professor of Computing at the University of Oxford and is now a senior
researcher at Microsoft Research in Cambridge, England.
He received the 1980 ACM Turing Award for “his fundamental contributions to the
definition and design of programming languages.” Knighted by the Queen of
England in 2000.

Program Correctness © 22 February 2024 2 / 42

When Brunel’s ship the SS Great Britain was launched into the River
Thames, it made such a splash that several spectators on the opposite
bank were drowned. Nowadays, engineers reduce the force of entry into
the water by rope tethers which are designed to break at carefully calculated
intervals.

When the first computer came into operation in the Mathematish Cen-
trum in Amsterdam, one of the first tasks was to calculate the appropriate
intervals and breaking strains of these tethers. In order to ensure the cor-
rectness of the program which did the calculations, the programmers were
invited to watch the launching from the first row of the ceremonial viewing
stand set up on the opposite bank. They accepted and they survived.

Program Correctness © 22 February 2024 3 / 42

... [1.5 pages omitted]
I therefore suggest that we should explore an additional method, which

promises to increase the reliability of programs. The same method has as-
sisted the reliability of designs in other branches of engineering, namely the
use of mathematics to calculate the parameters and check, the soundness
of a design before passing it for construction and installation.

C. A. R. Hoare, New Scientist, 18 September 1986.

Program Correctness © 22 February 2024 4 / 42

Correct Programming

Most people can learn to write simple programs. Few people can learn to write
correct programs.

In September 1999, NASA’s Mars Climate Orbiter crashed into Mars instead of
going into orbit. Preliminary findings indicated that one team of programmers used
English units while the other used metric units for a key spacecraft operation.
Total mission cost of $327.6 million.

Program Correctness © 22 February 2024 5 / 42

Programming Without Thought
If I let my fingers wander idly over the keys of a typewriter it might

happen that my screed made an intelligible sentence. If an army of monkeys
were strumming on typewriters they might write all the books in the British
Museum.

A. S. Eddington. The Nature of the Physical World: The Gifford Lectures, 1927.
New York: Macmillan, 1929, page 72.

Program Correctness © 22 February 2024 6 / 42

From an empirical study at Microsoft:
If the developers are mature enough to understand the code base and

write useful assertions, it is highly likely that they understand the code
base, which will lead to a lower fault density. We feel there is an urgent
need in educating students about the utility of software assertions.

Program Correctness © 22 February 2024 7 / 42

https://www.embedded.com/the-relationship-between-software-assertions-and-code-quality/

Levels of Correctness

1 legal according to syntax rules
2 ... fine print
3 good style
4 makes sense
5 no runtime errors
6 works on some data (tested)
7 formal correctness with respect to some specification
8 is correct

Program Correctness © 22 February 2024 8 / 42

Correctness

The opening levels of correctness are more familiar since they are obvious parts of
the development cycle.
It is the later levels which are more subtle and difficult. One reason that state of
software in the world is disappointing is that programmers tend to pay less
attention to the later levels because

1 they are unwilling to put in the effort,
2 they are pressed for time, or
3 not enough emphasis is placed on correctness.

For this reason it is important to examine correctness.

Program Correctness © 22 February 2024 9 / 42

Syntax

The Java compiler checks to see if the input file conforms to a precise set of syntax
rules.
Adherence to syntax rules is necessary for the program to successfully communicate
its actions to the computer and to any human reader.
Advanced Java programmer know more constructs enabling them to do write more
complex programmer easier than novice programs. For example, ?:, for-each loops,
exception handling, interfaces, generics, wildcards, and so on.
The compiler may check that the program uses the constructs properly, but it does
not teach the programmer how to use them.

Program Correctness © 22 February 2024 10 / 42

Semantics

In addition to the syntax checks, the compiler checks lots of obvious and not so
obvious rules.
For example, the programmer is free to choose any syntactically correct identifier
to refer to objects in the program, but it is a rule that the identifier must be
declared somewhere. So, if the programmer misspells a name, this will lead to a
semantic error.

Program Correctness © 22 February 2024 11 / 42

Style/Design

• good identifier names
• indent consistently, use white space judiciously
• use exception handling
• do not use gotos or multiple return
• avoid import .*
• localize declarations
• don’t repeat yourself
• avoid side effects: use functions, avoid non-local variables
• modularize

Program Correctness © 22 February 2024 12 / 42

Localize Scope

• Declare variables right before you need them. (Localize scope.)
• Initialize the variable with the value you need.
• Don’t reuse the variable with a different value or purpose.
• Mark the variable as final.

Program Correctness © 22 February 2024 13 / 42

Runtime Errors

Some languages do not check for runtime errors. This leads to something worse
than a runtime error—the absence of a runtime error. For example, by not
checking array indexes or doing illegal operations on pointers, C and C++ allow
the program to write over useful parts of memory. This is called a buffer overflow
and is the cause of much malware.
This is not possible in Java, Ada (checks can be suppressed), C#, Python,
Modula-3, Haskell, or any recently designed high-level language.

Program Correctness Runtime Checking © 22 February 2024 14 / 42

Runtime Errors

Java was designed so that compiler would detect at compile-time many things
which would be runtime errors in other languages. No language can eliminate
runtime errors altogether by improved compile-time checking. Some Java runtime
errors (exceptions) represent a logical error (a mistake, a bug, by the programmer
as opposed to, say, bad luck) in the program.

• java.lang.ArithmeticException (e.g., division by zero)
• java.lang.NullPointerException (“billion dollar mistake”)
• java.lang.ArrayIndexOutOfBounds

Billion Dollar Mistake — presentation by Hoare in 2009.
Some programming languages have evolved more safeguards, e.g., option types.

Program Correctness Runtime Checking © 22 February 2024 15 / 42

https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2BReferences_%2BThe%2BBillion%2BDollar%2BMistake.html

Null

In Kotlin, the type system distinguishes between references that can hold null
(nullable references) and those that cannot (non-null references).
// Regular initialization means non -null by default
var a: String = "abc"
a = null // compilation error

var b: String ? = "abc" // can be set null
b = null // ok

Program Correctness Runtime Checking (Null Values) © 22 February 2024 16 / 42

var a: String = "abc"
var b: String ? = "abc"

val l1 = a. length // Save the length in an Int
val l2 = b. length // error: variable ’b’ can be null
val l3 = if (b != null) b. length else -1
val l4 = b?. length // Int? value might be null

Program Correctness Runtime Checking (Null Values) © 22 February 2024 17 / 42

The hair style of Elvis Presley was
well-known

Elvis operator ?:in Kotlin
var b: String ? = "abc"
val l = b?. length ?: -1

String b = "abc";
int l = b== null ? b. length : -1;

Index Out of Bounds

Hoare in his 1981 Turing award lecture decried the lack of runtime range checking.
The problem persists today.

In any respectable branch of engineering, failure to observe such ele-
mentary precautions would have long been against the law.

Program Correctness Runtime Checking (Null Values) © 22 February 2024 19 / 42

Index Out of Bounds; Old But Peristent

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 20 / 42

Runtime Guarantees Better Than Nothing

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 22 / 42

The whole economic boom in cybersecurity seems largely to be a conse-
quence of poor engineering. We have allowed ourselves to become depen-
dent on an infrastructure with the characteristics of a medieval firetrap—a
maze of twisty little streets and passages bordered by buildings highly vul-
nerable to arson.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 23 / 42

To a disturbing extent the kinds of underlying flaws exploited by at-
tackers have not changed very much. . . . One of the most widespread
vulnerabilities found recently, the so-called Heartbleed flaw in OpenSSL,
was apparently overlooked . . . for more than two years. What was the
flaw? Failure to apply adequate bounds-checking to a memory buffer.

Carl Landwehr, CACM, 2015, pages 24–25

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 24 / 42

Testing

• code walk-throughs, code inspection
• unit testing
• integration testing
• bottom-up testing, drivers
• top-down testing, stubs
• regression testing
• black-box testing
• white-/clear-/glass- box testing
• statement and path coverage

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 25 / 42

Assertions

Assertion. An assertion is a boolean-valued expression relating the program
variables, e.g., x>0, or x+y>0.
Precondition. A precondition is an assertion that must be true, if the following
statement or block of code in the program is to work correctly. To make use of
code correctly, one must insure that the preconditions are met.
Postcondition. A postcondition is an assertion that is true, after a statement or
block of code has been executed, if the preconditions are met. The author of the
code promises that the postconditions will be achieved.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 26 / 42

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 27 / 42

Assert statement

It looks like this: keyword assert, follow by a boolean-valued expression, followed
by an optional string message.
It works like this: if the Java option “enable assertions” is set and the condition is
false, the normal execution of the program is halted (an exception is raised) and
failure reported. The source-code line number and stack trace confront the
programmer with a specific problem in the code.

java -ea Main – –enableassertions
java -da Main – –disableassertions
java -eas Main – System assertions as well
java -das Main

Can specify package or class name as well.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 28 / 42

Assert statement

The significance is: (1) the use of assertions allows the program to explain and
document how the problem is solved. The program code alone does not capture
the solution. Good comments are necessary to explain the solution, but they are
(nearly always) incomplete, imprecise, and cannot be trusted. Furthermore, (2) the
use of assertions facilitates testing and debugging by revealing misconceptions
earlier during the execution of the program rather than at the end. Even if the
programs runs to completion with the wrong answer, assertions eliminate portions
of the program where the bug may be lurking.
A mathematical framework of statically proving (without testing) the programs
meets its specification can evolved out of a complete systems of assertions (see
Ada SPARK, programming by contract, etc).

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 29 / 42

Examples

• Input.java – input validation
• Mult.java – loop invariant, code verification
• GeoPoint.java – class invariant

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 30 / 42

http://www.cs.fit.edu/~ryan/java/programs/assert/Input.java
http://www.cs.fit.edu/~ryan/java/programs/assert/Mult.java
http://www.cs.fit.edu/~ryan/java/programs/assert/GeoPoint.java

Example

if (constraint [i][j]== ’S’) {
} else if (constraint [i][j]== ’D’) {
}

if (constraint [i][j]== ’S’) {
// Manatee i and j must be the same species

} else if (constraint [i][j]== ’D’) {
// Manatee i and j must be the different species

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 31 / 42

Example

if (constraint [i][j]== ’S’) {
} else if (constraint [i][j]== ’D’) {
}

if (constraint [i][j]== ’S’) {
// Manatee i and j must be the same species

} else if (constraint [i][j]== ’D’) {
// Manatee i and j must be the different species

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 32 / 42

Example
if (constraint [i][j]== ’S’) {

// Manatee i and j must be the same species
} else if (constraint [i][j]== ’D’) {

// Manatee i and j must be the different species
} else {

// Manatee i and j are not constrained
}

if (constraint [i][j]== ’S’) {
// Manatee i and j must be the same species

} else if (constraint [i][j]== ’D’) {
// Manatee i and j must be the different species

} else {
// Manatee i and j are not constraint -ed
assert constraint [i][j]== ’\u0000 ’;

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 33 / 42

Class Invariant

A property that remains true about an object after every method call on the object.
E.e., “Account balance is always non-negative.”

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 34 / 42

Loop Invariant

It is not possible to understand a program completely by mentally executing it.
The number of states is too large to comprehend.
Well-constructed programs have meaningful relationships among the program
variables, and even though the values of the variables change the relationships do
not.
It is through these unchanging relationships that it is possible to understand and to
write correct programs.
Loop invariant. A loop invariant is an assertion relating the values of the program
variables which is true before and after every execution of the body of a loop.
Invariants are a bridge from the mutable world of the machine to the timeless
truths of mathematics.
Invariants are a bridge from dynamic systems which are hard to understand to state
statements which are more amenable to precise analysis.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 35 / 42

Gries:1981:SP

The following game illustrates the power
of an invariant to understand dynamic
systems.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 36 / 42

Red and Blue take alternating turns, with Red going first. Red takes a turn by
drawing a red line segment, either horizontal or vertical, connecting any two
adjacent points on the grid that are not yet connected by any line segment. Blue
takes a turn by doing the same thing, except that the line segment drawn is blue.
Red’s goal is to form a closed curve (i.e., a sequence of (four or more) distinct line
segments starting at some point and returning to that point) comprised entirely of
red line segments. Blue’s goal is to prevent Red from doing so. The game ends
when either Red has formed a closed curve or there are no more line segments to
draw.

6
5
4
3
2
1

1 2 3 4 5 6 7 8

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 37 / 42

public static int sum(int a[]) {
int s = 0;
for (int i = 0; i < a. length ; i++) {

// s is the sum of the first i array elements
// s == a[0] + .. + a[i -1]
s = s + a[i];

}
return s;

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 38 / 42

public static int quotient (int n, int d) {
int q = 0, r = n;
assert n=q*d + r;
while (r >= d) {

r = r - d;
q = q + 1;
assert n=q*d + r;

}
return q;

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 39 / 42

public static int power(int x, int n) {
int p = 1, i = 0;
assert p== Math.pow(x,i);
while (i < n) {

p = p * x;
i = i + 1;
assert p== Math.pow(x,i);

}
return p;

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 40 / 42

/*
Convert a string of digits into a base ’base ’ number . Raise an
unchecked ArithmeticException if the result does not fit in a long.

*/
private static long decode (final String n, final int base) {

assert base >0;
long x = 0;
for (final char c: n. toCharArray ()) {

x = multiplyExact (x,base);
final int index = DIGITS . indexOf (c);
assert 0<= index: String . format ("not a digit ’%c’", c);
assert index <base:

String . format ("not a base %d digit ’%c’", base , c);
x = addExact (x, index +1L);
assert x>0L;

}
assert x >=0L;
return x;

}

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 41 / 42

Assert every blasted line in the function and then–if the stars align–you
will find the bug on the next run of the code, because you are checking
every bit of the function line by line.

George V. Nevill-Neil,“Kode Vicious Getting Off the Mad Path: Debuggers and
assertions,” CACM, April 2022, volumn 85, number 4, page 26.

Program Correctness Runtime Checking (Bounds Checking) © 22 February 2024 42 / 42

	Runtime Checking
	Null Values
	Bounds Checking

