
Exception Handling in Java © 11 December 2023 1 / 34

• What is the purpose of exceptions and exception handling?
• Vocabulary: throw/raise and catch/handle
• Java checked and unchecked exceptions
• Exception propagation
• Java try statement
• “Final wishes”
• Java try-resource statement

Exception Handling in Java © 11 December 2023 2 / 34

What are exceptions?

Bad things happen occasionally.
arithmetic: ÷0,

√
−9

environmental: no space, malformed input
application: can’t invert a singular matrix, can’t pop an element from an empty

stack
Some of these anomolies can be detected by hardware, some by the operating
system, some by the runtime system of the language, and other only by the
application itself. Which is which may depend on the language implementation,
hardware, etc.
In general, an exception should be used when there is an inability to fulfill a
specification.

Exception Handling in Java © 11 December 2023 3 / 34

Catching and Throw Exceptions

Raising an exception halts normal execution abruptly, then alternative statements
are sought to be executed, possibly the program terminates.
There are many exceptions already defined by the Java language and the Java API
And the programs may create their own exceptions. Exceptions are said to be
raised or thrown at the point of interruption and are said to be handled or caught
at the point when normal execution resumes.

Exception Handling in Java © 11 December 2023 4 / 34

Examples

public static void main (String [] args) {
out. println (9.8/0.0); // OK
out. println (5/0); // Exception

}

> java Arith
Infinity
Exception in thread "main" java.lang.ArithmeticException: / by zero

at Arith.main(Arith.java:5)
>

Exception Handling in Java © 11 December 2023 5 / 34

Examples from JVM
Fragment of the file NonMain.java:
public static void main (String args) {

out. println ("Hello?");
}

Common mistakes running a Java program yield very confusing exceptions raised
by the runtime system even before programs gets started.
> java NotMain
java.lang.NoClassDefFoundError: NotMain
Exception in thread "main"

> java NonMain
java.lang.NoSuchMethodError: main
Exception in thread "main"

• Wrong class name: NonMain not NotMain
• Not an entry point: String array is required

Exception Handling in Java © 11 December 2023 6 / 34

More Examples

Some common predefined exceptions: ArrayIndexOutOfBoundsException,
NumberFormatException, NegativeArraySizeException,
NullPointerException.

Examples.java – predefined exceptions

Programmer defined exceptions are important. Examples of them come later.

Exception Handling in Java © 11 December 2023 7 / 34

http://www.cs.fit.edu/~ryan/java/programs/except/Examples.java

Why Exceptions?

Why not use ordinary computations values like integers (return-code)? Answer: to
separate normal flow of control from error handling making it easier to read.
The C programming language does not have exception handling. Well-written
(defensive) code is hard to read:
if ((fd=open(name , O_RDONLY))== -1) {

fprintf (stderr , "Error %d opening file", errno);
exit ();

}

See also the well-written C program from Stevens.

main.c

Exception Handling in Java © 11 December 2023 8 / 34

http://www.cs.fit.edu/~ryan/c/programs/except/main-c.html

Reasons Not To Use Ad Hoc Approach

There are some problems with an ad hoc approach:
• Easy to leave out checking, hence the code will be error prone
• Poor modular decomposition
• Hard to test such programs
• Inconsistency — sometimes null, sometimes -1
• No additional info about the exception

Exception Handling in Java © 11 December 2023 9 / 34

Catching

What can you do when an exception happens? If you can, repair the problem.
Sometimes there is nothing to do! Some options are: try again anyway, log the
incident, terminate the program early (with an explanation), print a stack trace,
If you do nothing Java will terminate the program and print a stack trace—often
this is the best you can do.
More about the try statement later. First, we must understand what an exception
is in Java, so we can learn the mechanisms in Java which support exception
handling.

Exception Handling in Java © 11 December 2023 10 / 34

Digression

Exceptions are not always the correct approach.
Better language design could eliminate NullPointerException.

Exception Handling in Java null © 11 December 2023 11 / 34

Java SE 8 introduces a new class called java.util.Optional<T> that is inspired
from the ideas of Haskell and Scala. It is a class that encapsulates an optional
value. You can view Optional as a single-value container that either contains a
value or doesn’t (it is then said to be "empty").
See the Elvis operator in Kotlin and Groovy.
final String version =

computer ?. getSoundcard ()?
. getUSB ()?. getVersion () ?: " UNKNOWN ";

final String version =
computer .map (Computer :: getSoundcard)

.map (Soundcard :: getUSB)

.map (USB :: getVersion)

. orElse (" UNKNOWN ");

Monad!

Exception Handling in Java null © 11 December 2023 12 / 34

Optional <String > nameOptional = Optional .of("Bob");
int len = nameOptional .map(String :: length). orElse (0);

Java’s approach is a small step in eliminating the “billion dollar” mistake that null
is.

Exception Handling in Java null © 11 December 2023 13 / 34

Brian Goetz himself on StackOverflow
But we did have a clear intention when adding this feature, and it was not to

be a general purpose Maybe type, as much as many people would have liked us
to do so. Our intention was to provide a limited mechanism for library method
return types where there needed to be a clear way to represent “no result”, and
using null for such was overwhelmingly likely to cause errors.

For example, you probably should never use it for something that returns an
array of results, or a list of results; instead return an empty array or list. You
should almost never use it as a field of something or a method parameter.

I think routinely using it as a return value for getters would definitely be over-
use.

There’s nothing wrong with Optional that it should be avoided, it’s just not
what many people wish it were, and accordingly we were fairly concerned about
the risk of zealous over-use.

Exception Handling in Java null © 11 December 2023 14 / 34

https://stackoverflow.com/a/26328555/5050667

What is an Exception?

Exceptions in Java are not new and different entities (like in Ada or SML).
Exceptions are Java classes which are subclasses of java.lang.Throwable.
An exception is not a separate kind of entity in Java, it is a class. But exceptions
do have a special role in the language. They are not the programmer’s data, but
they serve as signals or indicators.
Since different instances of an exception class are usually indistinguishable and not
very important, we have a tendency to blur the distinction between an exception
and an instance of the exception. We speak of the FileNotFoundException
exception, and not of an instance of the FileNotFoundException exception.

Exception Handling in Java Organization of Exceptions © 11 December 2023 15 / 34

Class Hierarchy
Object

Throwable

Error Exception

RuntimeException
checked

Exception Handling in Java Organization of Exceptions © 11 December 2023 16 / 34

Checked

Some exceptions are checked exceptions this is important to know. (As we will see
later.)

Definition
A checked exception is an exception [Java class] that derives from Throwable, but
not from either Error or RuntimeException.

A purpose of checked exception is to call extra attention to some analomies.

Exception Handling in Java Organization of Exceptions © 11 December 2023 17 / 34

Example
The exception NoSuchElementException is an unchecked exception because it is
a subclass of RuntimeException, as seen can be seen in the Java 18 API
documentation below:

Exception Handling in Java Organization of Exceptions © 11 December 2023 18 / 34

Example

The exception IndexOutOfBoundsException is an unchecked exception because
it is a subclass of RuntimeException, as seen can be seen in the Java 18 API
documentation below:

Exception Handling in Java Organization of Exceptions © 11 December 2023 19 / 34

Example

The exception FileNotFoundException is a checked exception because it is a
subclass of Throwable and it is not a subclass of RuntimeException nor Error,
as seen can be seen in the Java 18 API documentation below:

Exception Handling in Java Organization of Exceptions © 11 December 2023 20 / 34

throw

The programmer raises an exception with the throw statement, for example:
throw new Exception ()

If a methods throws a checked exception (and does not catch it), then it must
declare the fact in a throws clause.
static void method (String arg) throws AnException

This is checked by the compiler.

Do not confuse the throw statement with the throws clause of a method
declaration. These are two different keywords.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 21 / 34

The Java language requires that a checked exception be caught or declared,
otherwise the program won’t compile.
import java.io .*;
import java.util .*;
public class Checked {

// Will raise NoSuchElementException ,
// if args. length ==0
public static void main (String [] args) {

System .out. println (Collections .min (
Arrays . asList (args)));

}
// Will raise FileNotFoundException ,
// if ’file_name ’ does not exist
public static void main (String file_name)

throws FileNotFoundException {
InputStream inp=new FileInputStream (file_name);

}
}

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 22 / 34

Blocks With Handlers

In Java (as most languages) a set of handlers watches over a block of code. When
an exception is raised somewhere (perhaps in a subroutine call) in the block,
execution stops at that point and a handler is sought. If one of the handlers is
invoked after a successful search, the code of the handler is executed (naturally),
and then the entire block ends as if no exception were ever raised.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 23 / 34

The try statement contains and guards a block of statements.
// Some statements
try {

// the normal flow of
// executable statements

} catch (final IOException ex) {
// handler for ‘‘ex ’’

} catch (final Exception ex) {
// handler for ‘‘ex ’’

}
// Additional statements

NB. Order of handlers is important; catching Exception is like else in a
conditional statement. The handlers are checked in order.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 24 / 34

Because exceptions are classes in Java, the programmer can take advantage of the
organization of the class hierarchy in creating and catch exceptions.
try {

// the normal flow of
// executable statements

} catch (final MalformedURLException ex) {
// ...

} catch (final EOFException ex) {
// ...

} catch (final IOException ex) {
// ...

} catch (final Exception ex) {
// ...

}

MalformedURLException and EOFException are both subclasses of
IOException. The order of the handlers is crucial.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 25 / 34

Catching Multiple Exceptions

try {

// the normal flow of
// executable statements

} catch (final IOException | SQLException ex) {
logger .log (ex);
throw ex

}

It is possible to have a handler catch distinct exceptions. NB. The name of the
exception instance is implicitly final. This is because the type of the instance is
possibly different when different exceptions are thrown. Of course, it is rare to
assign a new value to exception varaible.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 26 / 34

Exception Propagation

There is no attempt at going back and finishing remaining actions in the block.
Although this appears desirable, it is more difficult than it looks. Nonetheless, the
programmer can still program any sort of resumption imaginable by careful use of
block-structured exception handling,

Exception propagation. Modern languages all take the same approach to exception
propagation, the search for the place to resume normal execution: follow the
dynamic chain of method or block activations. This is obviously correct: the caller
who asked for the service should hear of the failure.

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 27 / 34

Exception Propagation

• Propagation.java – simple propagation
• PropagationFin.java – with finally clause

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 28 / 34

http://www.cs.fit.edu/~ryan/java/programs/except/Propagation.java
http://www.cs.fit.edu/~ryan/java/programs/except/PropagationFin.java

Examples

• Declare.java – catch or declare checked exceptions
• Pre.java – handling some predefined exceptions
• Value.java – hierarchy of user defined excpetions some with members to

hold additional information
• Trace.java – call printStackTrace()

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 29 / 34

http://www.cs.fit.edu/~ryan/java/programs/except/Declare.java
http://www.cs.fit.edu/~ryan/java/programs/except/Pre.java
http://www.cs.fit.edu/~ryan/java/programs/except/Value.java
http://www.cs.fit.edu/~ryan/java/programs/except/Trace.java

Exception Chaining∗

Exceptions can have other exceptions as causes.
void aMethod () throws SomeException {

try {
someOtherMethod ();

} catch (final SomeOtherException soe) {
final SomeException se =

new SomeException (soe. getMessage ());
se. initCause (soe);
throw se;

}
}

Exception Handling in Java Java Syntax for Catching and Throwing © 11 December 2023 30 / 34

Java has one combined statement:
// previous statements
try {

// executable statements
} catch (final NullPointerException ex) {

// handler for an exception
} finally {

// 1. normal , 2. caught exc , 3. uncaught
// exc , 4. break , continue , 5. return
// final wishes

}
// following statements

Exception Handling in Java Final Wishes © 11 December 2023 31 / 34

finally Clause

There is some confusion with the finally clause.
The code in the finally clause ought not change the kind of control flow:
normal, exceptional, return, or break. In other words, if the block is getting ready
to break out of a loop it ought not to return instead. Or, if the block is getting
ready to raise an exception it ought not to break out of a loop instead.

• FinReturn.java – Java warns

Exception Handling in Java Final Wishes © 11 December 2023 32 / 34

http://www.cs.fit.edu/~ryan/java/programs/except/FinReturn.java

Finalization

Finalization. Probably the worst feature in Java. The original in-
tention was to provide a method for automatically closing resources when
they were no longer needed. However, the mechanism relies upon Java’s
garbage collection, which is non-deterministic. Thus, using finalization to
reclaim resources is fundamentally unsafe. Therefore it is impossible to
use finalization as a way of avoiding resource exhaustion, and the feature
cannot be fixed. In other words, never use finalization.

Evans, Java: The Legend, 2015, page 22.

Instead use the “try-resources” statement introduced in Java 7.

Exception Handling in Java Try-Resource Statement © 11 December 2023 33 / 34

Try-Resource Construct

try (final BufferedReader br =
new BufferedReader (new InputStreamReader (
new FileInputStream ("file.txt"),"LATIN -1"))) {
for (;;) {

final String line = br. readLine ();
if (line == null) break ;
System .out. println (line);

}
} catch (final IOException ex) {

ex. printStackTrace ();
}

See a more substantial example in a server: KnockKnockServer.java .

Exception Handling in Java Try-Resource Statement © 11 December 2023 34 / 34

http://www.cs.fit.edu/~ryan/java/programs/net/KnockKnockServer.java

1 Use exception handling for unusual, unexpected, unlikely situations.
2 Do not use exception handling for detecting the end-of-file in the input

streams. That is not an unusual case and there are specific methods for
detecting end-of-file.

3 Raise an exception when a method cannot fulfill its specification.
4 Do not catch an exception to cover-up bad programming.
5 Do not handle an exception unless you can fix the problem.
6 There is little point in catching an exception just to report it. The runtime

system reports exceptions adequately.
7 Never fail to report or log that an exception has been raised.

(Checkstyle will flag catch (Exception e) for EmptyBlock.)

Exception Handling in Java Summary © 11 December 2023 35 / 34

	null
	Organization of Exceptions
	Java Syntax for Catching and Throwing
	Final Wishes
	Try-Resource Statement
	Summary

