
class Main {
public static void main (String [] args) {

System .out. println ("Hello world!");
}

}

CSE1002 (Main) © 2 March 2024 1 / 19

class Main {
// String ... = String [] ; cute but rare
public static void main (String ... args) {

System .out. println ("Hello world!");
}

}

CSE1002 (Main) © 2 March 2024 2 / 19

public class Main {
private Main () {} // disable instantiation
public static void main (final String [] args) {

System .out. println ("Hello world!");
}

}

CSE1002 (Main) © 2 March 2024 3 / 19

// Class not intended to be used to create other classes

public final class Main {

// All parameters should be final; enforced by ’checkstyle ’
public static void main (final String [] args) {

System .out. println ("Hello world!");
}

}

CSE1002 (Main) © 2 March 2024 4 / 19

public final
class Main
{ public
static void
main (
final String
[] args
) {
System .
out .
println (
"Hello world!"
) ;
} }

Consider each word/token.
• What happens if you leave it out?
• What happens if you modify it?

CSE1002 (Main) © 2 March 2024 5 / 19

• access modifier for things with unrestricted access; one public, top-level Java
class per file

• modifier for classes that are not to be sub-classed
• keyword introducing a Java class
• name of class; capitalized by convention; should be same as file name
• access modifier for methods with unrestricted access; method main must be

public if it is to be the starting point of the program by the Java virtual
machine

• method modifier indication a non-instance method
• return type of void means the method does not return a value; it is a

subprocedure not a function

CSE1002 (Main) © 2 March 2024 6 / 19

• name of method; must be called "main" if it is to be the starting method
(entry point)

• type of the one parameter to the method; must be an array of strings (or
equivalently varargs), if the method is to be the starting method

• name of the one parameter to the method
• java.lang.System is the name of the class in package java.lang

containing standard I/O objects
• Field of java.lang.System with type java.io.PrintWriter containing the

object with the reference the program’s standard output stream.
• Name of the overloaded method that puts strings on to output stream (prints

or displays the text on the screen).

CSE1002 (Main) © 2 March 2024 7 / 19

Definitions.
• access modifier (e.g., public, private)
• entry point (starting point of execution)

Rules of thumb.
• Declare your (outer) classes public.
• One public class the same name as the file.
• Declare your classes final.
• Declare your formal arguments final.
• (No public constructors for utility classes.)

CSE1002 (Main) © 2 March 2024 8 / 19

In Java 21, the entry point need not be static, need not be public, and need not
have a String[] parameter. Then we can simplify the “Hello, World!” program to:
class HelloWorld {

void main () {
System .out. println ("Hello , World!");

}
}

CSE1002 (Main) Java 21 © 2 March 2024 9 / 19

Java 21 introduces unnamed classes to make the class declaration implicit:
void main () {

System .out. println ("Hello , World!");
}

String greeting = "Hello , World!";

void main () {
System .out. println (greeting);

}

CSE1002 (Main) Java 21 © 2 March 2024 10 / 19

A source file named HelloWorld.java containing an unnamed class can be launched
with the source-code launcher, like so:

$ java HelloWorld.java

The Java compiler will compile that file to the launchable class file
HelloWorld.class. In this case the compiler chooses HelloWorld for the class name
as an implementation detail, but that name still cannot be used directly in Java
source code.

CSE1002 (Main) Java 21 © 2 March 2024 11 / 19

CSE1002 (Main) OS Interface © 2 March 2024 12 / 19

OS Interface

• standard IO package; abstract and standardized
• command line arguments; simple
• environment map and also JVM properties; many OS dependent keys

• System.in, System.out, System.err
• String[] args
• System.getEnv(), System.getProperties()

CSE1002 (Main) OS Interface © 2 March 2024 13 / 19

JVM has it own platform environment established in negotiation with the OS.
// The (unmodifiable) key ,value pairs of OS environment
Map <String , String > env = System . getenv ();

// Less platform dependent are the Java system properties
System . getProperties (). list(System .out);

CSE1002 (Main) OS Interface © 2 March 2024 14 / 19

// A program can get values from Java system properties
System .out. println (System . getProperty ("file. encoding "));

// A program can set Java system properties
// Be careful arguing with the OS
System . setProperty ("file. encoding ", "Latin -1");

// System properties sometimes ’travel ’ invisibly to
// where they are needed , at indeterminate times.
System .out. println (Charset . defaultCharset ());

CSE1002 (Main) OS Interface © 2 March 2024 15 / 19

Properties can be set on the command line. But they may not be set, so providing
defaults is a good idea.

// User can supply environmental values (Unix example):
// * with JVM args ’$ java -Dkey =12345 Main ’
// * with OS environment , eg , ’$ env key =12345 java main ’
String seed1 = System . getenv (). getOrDefault ("key","54321"));
String seed2 = System . getProperty ("key", "54321");

CSE1002 (Main) OS Interface © 2 March 2024 16 / 19

Use Case: Random Numbers

// User can supply environmenal values :
// * with JVM args ’$ java -Dseed =12345 Main ’
// * with OS environment , eg , ’$ env seed =12345 java main ’
String seed1 = System . getProperty ("seed", "54321");

String seed2 = System . getenv (). getOrDefault ("seed","54321"));

long seed = Long. getLong ("seed", System . nanoTime ())

CSE1002 (Main) OS Interface © 2 March 2024 17 / 19

IntelliJ

CSE1002 (Main) OS Interface © 2 March 2024 18 / 19

Comand Line

java -Dseed=345 -Xmx2g MyClassName arg1 "arg with spaces” arg3

The executable program java needs to be in the command-lines shell’s path.
There needs to be an entry point in the java class MyClassName.

CSE1002 (Main) OS Interface © 2 March 2024 19 / 19

	Java 21
	OS Interface

