
Definition
A construct of a language is a syntactically meaningful subpart of a language
formed (constructed) in accordance with the syntactic rules of a language and has
a significant and coherent purpose.

CSE1002 (Expressions, Statements, Methods) © 1 April 2024 1 / 41

Java Constructs

• Expression stands for a value (during execution)
• Declaration introduces a name (in the program)
• Statement performs an action (during execution)
• Type describes a set of values (in the program)

CSE1002 (Expressions, Statements, Methods) © 1 April 2024 2 / 41

Arithmetic

2+7, 5*4

2.9+7.4, 5.2*4.3

Avoid the use of + for conversion to strings. Use formatter strings which are more
flexible and clearer.

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 3 / 41

Integer Arithmetic

The binary operators / and % on integers are useful.
x = y * (x / y) + (x % y)

Beware of negative numbers as x%y is negative when x is negative contrary to
expectations.

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 4 / 41

Integer Arithmetic
Think carefully about integers of finite size and use the Math class (64 bit long
versions are also in the Java API):
int ceilDiv (int x, int y)
int floorDiv (int x, int y)
int ceilMod (int x, int y) // ceilMod (-4, -3)==+2; and (-4 % -3)== -1
int floorMod (int x, int y) // floorMod (-4 ,+3)==+2; and (-4 % +3)== -1

To fail instead of wrapping around:
int ceilDivExact (int x, int y)
int floorDivExact (int x, int y)
int decrementExact (int x)
int incrementExact (int x)
int negateExact (int x)
int absExact (int x)
int addExact (int x, int y)
int subtractExact (int x, int y)
int divideExact (int x, int y)
int multiplyExact (int x, int y)

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 5 / 41

Other Boolean Operators

relational: <, >, <=, >=
equality: ==, !=

conditional: &&, ||

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 6 / 41

Definition
Short-circuit evalution is when the second argument of a boolean operation is
executed or evaluated only if the first argument does not suffice to determine the
value of the expression.

Notice the similarity with the if statement and if the expression. Their “else” part
is not evaluated if the test is false.

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 7 / 41

if Expression

Conditional Operatator
String url = args.length >0? args [0]:"http :// www.cs.fit.edu /~ ryan/";
String s = (Math.cos (0.0) > 0.0) ? " positive " : "non - positive ";
flip (n-1, base , isZ?c:c-1, prefix +’0’);
score[player ?0:1] += turn;
out. setRGB (row , col , (row+col)%2==0? WHITE:BLACK);
return (c==0)?t: Integer . MAX_VALUE ;

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 8 / 41

https://docs.oracle.com/javase/specs/jls/se21/html/jls-15.html#jls-15.25

Bit Operations
Boolean operations extend naturally over sequences of bits of the same length.
a = 0b0011_1100; -- 60
b = 0b0000_1101; -- 13

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 9 / 41

Bit Operations

Shift Operators

1 The value of n >> s is n right-shifted s bit positions with sign-extension. The
resulting value is floor(n / 2s). or non-negative values of n, this is
equivalent to truncating integer division, as computed by the integer division
operator /, by two to the power s.

2 The value of n >>> s is n right-shifted s bit positions with zero-extension

11111111111111111100111000001011 -12,789
11111111111111111111111111100111 » 9
00000000011111111111111111100111 »> 9

CSE1002 (Expressions, Statements, Methods) Expressions © 1 April 2024 10 / 41

https://docs.oracle.com/javase/specs/jls/se21/html/jls-15.html#jls-15.19

Difference Between Statements and Declarations

int x;
int y;
x = 365 / 12;
print (x);
y = 366 / 12;
print (y);

final int x = 365/ 12;
print (x);
final int y = 366 / 12;
print (y);

Java allows the programmer to place declarations anywhere that statements go.
But declarations are not actions performed by the running program. The are acts
of communication to the translator (before execution begins.)

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 11 / 41

Simple Statements

• Empty
• Expression statements

• Assignment, e.g., x=2.0*Math.pi;
• Subprocedure invocation, e.g., StdDraw.line(0.2, 0.2, 0.8, 0.2);

• Break (see loops)
• Continue (see loops)
• Yield (see switch expressions)
• Return (in methods)
• Throw (exception handling)
• Assert

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 12 / 41

Statements

• Simple statements (including assert)
• Block – sequence of statements in curly braces
• Labeled – usually used with break
• Conditional: Grade.java
• Switch: Month.java , Days.java

switch expression
• While: WhileDemo.java
• For: WordCount.java ; for each (coming up)
• Try (later)
• Synchronize (not covered)

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 13 / 41

http://www.cs.fit.edu/~ryan/java/programs/control/Grade.java
http://www.cs.fit.edu/~ryan/java/programs/control/Month.java
http://www.cs.fit.edu/~ryan/java/programs/control/Days.java
https://docs.oracle.com/en/java/javase/13/language/switch-expressions.html
http://www.cs.fit.edu/~ryan/java/programs/control/WhileDemo.java
http://www.cs.fit.edu/~ryan/java/programs/control/WordCount.java

Loops

When to use for, when to use while?

Use for when you know the number of times the body of the loop will be executed.

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 14 / 41

Loops

When to use for, when to use while?
Use for when you know the number of times the body of the loop will be executed.

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 15 / 41

For each

double [] a = {1.2 , 3.0, 0.8};
double sum = 0;
for (double d: a) {

sum += d;
}
System .out. format ("sum = %.2f%n", sum);

• only access, elements cannot be assigned
• only single structure at a time
• only single element, can’t compare successive elements
• only forward, can’t iterate backwards, by twos, etc.

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 16 / 41

One-and-one-half Loops

Test at the beginning (while), test at the end (do-while), test in the middle.
Main.java
DRY = Don’t Repeat Yourself

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 17 / 41

http://www.cs.fit.edu/~ryan/java/programs/loop/Main.java

Try Resource
Simple, isolated programs like those that do calculations are less common these
days. More and more common are programs that interact with the environment:
network, other programs, etc. Often these programs claim resourses (provided by
the operating system) and it is tidy to return them when unneeded.
try (

final Scanner stdin = new Scanner (System .in , "US -ASCII")
) {

// Use ’stdin ’
}

final Scanner stdin = new Scanner (System .in , "US -ASCII")
try (stdin) {

// Use ’stdin ’
}
// Scope !!

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 18 / 41

Try Resource

try (
final DirectoryStream <Path > listing =

Files. newDirectoryStream (dir)
) {

// Use ’listing ’
} catch (final IOException exc) {

exc. printStackTrace (System .err);
}

CSE1002 (Expressions, Statements, Methods) Statements © 1 April 2024 19 / 41

See sermon on correctness
and the assert statement

correct.pdf

CSE1002 (Expressions, Statements, Methods) Correctness © 1 April 2024 20 / 41

Static Methods

Anatomy of a static method, figure page 188.
How to you call a static method: Class.name or just “name” if you are calling from
the same class.

A method (function) may stand for a value, that is, it is an expression (when its
return type is not void.) And a method (subprocedure) may peform some actions,
that is, it is a statement (when its “return” type is void.)

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 21 / 41

Static Methods

Anatomy of a static method, S&W, 2.1, figure page 188.
Class.name or just “name”
Scope, S&W, 2.1, figure page 189.
Overloading
public static int abs (final int x) {

return x<0?-x:x;
}
public static double abs (final double x) {

return x <0.0? -x:x;
}

Overload resolution does not take the return type into consideration. Java does
promote int values to double, but try to avoid taking advantage of that as that will
force the reader to learn the rules of overload resolution.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 22 / 41

Libraries

A class can contain (static) fields and code which can be used by another class.
The Java style capitalization conventions are crucial in detecting how values and
methods are accessed.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 23 / 41

not capitalized: instance of class, so non-static access
camel case: method or procedure name

parentheses: method or procedure invocation

myBirthDay.plus (2, ChronoUnits.DAYS)

all uppercase: static final
capitalized: class name, so static access

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 24 / 41

Overloading

Two functions with the same name. But the argument in one has a different type
than the other.
public static int abs (final int x) {

if (x <0) return -x else return x;
}
public static double abs (final double x) {

if (x <0.0) return -x else return x;
}

Could use the conditional operator!
public static int abs (final int x) {

return x<0?-x:x;
}

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 25 / 41

Overload resolution

By the number and type of the actual arguments.
int a = abs (-3);
double d = abs (-3.1D);

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 26 / 41

Scope

The scope of a declaration is the portion of the program in which the identifier
declared can be used.
See page 189 of the textbook.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 27 / 41

Scope

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 28 / 41

Declare variables
right before you need them.

Localize scope!

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 29 / 41

Sequence of Calls and Returns

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 30 / 41

Libraries

A class can contain (static) code which can be used by another class.
For example, one might use Math.hypot.
See page 219, in S&W.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 31 / 41

Parameter Passing

The names of the parameters to a subprocedure should be used to refer only the
arguments, and, so, should be declared to be final in Java. This is hardly ever any
exception to the rule. Occasionally one needs an exception in the case of local
variables, but hardly ever for the case of formal parameters.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 32 / 41

Parameter passing in Java is simple (but involves assignment which is not simple).
To understand a procedure call conceptually, the body of the subprocedure is

inserted in-line with the code of the caller. The actual arguments are assigned to
the formal parameters as local variables.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 33 / 41

public class Main
public static void multiply (final int x, final int y) {

final int p = 5*(x -1);
System .out. printf ("%d %d%n", y, p);

}
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
final int ans = multiply (a, a+3);

}
}

public class Main {
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
multiply : {

final int x = a; // assign actual 1 to formal
final int y = a+3; // assign actual 2 to formal
final int p = 5*(x -1); // body of procedure
System .out. printf ("%d %d%n", y, p);

}
}

}

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 34 / 41

public class Main
public static void multiply (final int x, final int y) {

final int p = 5*(x -1);
System .out. printf ("%d %d%n", y, p);

}
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
final int ans = multiply (a, a+3);

}
}

public class Main {
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
multiply : {

final int x = a; // assign actual 1 to formal
final int y = a+3; // assign actual 2 to formal
final int p = 5*(x -1); // body of procedure
System .out. printf ("%d %d%n", y, p);

}
}

}

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 35 / 41

public class Main
public static int multiply (final int x, final int y) {

final int p = 5*(x -1);
return p*y;

}
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
final int ans = multiply (a, a+3);

}
}

Functions or subprocedures make no different to parameter passing.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 36 / 41

public class Main {
public static int multiply (final int x, final int y) {

final int p = 5*(x -1);
return p*y;

}
public static void main (final String [] args) {

final int a = Integer . parseInt (args [0]);
final int ans;
multiply : {

final int x = a; // assign actual 1 to formal
final int y = a+3; // assign actual 2 to formal
final int p = 5*(x -1); // body of procedure
ans = p*y;

}
}

}

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 37 / 41

Parameter Passing

Of course, it is not practical or desirable to eliminate all subprocedures in the
source code. And, in the case of recursion, it is not possible to eliminate the calls
since the process would not terminate.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 38 / 41

Parameter Passing

call-by-value or pass-by-value
This does does cause some confusion as the notion of value is ambiguous.
Perhaps parameter passing in Java (and other languages) might best be described
as “call by assignment”: the value of the formal argument is assigned to the formal
parameter as a local variable. The assignment is performed once just before the
subprocedure is executed.
The same mechansim is used primitive types, object types (array, strings, etc.).
Key to understand the execution of any Java program (including subprocedure
invocation) is sharing and mutable and immutable data types. This is a later topic.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 39 / 41

Parameter Passing

• PassByValue.java – information flows only in
• PassString.java – pass an object
• PassArray.java (arrays are mutable Objects)
• Color.java (is a better example)
• Wrapper2.java (wrapper classes do not help)
• MultipleReturn.java
• R.java – records help

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 40 / 41

http://www.cs.fit.edu/~ryan/java/programs/pass/PassByValue.java
http://www.cs.fit.edu/~ryan/java/programs/pass/PassString.java
http://www.cs.fit.edu/~ryan/java/programs/pass/PassArray.java
http://www.cs.fit.edu/~ryan/java/programs/pass/Color.java
http://www.cs.fit.edu/~ryan/java/programs/pass/Wrapper2.java
http://www.cs.fit.edu/~ryan/java/programs/pass/MultipleReturn.java
http://www.cs.fit.edu/~ryan/java/programs/pass/R.java

Parameter Passing (Summary)

• Only one paramater massing mechansim
• It is called call-by-value
• It is implemented by assigning to the formal parameters as if local variables
• It is designed for information flowing into the subprocedure. (Parameters

parameterized subprocedures; abstraction!)
• It it provides some protection from “rogue” or “misbehaving” subprocedures,

but not always
• return is for information flowing back to caler
• Java objects are not passed differently.

CSE1002 (Expressions, Statements, Methods) Methods © 1 April 2024 41 / 41

	Expressions
	Declarations
	Statements
	Correctness
	Methods

