1.4 Arrays

INTRODUCTION TO

Programming

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Introduction to Programming in Java: An Interdisciplinary Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - 9/18/2013 9:15:20 AM

A Foundation for Programming

any program you might want fo write

) store and manipulate
arrays) huge quantities of data

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.
. 52 playing cards in a deck.
. 5 thousand undergrads at Princeton.
. 1 million characters in a book.
- 10 million audio samples in an MP3 file.
. 4 billion nucleotides in a DNA strand.
. 73 billion Google queries per year.
. 50 trillion cells in the human body.
. 6.02 x 1023 particles in a mole.

value

wayne

rs

doug

dgabai

maia
1lp
funk

blei

Many Variables of the Same Type

Goal. 10 variables of the same type.

Many Variables of the Same Type

Goal. 10 variables of the same type.

Many Variables of the Same Type

Goal. 1 million variables of the same type.

Arrays in Java

Java has special language support for arrays.
. To make an array: declare, create, and initialize it.
. To access element i of array named a, use a[i].
. Array indices start at o.

Arrays in Java

Java has special language support for arrays.
. To make an array: declare, create, and initialize it.
- To access element i of array named a, use a[i].
. Array indices start at o.

int N = 10; // size of array

double[] a; // declare the array

a = new double[N]; // create the array

for (int i = 0; i < N; i++) // initialize the array
a[i] = 0.0; // all to 0.0

Compact alternative.
. Declare, create, and initialize in one statement.
. Default initialization: all numbers automatically set to zero.

int N = 10; // size of array
double[] a = new double[N]; // declare, create, init

Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot
product is the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };
double[] y = { 0.5, 0.1, 0.4 };
int N = x.length;
double sum = 0.0;

for (int i = 0; i < N; 1i++) {
sum = sum + x[i]*y[i];

}

x[i] y[i] x[il*y[i] sum

-

0
.30 .50 .15 .15
.60 .10 .06 21
.10 .40 .04 .25

.25

Array-Processing Examples

create an array
with random values

double[] a = new double[N];
for (int 1 0; i < N; i++)
a[i] = Math.random(Q);

print the array values,
one per line

for (Aint i =0; i < N; i++)
System.out.printin(alil);

find the maximum of
the array values

double max
for (int i

0; i < N:; i+4)

if (a[i] > max) max = a[i];

Double .NEGATIVE_INFINITY;

compute the average of
the array values

double sum = 0.0;

for (int i = 0; i < N; i++)
sum += al[i]l;

double average = sum / N;

double[] b = new double[N];
copy to another array | for (int i = 0; 1 < N; i++)
b[i] = a[i];
for (Aint i =0; i < N/2; i++)
{

reverse the elements
within an array

double temp = b[i];
b[i] = b[N-1-1i];
b[N-i-1] = temp;

}

10

Shuffling a Deck

Setting Array Values at Compile Time

Ex. Print a random card.

12

Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

typical array-processing
code changes values

String[] deck new String[52];
for (int 1 = 0

at runtime
;i< 13; i++) /////
for (int j = 0; j < 4; j++)

deck[4*1 + Jj] = rank[i] + " of " + suit[]j];

for (int i = 0; 1 < 52; i++)
System.out.println(deck([i]) ;

Q. In what order does it output them?

A. two of clubs B two of clubs
two of diamonds three of clubs
two of hearts four of clubs
two of spades five of clubs

three of clubs six of clubs

13

Shuffling

Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.
. Initeration i, pick random card from deck[i] through deck[N-1],
with each card equally likely.
. Exchange it with deck[i].

int N = deck.length;
for (int i1 = 0; i < N; i++) {
int r = i + RNG.nextInt (N-i);

String t = deck|[r];
deck|[r] deck|[i]; } swap between i and N-1
’ idiom

deck|[1i] t;

D>

14demo-shuffle.pptx#1. Shuffle an Array
14demo-shuffle.pptx#1. Shuffle an Array

Shuffling a Deck of Cards: Putting Everything Together

Shuffling a Deck of Cards

16

Coupon Collector

Coupon Collector Problem

Coupon collector problem. Given n different card types, how many
do you have to collect before you have (at least) one of each type?

N\

assuming each possibility is equally
ﬁ* a0 likely for each card that you collect
*

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.
Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found[i] is frue if we've already
collected a card of type i.

18

Coupon Collector: Java Implementation

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

val found valcnt cardent

012345

FFFFFF 0 0
2 T 1 1
0 T 2 2
4 T 3 3
0 3 B
1 T 4 5
2 4 6
5 T 5 7
0 5 8
1 5 9
3 T 6 10

Challenge. Debugging with arrays requires tracing many variables.

20

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many
do you have to collect before you have (at least) one of each type?

Fact. About N(1+1/2+1/3+ ...+1/N) ~ NInN.

see ORF 245 or COS 340

Ex. N = 30 baseball teams. Expect to wait ~ 120 years before
all teams win a World Series. \

under idealized assumptions

21

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics

as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need fo be
examined before all values are found against the corresponding answer

for a random sequence.

TOUR OF ACCOUNTING

OVER HERE
WE HAVE OUR
RANDOM NUMBER

NINE NINE
NINE NINE
NINE NINE

RANDOM?

10[aso; ©2001 United Feature Syndicate, Inc.

GENERATOR.
%)
\-éﬁr ; .-':"".-";:‘::

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

Multidimensional Arrays

Two-Dimensional Arrays

Two-dimensional arrays.
. Table of data for each experiment and outcome.
. Table of grades for each student and assignments.
. Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Gene 1

Genen

Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors ¢ st

B gene expressed

Reference: Botstein & Brown group B gene not expressed

24

Two-Dimensional Arrays in Java

Array access. Use a[i][j] to access element in row i and column 3.

Zero-based indexing. Row and column indices start at o.

int M = 10;
int N = 3;
double[][] a = new double[M] [N];
for (int 1 = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
alfi] [J] 0.0;
}

all[]

a[5]—

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

a[3][0]

a[3][1]

a[3][2]

a[4][0]

a[4][1]

a[4][2]

a[5][0]

a[5][1]

a[5][2]

a[6][0]

a[6][1]

a[6][2]

a[7][0]

a[7][1]

al7][2]

a[8][0]

a[8][1]

a[8][2]

a[9][0]

a[9][1]

a[9][2]

A 10-by-3 array

25

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

a[1][3]

.02 .92 .02\.02|.02
rowl—.02 .02 .32/.32].32
.02 .02 .02{.921.02
.92 .02 .02{.021.02
.47 .02 .47(.02.02

column 3

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i1[j] is the sum a[i]1[j] + b[i][j].

a[1][2]

al][]
b[1[] b

cl]L] c[1]1[2]

[11[2]

27

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i][3] is the dot product of
the ith row of a[]1[] and the j™ column of b[][].

alll]
.30 .60 .10 <= rowl

all values initialized to O

column 2

b[][]

dot product of row i of a[][] c[][]
and column j of b[][]

28

Array Challenge 2

Q. How many scalar multiplications multiply two N-by-N matrices?

A. N B. N2 C. N3 D. N*

29

Summary

Arrays.
. Organized way to store huge quantities of data.
. Almost as easy to use as primitive types.
. Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR, ARRAY INDICES. SOME
ARE FRom ONE, 50ME FRom ZERD.

DIFFERENT TASks CAL. FOR VAT, WHAT?

DIFFERENT CONVENTIONS. TO '
QUOTE STANFORD ALGORITHAY WELL, THATS WHAT HE
EXPERT DONALD KNUTH, SAID WHEN | ASKED
“WHO ARE You? HOW DID. Fim ABOUT IT.

YOU GET IN MY HOULSE? }

/

http://imgs.xkcd.com/comics/donald knuth.png

1.4 Arrays: Extra Slides

Memory Representation

Memory representation. Maps directly to physical hardware.
Consequences.

. Arrays have fixed size.

. Accessing an element by its index is fast.

. Arrays are pointers.

2D array. Array of arrays.

Consequences. Arrays can be ragged.

000

123
124

523
524
525
526
527
528
529
530

999

523

a.'leﬁgth

a[0]

al[l]

al[2]

a[3]

a[4]

a[5]

a[6]

al7]

32

Self-Avoiding Walk

Self-Avoiding Walk

Model. dead end
. N-by-N lattice. [H_
. Start in the middle. r‘i
. Randomly move to a neighboring intersection,

avoiding all previous intersections.
. Two possible outcomes: dead end and escape.

escape

i

Applications. Polymers, statistical mechanics, etc.

Q. What fraction of time will you escape in an 5-by-5 lattice?
Q. Inan N-by-N lattice?
Q. Inan N-by-N-by-N lattice?

34

Self-Avoiding Walk

Skeleton. Before writing any code, write comments to describe what

you want your program to do. ond end escape

Self-Avoiding Walk: Implementation

Visualization of Self-Avoiding Walks

Il

BT

0

100%

75%

50% /
25% /

0%
10 20 30 40 50 60 70 80 90 100

37

Sieve of Eratosthenes

Sieve of Eratosthenes

Prime. An integer > 1 whose only positive factors are 1 and itself.
Ex. 2,3,5,7,11,13,17, 23, ..

Prime counting function. n(N) = # primes < N.
Ex. n(17) =7.

Sieve of Eratosthenes.

. Maintain an array isprime[] to record which integers are prime.

. Repeat for i=2 to v
- if i is not still marked as prime
i is is not prime since we previously found a factor
- if i is marked as prime
i is prime since it has no smaller factors
mark all multiples of i to be non-prime

39

Sieve of Eratosthenes

Prime. An integer > 1 whose only positive factors are 1 and itself.
Ex. 2,3,5,7,11,13,17, 23, ..

Prime counting function. m(N) = # primes < N.
Ex. n(25) =9.

isPrime
2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
TTTTTTTT T T T
F F

24 25
T T T T T T T T T T T T T
F - F F F - F F F
- F - - - -
F

TTFTFTFFF T F T F F F T

F T F F
Trace of java PrimeSieve 25

40

Sieve of Eratosthenes: Implementation

