
3.4 N-body Simulation

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 14, 2009 6:04 tt

2

N-Body Problem

Goal. Determine the motion of N particles, moving under their mutual
Newtonian gravitational forces.

Ex. Planets orbit the sun.

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

3

N-Body: Applications

Applications to astrophysics.
Orbits of solar system bodies.
Stellar dynamics at the galactic center.
Stellar dynamics in a globular cluster.
Stellar dynamics during the collision of two galaxies.
Formation of structure in the universe.
Dynamics of galaxies during cluster formation.

4

N-Body Problem

Goal. Determine the motion of N particles, moving under their mutual
Newtonian gravitational forces.

Context. Newton formulated the physical principles in Principia.

F = m a F = G m1 m2

r2

Newton's second law of motion Newton's law of universal gravitation

Newton DelaunayLagrangeKepler EulerBernoulli Poincaré

5

2-Body Problem

2 body problem.
Can be solved analytically via Kepler's 3rd law.
Bodies move around a common barycenter (center-of-mass)
with elliptical orbits.

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

6

3-Body Problem

3-body problem. No solution possible in terms of elementary functions;
moreover, orbits may not be stable or periodic!

Consequence. Must resort to computational methods.

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

7

N-Body Simulation

N-body simulation. The ultimate object-oriented program:
simulate the universe.

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

8

Body Data Type

Body data type. Represent a particle.

Vector notation. Represent position, velocity, and force using Vector.

public class Body {
private Vector r; // position
private Vector v; // velocity
private double mass; // mass

instance variables

9

Moving a Body

Moving a body. Assuming no other forces, body moves in straight line.

r = r.plus(v.times(dt));

rx = rx + dt ⋅vx

ry = ry + dt ⋅vy

10

Moving a Body

Moving a body.
Given external force F, acceleration a = F/m.
Use acceleration (assume fixed) to compute change in velocity.
Use velocity to compute change in position.

Vector a = f.times(1/mass);
v = v.plus(a.times(dt));
r = r.plus(v.times(dt));

11

Force Between Two Bodies

Newton's law of universal gravitation.
F = G m1 m2 / r 2.
Direction of force is line between two particles.

double G = 6.67e-11;
Vector delta = a.r.minus(b.r);
double dist = delta.magnitude();
double F = (G * a.mass * b.mass) / (dist * dist);
Vector force = delta.direction().times(F);

12

Body Data Type: Java Implementation

public class Body {
private Vector r; // position
private Vector v; // velocity
private double mass; // mass

public Body(Vector r, Vector v, double mass) {
this.r = r;
this.v = v;
this.mass = mass;

}

public void move(Vector f, double dt) {
Vector a = f.times(1/mass);
v = v.plus(a.times(dt));
r = r.plus(v.times(dt));

}

public Vector forceTo(Body that) {
double G = 6.67e-11;
Vector delta = this.r.minus(that.r);
double dist = delta.magnitude();
double F = (G * this.mass * that.mass) / (dist * dist);
return delta.direction().times(F);

}

public void draw() {
StdDraw.setPenRadius(0.025);
StdDraw.point(r.cartesian(0), r.cartesian(1));

}
}

13

Force Between Two Bodies

Newton's law of universal gravitation.
F = G m1 m2 / r 2.
Direction of force is line between two particles.

double G = 6.67e-11;
Vector delta = a.r.minus(b.r);
double dist = delta.magnitude();
double F = (G * a.mass * b.mass) / (dist * dist);
Vector force = delta.direction().times(F);

14

Universe Data Type

Universe data type. Represent a universe of N particles.

public static void main(String[] args) {
Universe newton = new Universe();
double dt = Double.parseDouble(args[0]);
while (true) {

StdDraw.clear();
newton.increaseTime(dt);
newton.draw();
StdDraw.show(10);

}
} main simulation loop

15

Universe Data Type

Universe data type. Represent a universe of N particles.

public class Universe {
private double radius; // radius of universe
private int N // number of particles
private Body[] orbs; // the bodies

instance variables

16

Data-Driven Design

File format. Constructor.

public Universe() {
N = StdIn.readInt();
radius = StdIn.readDouble();
StdDraw.setXscale(-radius, +radius);
StdDraw.setYscale(-radius, +radius);

// read in the N bodies
orbs = new Body[N];
for (int i = 0; i < N; i++) {

double rx = StdIn.readDouble();
double ry = StdIn.readDouble();
double vx = StdIn.readDouble();
double vy = StdIn.readDouble();
double mass = StdIn.readDouble();
double[] position = { rx, ry };
double[] velocity = { vx, vy };
Vector r = new Vector(position);
Vector v = new Vector(velocity);
orbs[i] = new Body(r, v, mass);

}
}

17

Principle of Superposition

Principle of superposition. Net gravitational force acting on a body
is the sum of the individual forces.

// compute the forces
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
if (i != j) {

f[i] = f[i].plus(orbs[j].forceTo(orbs[i]));
}

}
}

Fi =
G mi m j

| ri − rj |2i ≠ j
∑

18

Universe Data Type: Java Implementation

public class Universe {
private final double radius; // radius of universe
private final int N; // number of bodies
private final Body[] orbs; // array of N bodies

public Universe() { /* see previous slide */ }

public void increaseTime(double dt) {
Vector[] f = new Vector[N];
for (int i = 0; i < N; i++)

f[i] = new Vector(new double[2]);
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
if (i != j)

f[i] = f[i].plus(orbs[j].forceTo(orbs[i]));

for (int i = 0; i < N; i++)
orbs[i].move(f[i], dt);

}

public void draw() {
for (int i = 0; i < N; i++)

orbs[i].draw();
}

public static void main(String[] args) { /* see previous slide */ }

}

draw the bodies

update
the bodies

create
universe

simulate the universe

19

Odds and Ends

Accuracy. How small to make dt? How to avoid floating-point
inaccuracies from accumulating?

Efficiency.
Direct sum: takes time proportional to N2

⇒ not usable for large N.
Appel / Barnes-Hut: takes time proportional to N log N time
⇒ can simulate large universes.

3D universe. Use a 3D vector (only drawing code changes!).

Collisions.
Model inelastic collisions.
Use a softening parameter to avoid collisions.

Fi =
G mi m j

| ri − rj |2 + ε2
i ≠ j
∑

Extra Slides

21

N-Body Simulation

1. Setup initial distribution of particles.
Need accurate data and model of mass distribution.

2. Compute forces between particles.
Direct sum: N2.
Appel / Barnes-Hut" N log N.

3. Evolve particles using ODE solver.
Leapfrog method balances efficiency and accuracy.
Truncation error = O(dt^2).
Symplectic.

4. Display and analyze results.

ε = softening parameter
eliminates binary stars with r < ε
hard binaries can be important
source of energy

22

Jun Makino, U. Tokyo

Solving the force problem with hardware.

GRAPE-6. Special purpose hardware to compute force.

24

Andromeda – 2 million light years away

Do we really need to compute force from every star for distant objects?

25

Solving the force problem with software -- tree codes

Distance = 25 times size

26

Organize particles into a tree. In Barnes-Hut algorithm, use a
quadtree in 2D

	3.4 N-body Simulation
	N-Body Problem
	N-Body: Applications
	N-Body Problem
	2-Body Problem
	3-Body Problem
	N-Body Simulation
	Body Data Type
	Moving a Body
	Moving a Body
	Force Between Two Bodies
	Body Data Type: Java Implementation
	Force Between Two Bodies
	Universe Data Type
	Universe Data Type
	Data-Driven Design
	Principle of Superposition
	Universe Data Type: Java Implementation
	Odds and Ends
	Extra Slides
	N-Body Simulation
	Solving the force problem with hardware.
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

