
4.3 Stacks and Queues

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 6, 2009 9:40 tt

Presenter
Presentation Notes
wayne Spring '07: recommend only doing stack.
Draw on intuition from RingBuffer if students did Guitar Hero assignment

2

Stacks and Queues

Fundamental data types.
Set of operations (add, remove, test if empty) on generic data.
Intent is clear when we insert.
Which item do we remove?

Stack.
Remove the item most recently added.
Ex: cafeteria trays, Web surfing.

Queue.
Remove the item least recently added.
Ex: Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

3

Stacks

4

Stack API

pop

push

public class Reverse {
public static void main(String[] args) {

StackOfStrings stack = new StackOfStrings();
while (!StdIn.isEmpty())

stack.push(StdIn.readString());
while (!stack.isEmpty())

StdOut.println(stack.pop());
}

}

Presenter
Presentation Notes
What does it do?
Reads in a sequence of strings and prints them in reverse order.

5

Stack: Array Implementation

Array implementation of a stack.
Use array a[] to store N items on stack.
push() add new item at a[N].
pop() remove item from a[N-1].

it was the best

0 1 2 3 4 5 6 7 8 9

a[]

N

public class ArrayStackOfStrings {
private String[] a;
private int N = 0;

public ArrayStackOfStrings(int max) { a = new String[max]; }
public boolean isEmpty() { return (N == 0); }
public void push(String item) { a[N++] = item; }
public String pop() { return a[--N]; }

}

max capacity of stack

Presenter
Presentation Notes
all methods are one-liners!
explain a[N++] and a[--N]

6

Array Stack: Trace

push

pop

7

Array Stack: Performance

Running time. Push and pop take constant time.

Memory. Proportional to max.

Challenge. Stack implementation where size is not fixed ahead of time.

8

Linked Lists

9

Sequential vs. Linked Allocation

Sequential allocation. Put object one after another.
TOY: consecutive memory cells.
Java: array of objects.

Linked allocation. Include in each object a link to the next one.
TOY: link is memory address of next object.
Java: link is reference to next object.

Key distinctions.
Array: random access, fixed size.
Linked list: sequential access, variable size.

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

valueaddr

"Alice"

"Bob"

C0

C1

"Carol"

-

C2

C3

-

-

C4

C5

-

-

C6

C7

-

-

C8

C9

-

-

CA

CB

valueaddr

array linked list

get ith element

get next element

Presenter
Presentation Notes
Linked structures are a powerful programming technique that you typically don't pick up on your own. But they are one of the most pervasive ways to organize large collections of data.

10

Linked list.
A recursive data structure.
A item plus a pointer to another linked list (or empty list).
Unwind recursion: linked list is a sequence of items.

Node data type.
A reference to a String.
A reference to another Node.

Linked Lists

public class Node {
private String item;
private Node next;

}

Alice Bob Carol null

first

item next

special value null terminates list

11

Building a Linked List

Node third = new Node();
third.item = "Carol";
third.next = null;

Node second = new Node();
second.item = "Bob";
second.next = third;

Node first = new Node();
first.item = "Alice";
first.next = second;

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

-

-

CC

CD

-

-

CE

CF

Valueaddr

Carol null

item next

third

C0third

main memory

Bob

second

CAsecond

Alice

first

C4first

Presenter
Presentation Notes
Consider adding a slide that reads in a sequence of strings from standard input and constructs a linked list of the elements
(as opposed to just 3 strings where you name each Node object)

12

Traversing a Linked List

Iteration. Idiom for traversing a null-terminated linked list.

for (Node x = first; x != null; x = x.next) {
StdOut.println(x.item);

}

Alice Bob Carol null

item next

first

Presenter
Presentation Notes
with arrays we write (for int i = 0; i < N; i++) to traverse elements one at a time in order. Same idea for linked lists.

13

Stack Push: Linked List Implementation

second = first;

first.item = item;
first.next = second;

first = new Node();

best the was it

first

of

second

best the was it

first second

best the was it

first

second

best the was it

first

14

Stack Pop: Linked List Implementation

first = first.next;

return item;

best the was it

first

of

best the was it

first

best the was it

first

of

garbage-collected

item = first.item;

"of"

Presenter
Presentation Notes
Note: it's the Node object that gets garbage collected; a reference to the String is returned to the client

15

Stack: Linked List Implementation

public class LinkedStackOfStrings {
private Node first = null;

private class Node {
private String item;
private Node next;

}

public boolean isEmpty() { return first == null; }

public void push(String item) {
Node second = first;
first = new Node();
first.item = item;
first.next = second;

}

public String pop() {
String item = first.item;
first = first.next;
return item;

}
}

"inner class"

Presenter
Presentation Notes
by declaring inner class, you can access instance variables of Node via dot operator within LinkedStackOfStrings, bu can't access Node in any other file
Note that the access modifier of the Node's instance variables are irrelevant since Node is private inner class
Some students the newly allocated node sticks around after push() returns.
Also note that first is an instance variable (retains state from method call to method call), whereas second is a local variable that goes out of scope when push() returns

16

Linked List Stack: Trace

push

pop

17

Stack Implementations: Tradeoffs

Array.
Every push/pop operation take constant time.
But… must fix maximum capacity of stack ahead of time.

Linked list.
Every push/pop operation takes constant time.
But… uses extra space and time to deal with references.

Presenter
Presentation Notes
no clear winner – always tradeoffs

18

Parameterized Data Types

19

Parameterized Data Types

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, …

Strawman. Implement a separate stack class for each type.
Rewriting code is tedious and error-prone.
Maintaining cut-and-pasted code is tedious and error-prone.

20

Generics

Generics. Parameterize stack by a single type.

Stack<Apple> stack = new Stack<Apple>();
Apple a = new Apple();
Orange b = new Orange();
stack.push(a);
stack.push(b); // compile-time error
a = stack.pop();

parameterized type

sample client

Presenter
Presentation Notes
read Stack<Apple> as "Stack of Apples"

21

Generic Stack: Linked List Implementation

public class Stack<Item> {
private Node first = null;

private class Node {
private Item item;
private Node next;

}

public boolean isEmpty() { return first == null; }

public void push(Item item) {
Node second = first;
first = new Node();
first.item = item;
first.next = second;

}

public Item pop() {
Item item = first.item;
first = first.next;
return item;

}
}

arbitrary parameterized type name

Presenter
Presentation Notes
Sun recommends single capital letter

22

Autoboxing

Generic stack implementation. Only permits reference types.

Wrapper type.
Each primitive type has a wrapper reference type.
Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast from primitive type to wrapper type.
Autounboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
stack.push(17); // autobox (int -> Integer)
int a = stack.pop(); // autounbox (Integer -> int)

Presenter
Presentation Notes
syntactic sugar: casts are still done behind the scenes (hidden cost)

23

Stack Applications

Real world applications.
Parsing in a compiler.
Java virtual machine.
Undo in a word processor.
Back button in a Web browser.
PostScript language for printers.
Implementing function calls in a compiler.

Presenter
Presentation Notes
JVM is a stack based machine (ala postscript)

24

Function Calls

How a compiler implements functions.
Function call: push local environment and return address.
Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

static int gcd(int p, int q) {
if (q == 0) return p;
else return gcd(q, p % q);

}

gcd (216, 192)

static int gcd(int p, int q) {
if (q == 0) return p;
else return gcd(q, p % q);

}

gcd (192, 24)

static int gcd(int p, int q) {
if (q == 0) return p;
else return gcd(q, p % q);

}

gcd (24, 0)

p = 24, q = 0

p = 192, q = 24

p = 216, q = 192

25

Arithmetic Expression Evaluation

Goal. Evaluate infix expressions.

Two stack algorithm. [E. W. Dijkstra]
Value: push onto the value stack.
Operator: push onto the operator stack.
Left parens: ignore.
Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

operand operator

value stack
operator stack

Presenter
Presentation Notes
Consider creating a demo for 2-stack algorithm - the figure is a bit small when projected
we assume expression is fully parenthesized; algorithm can be modified to deal with precedence order and associativity
also easy to add -, /, sqrt. See book.
Interpreter = a program that executes another program (e.g., an infix expression)

26

Arithmetic Expression Evaluation

public class Evaluate {
public static void main(String[] args) {

Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>();
while (!StdIn.isEmpty()) {

String s = StdIn.readString();
if (s.equals("(")) ;
else if (s.equals("+")) ops.push(s);
else if (s.equals("*")) ops.push(s);
else if (s.equals(")")) {

String op = ops.pop();
if (op.equals("+")) vals.push(vals.pop() + vals.pop());
else if (op.equals("*")) vals.push(vals.pop() * vals.pop());

}
else vals.push(Double.parseDouble(s));

}
StdOut.println(vals.pop());

}
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

Presenter
Presentation Notes
We read in each token as a string; we assume all tokens are separated by whitespace

27

Correctness

Why correct? When algorithm encounters an operator surrounded by
two values within parentheses, it leaves the result on the value stack.

So it's as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity, whitespace.

1 + (2 - 3 - 4) * 5 * sqrt(6*6 + 7*7)

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))

(1 + 100)

101

28

Stack-Based Programming Languages

Observation 1. Remarkably, the 2-stack algorithm computes the same
value if the operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, …

(1 ((2 3 +) (4 5 *) *) +)

1 2 3 + 4 5 * * +

Jan Lukasiewicz

29

Queues

30

Queue API

public static void main(String[] args) {
Queue<String> q = new Queue<String>();
q.enqueue("Vertigo");
q.enqueue("Just Lose It");
q.enqueue("Pieces of Me");
q.enqueue("Pieces of Me");
while(!q.isEmpty())

StdOut.println(q.dequeue());
}

return an iterator over the keysiterator()Iterator<Key>

enqueue dequeue

Presenter
Presentation Notes
strings = popular iTunes songs (Fall 2004)

31

Enqueue: Linked List Implementation

last = new Node();
last.item = item;
last.next = null;

oldlast.next = last;

first

it was the best

last

of

first

it was the best

oldlast

it was the best of

lastfirst oldlast

oldlast = last;it was the best

lastfirst oldlast

last

32

Dequeue: Linked List Implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it item = first.item;

last

last

last

garbage-collected

it

33

Queue: Linked List Implementation

public class Queue<Item> {
private Node first, last;

private class Node { Item item; Node next; }

public boolean isEmpty() { return first == null; }

public void enqueue(Item item) {
Node oldlast = last;
last = new Node();
last.item = item;
last.next = null;
if (isEmpty()) first = last;
else oldlast.next = last;

}

public Item dequeue() {
Item item = first.item;
first = first.next;
if (isEmpty()) last = null;
return item;

}
}

Presenter
Presentation Notes
Note: default constructors initialize everything to null

34

Queue Applications

Some applications.
iTunes playlist.
Data buffers (iPod, TiVo).
Asynchronous data transfer (file IO, pipes, sockets).
Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.
Guitar string.
Traffic analysis.
Waiting times of customers at call center.
Determining number of cashiers to have at a supermarket.

Presenter
Presentation Notes
CD players – use buffer to make skip-free ("shock protection")
Lincoln tunnel: can you make a left turn off of 10th avenue onto 31st? Just changed and now 90 minute delays. Someone didn't simulate the consequences (properly).
Graph processing (stay tuned for breadth first search).

35

M/D/1 Queuing Model

M/D/1 queue.
Customers are serviced at fixed rate of μ per minute.
Customers arrive according to Poisson process at rate of λ per minute.

Q. What is average wait time W of a customer?
Q. What is average number of customers L in system?

Arrival rate λ Departure rate μ

Infinite queue Server

Pr[X ≤ x] = 1− e−λx
inter-arrival time has exponential distribution

Presenter
Presentation Notes
We assume mu > lambda; otherwise queue becomes unbounded

36

37

Event-Based Simulation

public class MD1Queue {
public static void main(String[] args) {

double lambda = Double.parseDouble(args[0]);
double mu = Double.parseDouble(args[1]);
Queue<Double> q = new Queue<Double>();
double nextArrival = StdRandom.exp(lambda);
double nextService = nextArrival + 1/mu;
while(true) {

if (nextArrival < nextService) {
q.enqueue(nextArrival);
nextArrival += StdRandom.exp(lambda);

}

else {
double wait = nextService - q.dequeue();
// add waiting time to histogram
if (q.isEmpty()) nextService = nextArrival + 1/mu;
else nextService = nextService + 1/mu;

}
}

}
}

arrival

service

38

Observation. As service rate approaches arrival rate, service goes to h***.

Queueing theory.

λ = .2, μ = .25λ = .2, μ = .21

M/D/1 Queue Analysis

W = λ
2μ (μ −λ)

 + 1
μ

 , L = λ W

Little's law

see ORFE 309

Presenter
Presentation Notes
M=Markovian, D=Degenerate (ie fixed), 1=number of servers;
L=number of customers, lambda=average arrival rate, W=average time waiting

39

Summary

Stacks and queues are fundamental ADTs.
Array implementation.
Linked list implementation.
Different performance characteristics.

Many applications.

Extra Slides

Presenter
Presentation Notes
1-28

41

Doug’s first calculator

ENTER means push

No parens!

42

public class ArrayStack<Item> {
private Item[] a;
private int N;

public ArrayStack(int capacity) {
a = new Item[capacity];

}

public boolean isEmpty() { return N == 0; }

public void push(Item item) {
a[N++] = item;

}

public Item pop() {
return a[--N];

}
}

Generic Stack: Array Implementation

The way it should be.

@#$*! generic array creation not allowed in Java

43

public class ArrayStack<Item> {
private Item[] a;
private int N;

public ArrayStack(int capacity) {
a = (Item[]) new Object[capacity];

}

public boolean isEmpty() { return N == 0; }

public void push(Item item) {
a[N++] = item;

}

public Item pop() {
return a[--N];

}
}

Generic Stack: Array Implementation

The way it is: an ugly cast in the implementation.

the ugly cast

44

Queue: Array Implementation

Array implementation of a queue.
Use array q[] to store items on queue.
enqueue(): add new object at q[tail].
dequeue(): remove object from q[head].
Update head and tail modulo the capacity.

the best of times

0 1 2 3 4 5 6 7 8 9

q[]

head tail capacity = 10

Linked Stuff

46

Linked Structures Overview

Linked structures. Simple abstraction for customized access to data.

Singly linked structures.
Linked list.
Circular linked list.
Parent-link tree.

Doubly linked structures.
Binary tree.
Patricia tries.
Doubly linked circular list.

null

Presenter
Presentation Notes
Singly linked and doubly linked structures have a lot of flexibility and have many interesting applications.
Many different structures and shapes

47

Conclusions

Sequential allocation: supports indexing, fixed size.
Linked allocation: variable size, supports sequential access.

Linked structures are a central programming abstraction.
Linked lists.
Binary trees.
Graphs.
Sparse matrices. 'Haddocks' Eyes'

'The Aged
Aged Man'

'Ways and Means'

'A-sitting On A Gate'

Alice should have done this!

48

Conclusions

Whew, lots of material in this lecture!
Pointers are useful, but can be confusion.
Study these slides and carefully read relevant material.

	4.3 Stacks and Queues
	 Stacks and Queues
	Slide Number 3
	Stack API
	Stack: Array Implementation
	Array Stack: Trace
	Array Stack: Performance
	Slide Number 8
	Sequential vs. Linked Allocation
	Linked Lists
	Building a Linked List
	Traversing a Linked List
	Stack Push: Linked List Implementation
	Stack Pop: Linked List Implementation
	Stack: Linked List Implementation
	Linked List Stack: Trace
	Stack Implementations: Tradeoffs
	Slide Number 18
	Parameterized Data Types
	Generics
	Generic Stack: Linked List Implementation
	Autoboxing
	Stack Applications
	Function Calls
	Arithmetic Expression Evaluation
	Arithmetic Expression Evaluation
	Correctness
	Stack-Based Programming Languages
	Slide Number 29
	Queue API
	Enqueue: Linked List Implementation
	Dequeue: Linked List Implementation
	 Queue: Linked List Implementation
	Queue Applications
	M/D/1 Queuing Model
	Slide Number 36
	Event-Based Simulation
	M/D/1 Queue Analysis
	Summary
	Extra Slides
	Doug’s first calculator
	Generic Stack: Array Implementation
	Generic Stack: Array Implementation
	Queue: Array Implementation
	Linked Stuff
	Linked Structures Overview
	Conclusions
	Conclusions

