Reading. Read Chapter 2: “Finite Automata”. There is several pre-recorded lectures pertaining to this assignment. They can be found following the links on the grid of notes, or on Canvas.

Additional Resources. See the Panoto videos.

Assignment. The questions this week are only on sections 2.3 and 2.4. (Last week the questions were on sections 2.3 and 2.4.)

Do some small number of the following exercises.

- Section 2.4: Problems 1–3(a–e). Proofs: 7.

We are especially interested in clear exposition and proof technique. (Some solutions sketches are in the back of the book.)

Submission. Write up the solutions. You may use pen and paper, plain text, or \LaTeX. Produce a PDF document, and submit it on Canvas by the end of the day Fri, 10 Sep 2021.

The due date is for the completed problem set. You should read the material in advance, and start thinking and working on the problems in advance, so that you can ask questions in class.

Questions. If you still have questions about how to do the problems, you are welcome to send me e-mail: ryan@fit.edu. Students may be called upon to share and explain their progress on the exercises during class.

Assessment. Ultimately the written proofs, your choice of exercises, and your participation in answering and asking questions, will influence your course grade.

Objectives.

1. Transform an arbitrary nfa to an equivalent dfa
2. Transform an arbitrary dfa to an equivalent dfa with the minimum number of state.