Reading. Read Chapter 3: “Regular Languages and Regular Grammars. Lecture notes can be found at the class [WWW site]. Section 3.3 on regular grammars is sometimes omitted due to lack of time.

Read Section 1.2 on grammars before Section 3.3 on regular grammars.

Assignment. Do some small number of the following exercises.

- Section 3.2: Problems 1–5, 11, 12
- Section 3.3: Problems 1–7, 11–14

We are especially interested in clear exposition and proof technique. (Some solutions sketches are in the back of the book.)

Submission. Write up the solutions. You may use pen and paper, plain text, or \LaTeX. Produce a PDF document, and submit it on Canvas by the due date before the end of the day.

The due date is for the completed problem set. You should read the material in advance, and start thinking and working on the problems in advance, so that you can ask questions in class.

Collaborating is encouraged; no individual grade for the homework will be used in determined the individual course grade (that’s what the tests are for). Copying just wastes everyone’s time; it is quality that is important not quantity. Copying is not practicing. Of course, some individual may require much more practice than others to achieve the same level of competency on the tests.

Questions. If you have questions about how to do the problems, you are welcome to send me e-mail: ryan@fit.edu. Students may be called upon to share and explain their progress on the exercises during class.

Assessment. Ultimately the written proofs, your choice of exercises, and your participation in answering and asking questions, will influence your course grade.
Objectives.

1. (§3.1) Define, recognize, and construct a regular expression (Definition 3.1, page 74)
2. (§3.1) Identify the language denoted by a regular expression (Definition 3.2, page 75)
3. (§3.1) Find a regular expression describing a given language (Example 3.6, page 77)
4. (§3.2) Construct an nfa to accept a language denoted by a regular expression (Theorem 3.1, page 80)
5. (§3.2) Construct a regular from a given finite automaton using generalized transition graphs
6. (§3.3*) Identify and construct regular grammars (Definition 3.3, page 92)
7. (§3.3*) Construct a nfa from a regular grammar (Theorem 3.3, page 94) and vice versa (Theorem 3.4, page 96)