Single Final State for NFAs and DFAs
Observation

Any Finite Automaton (NFA or DFA) can be converted to an equivalent NFA with a single final state.
Example

NFA

Equivalent NFA
In General

NFA

Equivalent NFA

Single final state
Extreme Case

NFA without final state

Add a final state
Without transitions
Some Properties of Regular Languages
Properties

For regular languages L_1 and L_2 we will prove that:

- Union: $L_1 \cup L_2$
- Concatenation: $L_1 L_2$
- Star: L_1^*

Are regular Languages
We Say:

Regular languages are **closed under**

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1^*
Regular language L_1

$L(M_1) = L_1$

NFA M_1

Single final state

Regular language L_2

$L(M_2) = L_2$

NFA M_2

Single final state
Example

\[L_1 = \{ a^n b \} \]

\[M_1 \]

\[L_2 = \{ ba \} \]

\[M_2 \]
NFA for $L_1 \cup L_2$
NFA for \(L_1 \cup L_2 = \{a^n b\} \cup \{ba\} \)

\(L_1 = \{a^n b\} \)

\(L_2 = \{ba\} \)
Concatenation

NFA for L_1L_2

\[M_1 \rightarrow \lambda \rightarrow M_2 \]
Example

NFA for \(L_1 L_2 = \{ a^n b \} \{ ba \} = \{ a^n bba \} \)
Star Operation

NFA for L_1^*

$\lambda \in L_1^*$
NFA for \(L_1^* = \{a^n b\}^* \)
Regular Expressions
Regular Expressions

Regular expressions describe regular languages

Example: \((a + b \cdot c)^*\)

describes the language

\(\{a, bc\}^* = \{\lambda, a, bc, aa, abc, bca, \ldots\}\)
Recursive Definition

Primitive regular expressions: \(\emptyset, \lambda, \alpha \)

Given regular expressions \(r_1 \) and \(r_2 \)

\[
\begin{align*}
& r_1 + r_2 \\
& r_1 \cdot r_2 \\
& r_1^* \\
& (r_1)
\end{align*}
\]

Are regular expressions
Examples

A regular expression: \((a + b \cdot c)^* \cdot (c + \emptyset)\)

Not a regular expression: \((a + b +)\)
Languages of Regular Expressions

$L(r)$: language of regular expression r

Example

$L((a + b \cdot c)^*) = \{ \lambda, a, bc, aa, abc, bca, \ldots \}$
Definition

For primitive regular expressions:

\[L(\emptyset) = \emptyset \]

\[L(\lambda) = \{ \lambda \} \]

\[L(a) = \{ a \} \]
For regular expressions r_1 and r_2

$L(r_1 + r_2) = L(r_1) \cup L(r_2)$

$L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$

$L(r_1 *) = (L(r_1))^*$

$L((r_1)) = L(r_1)$
Example

Regular expression: \((a + b) \cdot a^*\)

\[L((a + b) \cdot a^*) = L((a + b)) L(a^*) \]

\[= L(a + b) L(a^*) \]

\[= (L(a) \cup L(b)) (L(a))^* \]

\[= (\{a\} \cup \{b\}) (\{a\})^* \]

\[= \{a,b\} \{\lambda,a,aa,aaa,aaa,...\} \]

\[= \{a,aa,aaa,...,b,ba,baa,...\} \]
Example

Regular expression \(r = (a + b)^* (a + bb) \)

\[L(r) = \{a, bb, aa, abb, ba, bbb, \ldots\} \]
Example

Regular expression \[r = (aa)^* (bb)^* b \]

\[L(r) = \{ a^{2n} b^{2m} b : \quad n, m \geq 0 \} \]
Example

Regular expression \(r = (0+1)^*00(0+1)^* \)

\(L(r) = \{ \text{all strings with at least two consecutive 0} \} \)
Example

Regular expression \[r = (1+01)^* (0+\lambda) \]

\[L(r) = \{ \text{all strings without two consecutive 0} \} \]
Equivalent Regular Expressions

Definition:

Regular expressions \(r_1 \) and \(r_2 \) are equivalent if

\[L(r_1) = L(r_2) \]
Example

$L = \{ \text{all strings without two consecutive } 0 \}$

$$r_1 = (1 + 01)^* (0 + \lambda)$$

$$r_2 = (1^* 01 1^*)^* (0 + \lambda) + 1^* (0 + \lambda)$$

$L(r_1) = L(r_2) = L$ \hspace{1cm} \Rightarrow \hspace{1cm} r_1 \hspace{0.5cm} \text{and} \hspace{0.5cm} r_2 \hspace{0.5cm} \text{are equivalent regular expr.}$
Regular Expressions
and
Regular Languages
Theorem

\[
\{ \text{Languages Generated by Regular Expressions} \} = \{ \text{Regular Languages} \}
\]
Theorem - Part 1

1. For any regular expression r, the language $L(r)$ is regular.
Theorem - Part 2

2. For any regular language L there is a regular expression r with $L(r) = L$.
1. For any regular expression r, the language $L(r)$ is regular.

Proof by induction on the size of r.
Induction Basis

Primitive Regular Expressions: \emptyset, λ, α

NFAs

$L(M_1) = \emptyset = L(\emptyset)$

$L(M_2) = \{\lambda\} = L(\lambda)$

$L(M_3) = \{a\} = L(a)$

regular languages
Inductive Hypothesis

Assume for regular expressions \(r_1 \) and \(r_2 \) that \(L(r_1) \) and \(L(r_2) \) are regular languages.
Inductive Step

We will prove:

\[L(r_1 + r_2) \]

\[L(r_1 \cdot r_2) \]

\[L(r_1^*) \]

\[L((r_1)) \]

Are regular Languages
By definition of regular expressions:

\[L(r_1 + r_2) = L(r_1) \cup L(r_2) \]

\[L(r_1 \cdot r_2) = L(r_1) L(r_2) \]

\[L(r_1^*) = (L(r_1))^* \]

\[L((r_1)) = L(r_1) \]
By inductive hypothesis we know:

\[L(r_1) \text{ and } L(r_2) \text{ are regular languages} \]

We also know:

Regular languages are closed under

- union \[L(r_1) \cup L(r_2) \]
- concatenation \[L(r_1) L(r_2) \]
- star \[(L(r_1))^* \]
Therefore:

\[L(r_1 + r_2) = L(r_1) \cup L(r_2) \]

\[L(r_1 \cdot r_2) = L(r_1) L(r_2) \]

\[L(r_1^*) = (L(r_1))^* \]

Are regular languages
And trivially:

$L((r_1))$ is a regular language
2. For any regular language L there is a regular expression r with $L(r) = L$

Proof by construction of regular expression
Since L is regular take the NFA M that accepts it

$L(M) = L$

Single final state
From M construct the equivalent Generalized Transition Graph. Transition labels are regular expressions.

Example:
Another Example:
Reducing the states:

\[
\begin{align*}
\text{Reduction:} & \quad \text{bb}^* a \\
\text{Graph:} & \quad \text{bb}^* (a + b)
\end{align*}
\]
Resulting Regular Expression:

\[r = (bb^* a)^* bb^*(a+b)b^* \]

\[L(r) = L(M) = L \]
In General

Removing states:

\[
\begin{align*}
q_i & \xrightarrow{a} q \xrightarrow{b} q_j \\
q_i & \xrightarrow{ae^*b} q_j \\
q_i & \xrightarrow{ae^*d} q_i \\
q_j & \xrightarrow{ce^*b} q_j \\
q_j & \xrightarrow{ce^*d} q_j \\
q_i & \xrightarrow{e} q_j \\
q_i & \xrightarrow{d} q \\
q_j & \xrightarrow{c} q \\
q_j & \xrightarrow{b} q \\
q_i & \xrightarrow{a} q \\
q_j & \xrightarrow{b} q \\
q_j & \xrightarrow{c} q \\
q_j & \xrightarrow{e} q
\end{align*}
\]
The final transition graph:

The resulting regular expression:

\[r = r_1 * r_2 (r_4 + r_3 r_1 * r_2)^* \]

\[L(r) = L(M) = L \]