More Properties of Regular Languages
We have proven

Regular languages are closed under:

- Union
- Concatenation
- Star operation
- Reverse
Namely, for regular languages L_1 and L_2:

- **Union**: $L_1 \cup L_2$
- **Concatenation**: L_1L_2
- **Star operation**: L_1^*
- **Reverse**: L_1^R

These operations on regular languages yield another regular language.
We will prove

Regular languages are closed under:

Complement

Intersection
Namely, for regular languages L_1 and L_2:

- Complement: $\overline{L_1}$
- Intersection: $L_1 \cap L_2$

Regular Languages
Theorem: For regular language L, the complement \overline{L} is regular.

Proof: Take DFA that accepts L and make
- nonfinal states final
- final states nonfinal

Resulting DFA accepts \overline{L}.
Example:

\[L = L(a^* b) \]

\[\overline{L} = L(a^* + a^* b(a + b)(a + b)^*) \]
Intersection

Theorem: For regular languages L_1 and L_2 the intersection $L_1 \cap L_2$ is regular.

Proof: Apply DeMorgan’s Law:

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$
\[L_1, L_2 \quad \text{regular} \]

\[\overline{L_1}, \overline{L_2} \quad \text{regular} \]

\[L_1 \cup \overline{L_2} \quad \text{regular} \]

\[\overline{L_1} \cup L_2 \quad \text{regular} \]

\[L_1 \cup \overline{L_2} \quad \text{regular} \]

\[L_1 \cap L_2 \quad \text{regular} \]
Standard Representations of Regular Languages
Standard Representations of Regular Languages

- DFAs
- NFAs
- Regular Expressions
- Regular Grammars
When we say: We are given
a Regular Language \(L \)

We mean: Language \(L \) is in a standard representation

We may assume a regular language can be represented as a DFA, an NFA, a regular expression, or a regular grammar, whatever we find convenient.
Elementary Questions about Regular Languages
Membership Question

Question: Given regular language L and string w, how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted.
\(w \in L \)

\(w \not\in L \)
Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L. Check if there is a path from the initial state to a final state.
DFA

$L \neq \emptyset$

DFA

$L = \emptyset$
Given regular language L how can we check if L is finite?

Take the DFA that accepts L.

Check if there is a walk with cycle from the initial state to a final state.
L is infinite

L is finite
Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$
\((L_1 \cap \overline{L}_2) \cup (\overline{L}_1 \cap L_2) = \emptyset\)

\[L_1 \cap \overline{L}_2 = \emptyset \quad \text{and} \quad \overline{L}_1 \cap L_2 = \emptyset \]

\(L_1 \subseteq L_2\)

\(L_2 \subseteq L_1\)

\(L_1 = L_2\)
\[(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset\]

\[L_1 \cap \overline{L_2} \neq \emptyset \quad \text{or} \quad \overline{L_1} \cap L_2 \neq \emptyset\]

or

\[L_1 \subset L_2 \quad \text{or} \quad L_2 \subset L_1\]

\[L_1 \neq L_2\]
Non-regular languages
Non-regular languages

\{a^n b^n : n \geq 0\}

\{ww^R : w \in \{a,b\}^*\}

Regular languages

\(a^*b\)

\(b^*c + a\)

\(b + c(a + b)^*\)

\(etc...\)
How can we prove that a language \(L \) is not regular?

Prove that there is no DFA that accepts \(L \)

Problem: this is not easy to prove

Solution: the Pumping Lemma !!!
The Pigeonhole Principle
4 pigeons

3 pigeonholes
A pigeonhole must contain at least two pigeons.
\(n \) pigeons

\(m \) pigeonholes

\(n > m \)
The Pigeonhole Principle

\[n \text{ pigeons} \]

\[m \text{ pigeonholes} \]

\[n > m \]

There is a pigeonhole with at least 2 pigeons.
The Pigeonhole Principle

and

DFAs
DFA with 4 states
In walks of strings: a no state is repeated

aa

aab
In walks of strings: \texttt{aabb} \hspace{1cm} \text{a state is repeated}

\texttt{bbaa}

\texttt{abbabb}

\texttt{abbbabbbabbb...}
In walks of strings:

\[aabb \]

\[bbbaa \]

\[abbbabb \]

\[abbbabbabb... \]

A state is repeated.
If string w has length $|w| \geq 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated
In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w
In other words for a string w:

- transitions are pigeons
- states are pigeonholes

walk of w

Repeated state
The Pumping Lemma
Take an infinite regular language L

DFA that accepts L

m states
Take string w with $w \in L$

There is a walk with label w:

\[
\begin{array}{c}
\includegraphics[width=\textwidth]{walk_diagram}
\end{array}
\]

walk w
If string w has length $|w| \geq m$ number of states of DFA then, from the pigeonhole principle:

a state q is repeated in the walk w
Let q be the first state repeated
Write \(w = x \ y \ z \)
Observations:

- length $|xy| \leq m$
- number of states
- length $|y| \geq 1$
- number of states of DFA

Diagram:

- States x, y, z
- Transitions $x \rightarrow \ldots \rightarrow q \rightarrow \ldots \rightarrow z$
Observation: The string xz is accepted

![Diagram of a state machine with states and transitions labeled with x, y, and z.]
Observation: The string $x y y z$ is accepted.
Observation: The string is accepted.
In General:

The string $x y^i z$

is accepted $i = 0, 1, 2, ...$
In General:

\[x \ y^i \ z \in \ L \]

\[i = 0, 1, 2, \ldots \]

The original language
In other words, we described:

The Pumping Lemma !!!
The Pumping Lemma:

• Given a infinite regular language \(L \)

• there exists an integer \(m \)

• for any string \(w \in L \) with length \(|w| \geq m \)

• we can write \(w = x \ y \ z \)

• with \(|x \ y| \leq m \) and \(|y| \geq 1 \)

• such that: \(x \ y^i \ z \in L \quad i = 0, 1, 2, \ldots \)
Applications
of
the Pumping Lemma
Theorem: The language $L = \{a^n b^n : n \geq 0\}$ is not regular

Proof: Use the Pumping Lemma
\[L = \{ a^n b^n : n \geq 0 \} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
Let m be the integer in the Pumping Lemma.

Pick a string w such that: $w \in L$

length $|w| \geq m$

We pick $w = a^m b^m$
Write: \[a^m b^m = x y z \]

From the **Pumping Lemma** it must be that length \[|x y| \leq m, \quad |y| \geq 1 \]

\[xyz = a^m b^m = a \ldots a a \ldots a a \ldots a b \ldots b \]

Thus: \[y = a^k, \quad k \geq 1 \]
\[x \ y \ z = a^{m} b^{m} \quad \text{and} \quad y = a^{k}, \ k \geq 1 \]

From the **Pumping Lemma**: \[x \ y^{i} \ z \in L \]

\[i = 0, 1, 2, \ldots \]

Thus: \[x \ y^{2} \ z \in L \]
From the Pumping Lemma: \[x y^2 z \in L \]

Thus: \[a^{m+k} b^m \in L \]
\[a^{m+k} b^m \in L \quad k \geq 1 \]

BUT: \[L = \{ a^n b^n : n \geq 0 \} \]

\[a^{m+k} b^m \notin L \]

CONTRADICTION!!!
Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language
Non-regular language \(\{ a^n b^n : n \geq 0 \} \)