More Applications of the Pumping Lemma
The Pumping Lemma:

• Given a infinite regular language \(L \)

• there exists an integer \(m \)

• for any string \(w \in L \) with length \(|w| \geq m \)

• we can write \(w = x y z \)

• with \(|x y| \leq m \) and \(|y| \geq 1 \)

• such that: \(x y^i z \in L \quad i = 0, 1, 2, ... \)
Non-regular languages

\[L = \{ ww^R : w \in \Sigma^* \} \]

Regular languages
Theorem: The language

\[L = \{ww^R : w \in \Sigma^*\} \quad \Sigma = \{a, b\} \]

is not regular

Proof: Use the Pumping Lemma
Let \(L = \{ww^R : w \in \Sigma^*\} \)

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
\[L = \{ww^R : w \in \Sigma^*\} \]

Let \(m \) be the integer in the Pumping Lemma

Pick a string \(w \) such that: \(w \in L \) and

\[\text{length } |w| \geq m \]

We pick \(w = a^m b^m b^m a^m \)
Write \(a^m b^m b^m a^m = x \ y \ z \)

From the **Pumping Lemma**

it must be that length \(\ | \ x \ y \ | \leq m, \ | \ y \ | \geq 1 \)

Thus:

\[y = a^k, \quad k \geq 1 \]
\[x \ y \ z = a^m b^m b^m a^m \] \[y = a^k, \quad k \geq 1 \]

From the **Pumping Lemma:**

\[x \ y^i \ z \in L \]

\[i = 0, 1, 2, \ldots \]

Thus:

\[x \ y^2 \ z \in L \]
From the Pumping Lemma:

\[x y z = a^m b^m b^m a^m \quad y = a^k, \quad k \geq 1 \]

From the **Pumping Lemma**: \(x y^2 z \in L \)

Thus:

\[a^{m+k} b^m b^m a^m \in L \]
$a^{m+k} b^m b^m a^m \in L \quad k \geq 1$

BUT:

$L = \{ww^R : w \in \Sigma^*\}$

$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a^{m+k} b^m b^m a^m \not\in L$

CONTRADICTION!!!
Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language.
Non-regular languages

\[L = \{ a^n b^l c^{n+l} : n, l \geq 0 \} \]
Theorem: The language

\[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

is not regular

Proof: Use the Pumping Lemma
\[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
Let \(m \) be the integer in the Pumping Lemma.

Pick a string \(w \) such that: \(w \in L \) and

\[
|w| \geq m
\]

We pick \(w = a^m b^m c^{2m} \).
Write \(a^m b^m c^{2m} = x y z \)

From the **Pumping Lemma**

it must be that length \(|x y| \leq m, \; |y| \geq 1 \)

Thus:

\[y = a^k, \quad k \geq 1 \]
From the Pumping Lemma:

\[x y z = a^m b^m c^{2m} \quad y = a^k, \quad k \geq 1 \]

Thus:

\[x y^0 z = xz \in L \]
From the Pumping Lemma: $xz \in L$

Thus: $a^{m-k}b^mc^{2m} \in L$
\[a^{m-k} b^m c^{2m} \in L \quad k \geq 1 \]

BUT:

\[L = \{ a^n b^l c^{n+l} : n, l \geq 0 \} \]

\[a^{m-k} b^m c^{2m} \notin L \]

CONTRADICTION!!!
Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language
Non-regular languages

\[L = \{ a^{n!} : n \geq 0 \} \]

Regular languages
Theorem: The language \(L = \{ a^{n!} : n \geq 0 \} \) is not regular.

Proof: Use the Pumping Lemma

\[n! = 1 \cdot 2 \cdots (n-1) \cdot n \]
Assume for contradiction that L is a regular language.

Since L is infinite, we can apply the Pumping Lemma.
Let \(m \) be the integer in the Pumping Lemma

Pick a string \(w \) such that: \(w \in L \)

We pick \(w = a^m! \)
Write \(a^{m!} = x \ y \ z \)

From the **Pumping Lemma**

it must be that length \(|x\ y| \leq m, \ |y| \geq 1 \)

\[
xyz = a^{m!} = a \ldots a a \ldots a a \ldots a a \ldots a
\]

\[
x y z
\]

Thus: \(y = a^k, \ 1 \leq k \leq m \)
From the Pumping Lemma:

\[x \ y \ z = a^{m!} \]

\[y = a^k, \quad 1 \leq k \leq m \]

Thus:

\[x \ y^i \ z \in L \]

\[i = 0, 1, 2, \ldots \]

Thus:

\[x \ y^2 \ z \in L \]
\[x \ y \ z = a^{m!} \]
\[y = a^k, \ 1 \leq k \leq m \]

From the **Pumping Lemma**:
\[x \ y^2 \ z \in L \]

Thus:
\[a^{m!+k} \in L \]
Since: \[L = \{ a^{n!} : n \geq 0 \} \]

There must exist \(p \) such that:

\[m! + k = p! \]
However:

\[m! + k \leq m! + m \quad \text{for} \quad m > 1 \]

\[\leq m! + m! \]

\[< m!m + m! \]

\[= m!(m + 1) \]

\[= (m + 1)! \]

\[\Downarrow \]

\[m! + k < (m + 1)! \]

\[\Downarrow \]

\[m! + k \neq p! \quad \text{for any} \quad p \]
\[a^{m!+k} \in L \quad 1 \leq k \leq m \]

BUT:

\[L = \{ a^{n!} : n \geq 0 \} \]

\[a^{m!+k} \notin L \]

CONTRADICTION!!!
Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language
Lex
Lex: a lexical analyzer

- A Lex program recognizes strings

- For each kind of string found, the lex program takes an action
Input

Var = 12 + 9;
if (test > 20)
 temp = 0;
else
 while (a < 20)
 temp++;

Output

Identifier: Var
Operand: =
Integer: 12
Operand: +
Integer: 9
Semicolumn: ;
Keyword: if
Parenthesis: (Identifier: test

In Lex strings are described with regular expressions

Lex program

Regular expressions

"+" /* operators */

"-" "="

"if" "then" /* keywords */
Lex program

Regular expressions

(0|1|2|3|4|5|6|7|8|9)+ /* integers */

(a|b|..|z|A|B|...|Z)+ /* identifiers */
integers

$(0|1|2|3|4|5|6|7|8|9)^+ \
[0-9]^+$
identifiers

(a|b|..|z|A|B|...|Z)^+

[a-zA-Z]^{+}
Each regular expression has an associated action (in C code)

Examples:

<table>
<thead>
<tr>
<th>Regular expression</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\n</td>
<td>linenum++;</td>
</tr>
<tr>
<td>[0-9]+</td>
<td>printf(“integer”);</td>
</tr>
<tr>
<td>[a-zA-Z]+</td>
<td>printf(“identifier”);</td>
</tr>
</tbody>
</table>
Default action: ECHO;

Prints the string identified to the output
A small program

%%

[\t\n] ; /*skip spaces*/

[0-9]+ printf("Integer\n");

[a-zA-Z]+ printf("Identifier\n");
Input

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>var 566</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Identifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integer</td>
</tr>
</tbody>
</table>
Another program

```c
int linenum = 1;
%
%
[ \t] ; /*skip spaces*/

linenum++;

[0-9]+ printf(“Integer\n”);

[a-zA-Z]+ printf(“Identifier\n”);

. printf(“Error in line: %d\n”, linenum);
```
Input

1234 test
var 566 78
9800 +
temp

Output

Integer
Identifier
Identifier
Integer
Integer
Integer
Error in line: 3
Identifier
Lex matches the longest input string

Example: Regular Expressions

```
Input:       ifend       if       ifn
Matches:    "ifend"    "if"    nomatch
```

“if”
“ifend”
The final states of the DFA are associated with actions.