The Chomsky Hierarchy
Unrestricted Grammars:

Productions

\[u \rightarrow v \]

String of variables and terminals

String of variables and terminals
Example unrestricted grammar:

\[S \rightarrow aBc \]

\[aB \rightarrow cA \]

\[Ac \rightarrow d \]
Theorem:

A language L is recursively enumerable if and only if L is generated by an unrestricted grammar.

Theorem 11.6, Linz, 6th, page 293. Any language generated by an unrestricted grammar is recursively enumerable.

Theorem 11.7, Linz, 6th, page 297. Any language generated by an unrestricted grammar is recursively enumerable.
It is no surprise the unrestricted grammars are recursive enumerable.

A grammar generates strings by a well-defined algorithmic process, so the derivations can be done on a Turing machine.

(An appeal to Church’s thesis.)
To show the converse, we describe how any Turing machine can be mimicked by an unrestricted grammar.

The idea is relatively simple, but the complete construction is arduous.

If $q_0 \omega \vdash^* \times q_f \omega$, then $q_0 \omega \Rightarrow^* \times q_f \gamma$
Context-Sensitive Grammars:

Productions

\[u \rightarrow v \]

String of variables and terminals

| u | ≤ | v |

String of variables and terminals
The language \(\{a^n b^n c^n\} \) is context-sensitive:

\[
S \rightarrow abc \mid aAbc \\
Ab \rightarrow bA \\
Ac \rightarrow Bbcc \\
bB \rightarrow Bb \\
aB \rightarrow aa \mid aaA
\]
Theorem:

A language L is context sensitive if and only if L is accepted by a Linear-Bounded automaton.
Observation:

There is a language which is context-sensitive but not recursive
The Chomsky Hierarchy

- Non-recursively enumerable
- Recursively-enumerable
- Recursive
- Context-sensitive
- Context-free
- Regular
Decidability
A property P of strings is said to be **decidable** if the set of all strings having property P is a recursive set; that is, if there is a total Turing machine that accepts input strings that have property P and rejects those that do not.

\[
P \text{ is decidable } \iff \{x \mid P(x)\} \text{ is recursive.}
\]

\[
A \text{ is recursive } \iff \text{“}x \in A\text{” is decidable,
\]

Kozen
Consider problems with answer YES or NO

Examples:

• Does Machine M have three states?

• Is string w a binary number?

• Does DFA M accept any input?
A problem is decidable if some Turing machine solves (decides) the problem.

Decidable problems:

- Does Machine M have three states?
- Is string w a binary number?
- Does DFA M accept any input?
The Turing machine that solves a problem answers **YES** or **NO** for each instance.
The machine that decides a problem:

• If the answer is **YES**
 then halts in a **yes state**

• If the answer is **NO**
 then halts in a **no state**

These states may not be final states
Turing Machine that decides a problem

YES and NO states are halting states

YES states

NO states
Difference between Recursive Languages and Decidable problems

For decidable problems:

The YES states may not be final states
[What does the author mean?]

No harm in assuming YES states are final.

Decidable = Recursive
Some problems are undecidable:

which means:
there is no Turing Machine that solves all instances of the problem
A simple undecidable problem:

The membership problem
The Membership Problem

Input: • Turing Machine M, and
 • String w

Question: Does M accept w?

$w \in L(M)$?
Theorem: The membership problem is undecidable

(there are M and w for which we cannot decide whether $w \in L(M)$)

Proof: Assume for contradiction that the membership problem is decidable
Assume there exists a Turing Machine H that decides/solves the membership problem.

If M accepts w, then w is in the language accepted by M.

If M rejects w, then w is not in the language accepted by M.

Diagram:

- M as input
- H as the Turing Machine
- w as input
- YES if M accepts w
- NO if M rejects w
Let \(L \) be a recursively enumerable language.

Let \(M \) be the Turing Machine that accepts \(L \).

We will prove that \(L \) is also recursive: we will describe a Turing machine that accepts \(L \) and halts on any input.
Turing Machine that accepts L and halts on any input

\[M \text{ accepts } w ? \]

- YES \rightarrow accept w
- NO \rightarrow reject w
Therefore, \(L \) is recursive

Since \(L \) is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

\textbf{Contradiction!!!!}
Therefore, the membership problem is undecidable
Another famous undecidable problem:

The halting problem
ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers,
The Halting Problem

Input: • Turing Machine M, and
 • String w

Question: Does M halt on input w?
Theorem: The halting problem is undecidable

(there are M and w for which we cannot decide whether M halts on input w)

Proof: Assume for contradiction that the halting problem is decidable
Thus, there exists Turing Machine H that solves the halting problem.
Construction of H

Input:
initial tape contents

w_M w

Encoding of M

String w

q_0 q_y YES

q_n NO
Construct machine H':

If H returns YES then loop forever

If H returns NO then halt
H'

H

q_0 -> q_y (YES)

q_n (NO)

q_a (Loop forever)

q_b

w_M -> w
Construct machine \hat{H}:

Input: w_M (machine M)

If M halts on input w_M

Then loop forever

Else halt
Run machine \hat{H} with input itself:

Input: $w_{\hat{H}}$ (machine \hat{H})

If \hat{H} halts on input $w_{\hat{H}}$

Then loop forever

Else halt
\(\hat{H} \) on input \(w_{\hat{H}} \):

If \(\hat{H} \) halts then loops forever

If \(\hat{H} \) doesn’t halt then it halts

NONSENSE !!!!!
Therefore, we have contradiction

The halting problem is undecidable

END OF PROOF
Another proof of the same theorem:

If the halting problem were decidable then every recursively enumerable language would be recursive.

If $L = \{M_w \# w | M_w \text{ halts on } w\}$ were recursive, then every r.e. set is recursive.
Theorem: The halting problem is undecidable

Proof: Assume for contradiction that the halting problem is decidable
Thus, there exists Turing Machine H that solves the halting problem.

- If M halts on w, then H outputs YES.
- If M doesn’t halt on w, then H outputs NO.
Let L be a recursively enumerable language.

Let M be the Turing Machine that accepts L. We will describe a Turing machine that accepts L and halts on any input, proving that L is also recursive.
Turing Machine that accepts L and halts on any input.

Run M with input w

- Halts on final state: accept w
- Halts on non-final state: reject w

If M halts on w?

- Yes: accept w
- No: reject w
Therefore L is recursive

Since L is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!
Therefore, the halting problem is undecidable