Reducibility
There are two main techniques for showing that problems are undecidable: diagonalization and reduction
We say that a problem A is reduced to a problem B if the decidability of A follows from the decidability of B.

Linz, 6th, page 315
Problem A is reduced to problem B

If we can solve problem B then we can solve problem A
A is reducible to B if we can use B as a subroutine to solve A.

Use a halting TM for B in the construction of a halting TM which decides problem A.
Problem \(A \) is reduced to problem \(B \)

If \(B \) is decidable then \(A \) is decidable

If \(A \) is undecidable then \(B \) is undecidable
Example: the halting problem is reduced to the state-entry problem.

So, if the halting problem is undecidable, then the state-entry problem is undecidable.
The state-entry problem

Inputs:
• Turing Machine M
• State q
• String w

Question: Does M enter state q on input w?
Theorem: The state-entry problem is undecidable

Proof: Reduce the halting problem to the state-entry problem.
Suppose we have an algorithm (Turing Machine) that solves the state-entry problem.

We will construct an algorithm that solves the halting problem.
Assume we have the state-entry algorithm:

Algorithm for state-entry problem

M \rightarrow \text{Algorithm for state-entry problem} \rightarrow \begin{cases} \text{YES} & M \text{ enters } q \\ \text{NO} & M \text{ doesn't enter } q \end{cases}

w \rightarrow \text{Algorithm for state-entry problem} \rightarrow \begin{cases} M \text{ enters } q \\ M \text{ doesn't enter } q \end{cases}

q \rightarrow \text{Algorithm for state-entry problem} \rightarrow \begin{cases} \text{YES} & M \text{ enters } q \\ \text{NO} & M \text{ doesn't enter } q \end{cases}
We want to design the halting algorithm:
Modify any machine M to construct M':

- Add new state q
- From any halting state add transitions to q
M halts if and only if

M' halts on state q
Algorithm for halting problem:

Inputs: machine M and string w

1. Construct machine M' with state q

2. Run algorithm for state-entry problem with inputs: M', q, w
Halting problem algorithm

Generate

M'

M

w

q

State-entry algorithm

YES

YES

NO

NO
We reduced the halting problem to the state-entry problem.

Since the halting problem is undecidable, it must be that the state-entry problem is also undecidable.

END OF PROOF
Another example:

the halting problem

is reduced to

the blank-tape halting problem
The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?
Theorem:
The blank-tape halting problem is undecidable

Proof: Reduce the halting problem to the blank-tape halting problem
Suppose we have an algorithm for the blank-tape halting problem.

We will construct an algorithm for the halting problem.
Assume we have the blank-tape halting algorithm/machine. It looks like this:

\[M \xrightarrow{\text{Algorithm for blank-tape halting problem}} \]

- YES: \(M \) halts on blank tape
- NO: \(M \) doesn’t halt on blank tape
We want to design a machine that decides the halting problem. The machine looks like this:

Algorithm for halting problem

YES

M halts on w

NO

M doesn’t halt on w
Construct a new machine M_w

- On blank tape writes w
- Then continues execution like M

\[
\begin{array}{c}
\text{step 1} \\
\text{if blank tape} \\
\text{then write } w
\end{array}
\quad
\begin{array}{c}
\text{step 2} \\
\text{execute } M \\
\text{with input } w
\end{array}
\]
M halts on input string w

if and only if

M_w halts when started with blank tape
Algorithm for halting problem:

Inputs: machine M and string w

1. Construct M_w

2. Run algorithm for blank-tape halting problem with input M_w
Halting problem algorithm

\[M \xrightarrow{\mbox{Generate}} M_w \xrightarrow{M_w} \text{blank-tape halting algorithm} \]

Output:
- YES
- NO
We reduced the halting problem to the blank-tape halting problem.

Since the halting problem is undecidable, the blank-tape halting problem is also undecidable.

END OF PROOF
Summary of Undecidable Problems

Halting Problem:

Does machine M halt on input w?

Membership problem:

Does machine M accept string w?

In other words: Is a string w member of a recursively enumerable language L?
Blank-tape halting problem:
Does machine M halt when starting on blank tape?

State-entry Problem:
Does machine M enter state q on input w?
Uncomputable Functions
A function is uncomputable if it cannot be computed for all of its domain.
An uncomputable function:

$$f(n) = \begin{cases} \text{maximum number of moves until} \\ \text{any Turing machine with } n \text{ states} \\ \text{halts when started with the blank tape} \end{cases}$$
Theorem: Function $f(n)$ is uncomputable

Proof: Assume for contradiction that $f(n)$ is computable.

Then the blank-tape halting problem is decidable.
Algorithm for blank-tape halting problem:

Input: machine M

1. Count states of $M : m$

2. Compute $f(m)$

3. Simulate M for $f(m)$ steps starting with empty tape

If M halts then return YES
otherwise return NO
Therefore, the blank-tape halting problem is decidable

However, the blank-tape halting problem is undecidable

Contradiction!!!
Therefore, function $f(n)$ is uncomputable.

END OF PROOF
Rice’s Theorem
Definition:

Non-trivial properties of recursively enumerable languages:

any property possessed by some (not all) recursively enumerable languages
Some non-trivial properties of recursively enumerable languages:

- L is empty
- L is finite
- L contains two different strings of the same length
Rice’s Theorem:

Any non-trivial property of a recursively enumerable language is undecidable
In exactly the same manner, we can substitute other questions such as “Does $L(M)$ contain any string of length five?” or “Is $L(M)$ regular?” without affecting the argument essentially. These questions, as well as similar questions, are all undecidable. A general result fromalizing this is known as Rice’s theorem.
Rice's Theorem

This theorem states that any nontrivial property of a recursively enumerable language is undecidable. The adjective "nontrivial" refers to a property possessed by some but not all recursively enumerable languages. A precise statement and a proof of Rice's theory can be found in Hopcroft and Ullman (1979).

Linz, 6th, pages 321-322
A property of the RE languages is simply a set of RE languages. Thus, the property of being context-free is formally the set of all CFL’s. The property of being empty is the set \{\emptyset\} consisting of only the empty language.

Theorem 9.11: (Rice’s Theorem) Every nontrivial property of the RE languages is undecidable.

Hopcroft, Motwani, Ullman, 3rd, pages 397-398
We will prove some non-trivial properties without using Rice’s theorem
Theorem:

For any recursively enumerable language L, it is undecidable to determine whether L is empty.

Proof:

We will reduce the membership problem to this problem.
Let M be the machine that accepts L

$L(M) = L$

Assume we have the empty language algorithm:

Algorithm for empty language problem

YES $\rightarrow L(M)$ empty

NO $\rightarrow L(M)$ not empty
We will design the membership algorithm:

Algorithm for membership problem

- If M accepts w, then w is in the language of M.
- If M rejects w, then w is not in the language of M.
First construct machine M_w:

When M enters a final state, compare original input string with w.

Accept if original input is the same with w.

\(w \in L \)

if and only if

\(L(M_w) \) is not empty

\[L(M_w) = \{ w \} \]
Algorithm for membership problem:

Inputs: machine M and string w

1. Construct M_w

2. Determine if $L(M_w)$ is empty

YES: then $w \notin L(M)$

NO: then $w \in L(M)$
Membership algorithm

$M \rightarrow$ construct M_w

$w \rightarrow$ construct M_w

$L(M_w) \rightarrow$ Check if is empty

YES \rightarrow NO

NO \rightarrow YES

END OF PROOF