
Chapter
10

OTHER MODELS OF
TURING MACHINES

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Explain the concept of equivalence between classes of automata

• Describe how a Turing machine with a stay-option can be
simulated by a standard Turing machine

• Describe how a standard Turing machine can be simulated by a
machine with a semi-infinite tape

• Describe how off-line and multidimensional Turing machines can
be simulated by standard Turing machines

• Construct two-tape Turing machines to accept simple languages

• Describe the operation of nondeterministic Turing machines and
their relationship to deterministic Turing machines

• Describe the components of a universal Turing machine

• Describe the operation of linear bounded automata and their
relationship to standard Turing machines

Equivalence of Classes of Automata

• Two automata are equivalent if they accept the
same language

• Given two classes of automata C1 and C2, if for every
automaton in C1 there is an equivalent automaton in
C2, the class C2 is at least as powerful as C1

• If the class C1 is at least as powerful as C2, and the
converse also holds, then the classes C1 and C2 are
equivalent

• Equivalence can be established either through a
constructive proof or by simulation

Turing Machines with a Stay-Option

• In a Turing Machine with a Stay-Option, the read-
write head has the option to say in place after
rewriting the cell content

• Theorem 10.1 states the class of Turing machines
with a stay-option is equivalent to the class of
standard Turing machines

• To show equivalence, we argue that any machine
with a stay-option can be simulated by a standard
Turing machine, since the stay-option can be
accomplished by
• A rule that rewrites the symbol and moves right, and
• A rule that leaves the tape unchanged and moves left

Turing Machines with Semi-Infinite Tape
• As shown in Figure 10.2, a common variation of the

standard Turing machine is one in which the tape is
unbounded only in one direction

• A Turing machine with semi-infinite tape is
otherwise identical to the standard model, except
that no left move is possible when the read-write
head is at the tape boundary

Equivalence of Standard Turing Machines
and Semi-Infinite Tape Machines
• The classes are equivalent because, as shown in Figure 10.4,

any standard Turing machine can be simulated by a machine
with a semi-infinite tape

• The simulating machine has two tracks: the upper track
contains the symbols to the right of an arbitrary reference
point, while the lower track contains those to the left of the
reference point in reverse order

The Off-Line Turing Machine
• As shown in Figure 10.6, an off-line Turing machine has a

read-only input file in addition to the read-write tape

• Transitions are determined by both the current input
symbol and the current tape symbol

Equivalence of Standard Turing Machines
and Off-Line Turing Machines
• The classes are equivalent because, as shown in Figure 10.7,

a standard Turing machine with four tracks can simulate the
computation of an off-line machine

• Two tracks are used to store the input file contents and
current position, while the other two tracks store the
contents and current position of the read-write tape

Multitape Turing Machines
• As shown in Figure 10.8, a multitape Turing machine has

several tapes, each with its own independent read-write head

• A sample transition rule for a two-tape machine must consider
the current symbols on both tapes:

(q0, a, e) = (q1, x, y, L, R)

Equivalence of Standard Turing Machines
and Multitape Turing Machines
• The classes are equivalent because, as shown in Figure 10.11,

a standard Turing machine with four tracks can simulate the
computation of an off-line machine

• Two tracks are used to store the contents and current
position of tape 1, while the other two tracks store the
contents and current position of tape 2

Multidimensional Turing Machines
• As shown in Figure 10.12, a multidimensional Turing machine

has a tape that can extend infinitely in more than one dimension

• In the case of a two-dimensional machine, the transition
function must specify movement along both dimensions

Equivalence of Standard Turing Machines
and Multidimensional Turing Machines
• The classes are equivalent because, as shown in Figure 10.13,

a standard Turing machine with two tracks can simulate the
computation of a two-dimensional machine

• In the simulating machine, one track is used to store the cell
contents and the other one to keep the associated address

Nondeterministic Turing Machines
• A nondeterministic Turing machine is one with potentially

many transition choices for a given (state, symbol)
combination

• Example 10.2 presents a sample transition rule for a
nondeterministic machine:

(q0, a) = {(q1, b, R), (q2, c, L)}

• Since multiple transitions may be applied at each step, the
machine may have multiple active simultaneous threads,
any of which may accept the input string when the thread
halts

• For every nondeterministic Turing machine, there is an
equivalent deterministic machine that can simulate its
operation

A Universal Turing Machine
• A universal Turing machine is a reprogrammable Turing machine

which, given as input the description of a Turing machine M and
a string w, can simulate the computation of M on w

• A universal Turing machine has the structure of a multitape
machine, as shown in Figure 10.16

Linear Bounded Automata
• The power of a standard Turing machine can be

restricted by limiting the area of the tape that can be
used

• A linear bounded automaton is a Turing machine that
restricts the usable part of the tape to exactly the cells
used by the input

• Input can be considered as bracketed by two special
symbols or markers which can be neither overwritten
nor skipped by the read-write head

• Linear bounded automata are assumed to be
nondeterministic and accept languages in the same
manner as other Turing machine accepters

Languages Accepted by Linear
Bounded Automata
• It can be shown that any context-free language can

be accepted by a linear bounded automaton

• In addition, linear bounded automata can be
designed to accept languages which are not context-
free, such as

L = { anbncn: n ≥ 1 }

• While it is difficult to come up with a concrete and
explicitly defined language to use as an example,
linear bounded automata are not as powerful as
standard Turing machines

