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10

OTHER MODELS OF 
TURING MACHINES



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Explain the concept of equivalence between classes of automata

• Describe how a Turing machine with a stay-option can be 
simulated by a standard Turing machine

• Describe how a standard Turing machine can be simulated by a 
machine with a semi-infinite tape

• Describe how off-line and multidimensional Turing machines can 
be simulated by standard Turing machines

• Construct two-tape Turing machines to accept simple languages

• Describe the operation of nondeterministic Turing machines and 
their relationship to deterministic Turing machines

• Describe the components of a universal Turing machine

• Describe the operation of linear bounded automata and their 
relationship to standard Turing machines



Equivalence of Classes of Automata

• Two automata are equivalent if they accept the 
same language

• Given two classes of automata C1 and C2, if for every 
automaton in C1 there is an equivalent automaton in 
C2, the class C2 is at least as powerful as C1

• If the class C1 is at least as powerful as C2, and the 
converse also holds, then the classes C1 and C2 are 
equivalent

• Equivalence can be established either through a 
constructive proof or by simulation



Turing Machines with a Stay-Option

• In a Turing Machine with a Stay-Option, the read-
write head has the option to say in place after 
rewriting the cell content

• Theorem 10.1 states the class of Turing machines 
with a stay-option is equivalent to the class of 
standard Turing machines

• To show equivalence, we argue that any machine 
with a stay-option can be simulated by a standard 
Turing machine, since the stay-option can be 
accomplished by
• A rule that rewrites the symbol and moves right, and
• A rule that leaves the tape unchanged and moves left



Turing Machines with Semi-Infinite Tape
• As shown in Figure 10.2, a common variation of the 

standard Turing machine is one in which the tape is 
unbounded only in one direction

• A Turing machine with semi-infinite tape is 
otherwise identical to the standard model, except 
that no left move is possible when the read-write 
head is at the tape boundary



Equivalence of Standard Turing Machines 
and Semi-Infinite Tape Machines
• The classes are equivalent because, as shown in Figure 10.4, 

any standard Turing machine can be simulated by a machine 
with a semi-infinite tape

• The simulating machine has two tracks: the upper track 
contains the symbols to the right of an arbitrary reference 
point, while the lower track contains those to the left of the 
reference point in reverse order



The Off-Line Turing Machine
• As shown in Figure 10.6, an off-line Turing machine has a 

read-only input file in addition to the read-write tape

• Transitions are determined by both the current input 
symbol and the current tape symbol



Equivalence of Standard Turing Machines 
and Off-Line Turing Machines
• The classes are equivalent because, as shown in Figure 10.7, 

a standard Turing machine with four tracks can simulate the 
computation of an off-line machine

• Two tracks are used to store the input file contents and 
current position, while the other two tracks store the 
contents and current position of the read-write tape



Multitape Turing Machines
• As shown in Figure 10.8, a multitape Turing machine has 

several tapes, each with its own independent read-write head

• A sample transition rule for a two-tape machine must consider 
the current symbols on both tapes:

(q0, a, e) = (q1, x, y, L, R)



Equivalence of Standard Turing Machines 
and Multitape Turing Machines
• The classes are equivalent because, as shown in Figure 10.11, 

a standard Turing machine with four tracks can simulate the 
computation of an off-line machine

• Two tracks are used to store the contents and current 
position of tape 1, while the other two tracks store the 
contents and current position of tape 2



Multidimensional Turing Machines
• As shown in Figure 10.12, a multidimensional Turing machine

has a tape that can extend infinitely in more than one dimension

• In the case of a two-dimensional machine, the transition 
function must specify movement along both dimensions



Equivalence of Standard Turing Machines 
and Multidimensional Turing Machines
• The classes are equivalent because, as shown in Figure 10.13, 

a standard Turing machine with two tracks can simulate the 
computation of a two-dimensional machine

• In the simulating machine, one track is used to store the cell 
contents and the other one to keep the associated address



Nondeterministic Turing Machines
• A nondeterministic Turing machine is one with potentially 

many transition choices for a given ( state, symbol ) 
combination

• Example 10.2 presents a sample transition rule for a 
nondeterministic machine:

(q0, a) = {(q1, b, R), (q2, c, L)}

• Since multiple transitions may be applied at each step, the 
machine may have multiple active simultaneous threads, 
any of which may accept the input string when the thread 
halts

• For every nondeterministic Turing machine, there is an 
equivalent deterministic machine that can simulate its 
operation



A Universal Turing Machine
• A universal Turing machine is a reprogrammable Turing machine 

which, given as input the description of a Turing machine M and 
a string w, can simulate the computation of M on w

• A universal Turing machine has the structure of a multitape 
machine, as shown in Figure 10.16



Linear Bounded Automata
• The power of a standard Turing machine can be 

restricted by limiting the area of the tape that can be 
used

• A linear bounded automaton is a Turing machine that 
restricts the usable part of the tape to exactly the cells 
used by the input

• Input can be considered as bracketed by two special 
symbols or markers which can be neither overwritten 
nor skipped by the read-write head

• Linear bounded automata are assumed to be 
nondeterministic and accept languages in the same 
manner as other Turing machine accepters



Languages Accepted by Linear 
Bounded Automata
• It can be shown that any context-free language can 

be accepted by a linear bounded automaton

• In addition, linear bounded automata can be 
designed to accept languages which are not context-
free, such as

L = { anbncn: n ≥ 1 }

• While it is difficult to come up with a concrete and 
explicitly defined language to use as an example, 
linear bounded automata are not as powerful as 
standard Turing machines


