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Presburger’s Article on Integer Arithmetic:

Remarks and Translation

Ryan Stansifer

An early chapter in the development of decision procedures concerns the theory of Presburger arithmetic.
The original article presenting the theory was published in German in 1930 under the title “Uber die
Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt.” My translation of this article appears here. The translation is preceded by remarks
about the historical circumstances surrounding the paper and about the paper itself.

The article was written by Mojzesz Presburger, a Polish student of mathematics, and presented at a
conference in Warsaw in 1929. In it Presburger showed that the part of number theory which uses only
the addition function is complete, that is, every formula or its negation is true. This fragment of number
theory has come to be known as Presburger arithmetic. Although the motivation of his paper was to prove
the theory complete, the method of proof is constructive and yields a decision procedure or algorithm with
which every formula of Presburger arithmetic can be determined to be true or false.

Probably the earliest theorem-proving program ever written for the computer employed Presburger’s
algorithm to prove theorems of Presburger arithmetic. Martin Davis wrote the program in the summer of
1954 for an electronic digital computer with a memory of only 1024 words (Davis 1960). Today algorithms
for deciding Presburger arithmetic are important as components of large automatic theorem-proving and
program verification efforts (Bledsoe 1974 and Shostak 1979). The ability to deduce facts about some
portion of arithmetic is useful, where so many facts are out of reach of any decision procedure. Fortunately,
many of the theorems that arise from checking the correctness of computer programs can be established by

Presburger’s algorithm and other related decision procedures.

The Conference. The First Congress of Mathematicians of the Slavic Countries took place on
September 23-27, 1929, at the Polytechnic Institute in Warsaw. Participants came mostly from Poland,
but a few came from as far away as Japan and Texas. (Incidentally, transatlantic flights did not begin until

ten years later.) Among those attending the conference were Stanistaw Ulam, who was then a student at



Lwéw,T and John von Neumann, who was a Privatdozent! at Berlin at that time. Alfred Tarski, whose
lectures at the University of Warsaw provided the impetus for Presburger’s work, gave two papers. The
opening session on Monday included a lecture by Adolf (Abraham) Fraenkel on the life and work of Georg
Cantor. For the closing session the participants went by sleeping car to Poznari, where Kazimierz Kuratowski
talked about topology. This is reminiscent of the First International Congress of Mathematics in Ziirich in
1897 where the participants went by special trains to a mountain retreat for a banquet and the closing
session.

Both the program, published in 1929 for the participants, and the proceedings, which did not appear
until 1930, were published in Polish and French. Everything possible, title page, headings and the like,
appeared in both languages. The welcoming remarks of the mayor of Warsaw, who greeted the participants
himself, also appeared in both languages. However, the contributed articles were published in the original
language, and papers can be found in German, Polish, Russian, French and Italian; French and German
were the most common languages used.

In this brief period between the wars, mathematics flourished in Poland. This was the second interna-
tional conference of mathematicians in Poland, the first being in Cracow during 1927. The universities located
in Cracow and Lwow suffered less under foreign domination than those in Warsaw. As a consequence Cracow
and Lwow emerged as centers of Polish mathematics. Both published their own international journals:
Annales de la Société Polonaise de Mathématique and Studia Mathematica. At Lwéw the seeds of Polish
logic were sown by Kazimierz Twardowski, who was appointed to the chair of philosophy in 1895 (Jordan
1945). His students formed the backbone of the school of logic known as the Lwéw-Warsaw school.

Despite a hundred years of Prussian and Russian oppression, Warsaw began to emerge as another center

of Polish mathematics. The University of Warsaw and the Polytechnic Institute were organized anew in 1915

T The many names by which this city has been known reflect the turbulence of the time. When Ulam
was born in the city in 1909, Lemberg was the capital of Galicia in Austria-Hungry. In the chaos
accompanying the end of World War I, Lviv was briefly the capital of a Ukranian republic. At the time

of the conference in Warsaw, Lwéw was again part of Poland. Today Lvov is found in the Soviet Union.

¥ A Privatdozent in those days was a university lecturer who, unlike a professor, was not a salaried
employee of the state, but rather was permitted to charge students for lectures in order to make a

living.



after the Tsarist armies left.” As Kuratowski relates (Kuratowski 1980), Samuel Dickstein, Jan Lukasiewicz
and Stefan Mazurkiewicz were the professors of mathematics at the University. Among the first students
were Bronistaw Knaster, Stanistaw Saks, and Kuratowski. Soon after came Tarski, who received his Ph.D.
from the University in 1923 and then remained as an adjunct professor until the outbreak of World War
II. Also, at about the same time, Adolf Lindenbaum and Presburger were students as well (Jordan 1945).
At the time of conference in 1929 Lindenbaum had obtained his doctorate. Presburger never did receive
a doctorate for the work reported at the conference, apparently because Tarski considered it an obvious
application of the technique for the elimination of quantifiers which Thoralf Skolem had used much earlier
(Crossley 1975). Skolem used this approach to prove that monadic second order logic is a decidable theory
(Skolem 1919).

Because of his important role in the rise of Polish logic, Lukasiewicz deserves a little more attention. He
was born in Lwoéw in 1878 and earned his Ph.D. from the University of Lwéw in 1902 under Twardowski.
From 1906 he was a Privatdozent of philosophy at Lwéw; in 1911 he was made professor. From 1915 to 1939
he was a professor at the University of Warsaw. In July 1944 Lukasiewicz found refuge in Miinster, Germany,
where he had previously been given an honorary title. From the end of World War IT until he died in 1956, he
was professor of mathematical logic at the Royal Irish Academy in Dublin. He is perhaps best known today
for his invention of a parenthesis-free notation, sometimes called Polish notation. This notation has found
application in the organization of some of today’s hand calculators. Lukasiewicz also discovered many-valued
logics and used them in proofs of the independence of axioms. In addition, he was the first person to suggest
a natural deduction style method for logical deduction as opposed to the less natural, formalistic logical
systems of Frege, Russell and Hilbert (Prawitz 1965, page 98). Lukasiewicz’s textbook on mathematical
logic, Elements of Mathematical Logic was published just after the one by Hilbert and Ackermann. These
books are the first textbooks on “modern” or “mathematical” logic, although Lukasiewicz’s book is heavily
influenced by the philosophical approach to logic dominated by Aristotle and his syllogisms. The book was
compiled by Presburger from oral lectures given by Lukasiewicz at the University of Warsaw.

This era of Polish mathematical activity is fast receding into history. Kuratowski died in June 1980.
Tarski died in California in October 1983. Ulam, who like Tarski emigrated to the United States, died in

May 1984.

T The expulsion of the Russians by the Germans did not end the military conflicts which had to have an
effect on university life. After the defeat of the Germans and the restoration of Poland by the Treaty of
Versailles, the Russians threatened Warsaw in 1920. Then internal problems culminated in a military

coup d’état which took place in Warsaw in 1926.



The Paper. Presburger’s paper was scheduled to start Section I at 10:30 on Tuesday, September 24,
1929. In the program the title is listed in Polish: “Zagadnienie zupelosci i rozstrzygalnosci w zastosowanie do
pewnego systemu arytmetya liczb catkowitych.” The finished article, which was not due until the November
after the conference, was published in German and appears on pages 92 through 101. There is an unnumbered
“supplement” page appearing after the last numbered page in the proceedings which contains an addition
to Presburger’s article and errata to another article. This page is cited by several authors as page 395.

The translation here of Presburger’s paper uses the phrase “meaningful statements.” Today this might

“ 4

be more correctly rendered as “well-formed statements” or “well-formed formulas.” Presburger in his paper,
and Tarski and Lukasiewicz in their writings use the German term “sinnvolle Ausdriicke.” Lukasiewicz, if
not the others, uses the equivalent Polish “wyrazenia sensowne.” (See Lukasiewicz 1934 written in Polish
and his own translation into German, Lukasiewicz 1935.) In the preface of Elements of Mathematical Logic
Lukasiewicz attributes the phrase to his colleague at the University of Warsaw, Stanistaw Lesniewski. Both
the translator of this book and Storrs McCall in his translation of Lukasiewicz’s 1934 article into English use
the the phrase “meaningful statements.” Even more recently Kurt Godel used the phrase in English (van
Heijenoort 1977, page 616). Apparently the Polish mathematicians were stressing the “meaningful” over
the “well-formed” on purpose. Tarski gives the reason: “Instead of ‘meaningful statements’ one could also
say ‘regularly constructed statements.” When I use the word ‘meaningful,’ I do so to express my agreement
with the doctrine of intuitionistic formalism.” (See Tarski 1930, page 363.) Perhaps they were trying not
to commit themselves to the precept that they had captured the meaningful statements with their choice of
formalism.

The mathematical notation used by Presburger is one that may not be familiar to the modern reader.
For one thing Presburger uses the summation symbol “¥” for the existential quantifier. This notation was
first used by the American mathematician Benjamin Osgood Peirce before the turn of the century. At that
time logic was studied like a special form of algebra where conjunction acted like multiplication and the exists
operator acted like summation. The disjunctive and conjunctive normal forms which Presburger uses date
back to these earliest origins of modern logic. Presburger also uses Lukasiewicz’s parenthesis-free notation

with “A” and “K” as prefix, binary operators for “or” and “and” respectively. This notation is occasionally

used today.

The Algorithm. The proof of completeness Presburger gives in his paper contains a decision procedure
for formulas of integer arithmetic containing just the plus symbol. The presentation is quite clear and the

algorithm is simple enough that one can almost read off a program to implement it directly from the article.



The majority of the article is devoted to describing how to eliminate the quantifier “there exists an z” from

equations containing z. Here is an example,
Jz(z+x+1=y)&(x+2=0).
One can replace this formula with another without a quantifier
y=21l&y+z2=1

where y =5 1 means that y is congruent to 1 modulo 2, or, in other words, y divided by 2 leaves a remainder
of 1. By repeatedly eliminating a quantifier, a formula is obtained with no variables, and it can easily be
checked if it is true or false. This is the essence of quantifier elimination.

In preparation for quantifier elimination the formula to be tested must be put in a special form where
all quantifiers are at the beginning. The remainder of the formula, called the matrix, must also be put in a
special form, the so-called disjunctive normal form, where the matrix is one big disjunction. Every disjunct
contains any number of conjuncts. Each conjunct can be either an equation or a congruence and each of
these can be negated or not. Thus there are four possibilities. Negated congruences can be eliminated in
favor of the other three types, thus simplifying the number of possible to three.

Presburger deals with the six cases formed from a combination of two from the three types of conjuncts:
equations, negated equations and congruences. The generalization to more than two conjuncts is easy, but
notationally cumbersome, and can be found in Monk 1970. Presburger does not explicitly mention the case
where a disjunct consists of a single equation, negated equation or congruence. Since this case provides
simple examples of the mathematical reasoning Presburger uses, they are given here as a prelude to the

complete article. A disjunct consisting of an equation,
Jx(ax+a=5b) +— a=4b

is really the definition of congruence. It appears to be cheating to eliminate a quantifier by forming a
congruence, but it is computationally easy to determine if two numbers are congruent, so this approach is
justified. A negated equation,

Jr—-(ax+a=b) — 0=0

“l”

t Here in this section the vertical bar and the ampersand “&” are used for disjunction and conjunction
respectively. This notation is by no means standard today, but has the virtue that these characters
appear on the keyboard of most computer terminals. On the other hand, the backwards “E” introduced

by Peano is standard notation today for the existential quantifier. This has become generally accepted

precisely because it distinguishes logic from algebra.



can always be satisfied. There is always some integer x that will make the equation false, hence the formula
can be replaced by any true formula. A little bit of number theory will convince one that a disjunct consisting
of a congruence,

Jr(ar+a=b) +— a=gedap) b

can be replaced by a congruence modulo the greatest common divisor of o and S.

The asymptotic running time of Presburger’s algorithm is governed, not by the mathematically inter-
esting part of the algorithm, but by putting formulas in disjunctive normal form. In general this increases
the length of a formula by a considerable amount with the result that the algorithm can consume much time
and space. This combinatorial explosion led Davis in 1954 to despair of implementing more complicated
decisions procedures.

The problem with putting formulas in disjunctive normal form is that there are formulas with n literals
that for any integer ¢ the disjunctive normal form has more than n° literals. For example, consider the

formula

(w1 @2) & (Y1 | y2) & - & (21 | 22).

Let it have a conjuncts, say. It originally has 2a literals. In disjunctive normal form it will have 221! literals.
Since a can be chosen so that n¢ = (2a)¢ < 2971 there is no polynomial bound on the increase in size of
formulas put in disjunctive normal form.

It is now known that there are more efficient algorithms for deciding formulas of Presburger arithmetic.
One is described in Cooper 1972. The basic idea is to test the matrix with a small number of integers that
cover all possible cases. These integers can be determined without putting the matrix in disjunctive normal
form. Thus a quantifier can be eliminated by replacing the matrix by the disjunction of all the different
cases. The same idea works for rational numbers as well. See Hopcroft and Ullman 1979. Curiously the
decision procedure for rationals is even more efficient. A general case for algebraically closed fields was solved
by Tarski. The main results in this case were obtained in 1927-1928 in lectures at the University of Warsaw,
but nothing was published until after World War II (Tarksi 1951).

Derek Oppen has shown that Cooper’s algorithm for deciding Presburger arithmetic increases a formula
of length n by no more that 92°”" for some constant ¢. He has also shown the asymptotic running time is
essentially the same function (Oppen 1978). This is most probably optimal since it has been shown that
Presburger arithmetic requires non-deterministic time 22" for some constant c. See Fischer and Rabin 1974.
Any algorithm that would run significantly faster would imply that non-deterministic Turing machines could

be simulated by deterministic Turing machines with less than an exponential slowdown.



The role of Presburger’s algorithm in the development of logic can be appreciated by consulting Beth’s
copious work, The Foundations of Mathematics. Beth actually treats a subtheory with a severe restriction
on equations. The place of Presburger’s decision procedure as it stands in the edifice of modern logic can
be found in Monk 1970. This exposition has the algorithm in its most general form with the “less than”
predicate in the theory as well as equality. Presburger, as the addendum to the article shows, was aware
that this extension was possible. For a broad treatment of quantifier elimination, see Kreisel and Krivine
1967.

The translation of Presburger’s paper now follows. The footnotes are his own, but pointers to trans-
lations and more modern literature are added to the footnotes in brackets. A bibliography is given at the
end. It includes all the original references used by Presburger and related literature, historical background

material, and contemporary literature concerning Presburger arithmetic.



About the completeness of a certain system of integer arithmetic

in which addition is the only operation

by

M. Presburger (Warsaw)

The present note contains a result! about the completeness of a set? of sentences of integer arithmetic.
The proof of completeness sketched below also gives, as a result of its effective character, a process which
decides if a given statement in the part of arithmetic under consideration is a true sentence of arithmetic.?

We consider a set of statements which we will call meaningful statements. The meaningful statements

are built with the following symbols:

Individual symbols: Implication symbol-“C”
Negation symbol-“N”
Equals symbol—“="
Exists symbol—“3"
Plus sign—“+"
Symbol for zero—“0”"
Symbol for unit—“1".

[199%)] “" [A9%%))

Symbols for variables: Predicate variables—“p”, “q”, “r

Integer variables—“x”, “a”, “b”, “c” ...

A rigorous definition of a meaningful statement will be omitted here. We mention only that the statement

“C'pq” is a meaningful statement and stands for the proposition “if p, then ¢”. Also the statement “Np” is a

1 The result was obtained in May 1928. The problem was posed by Mr. A. Tarski.

2 See A. Tarski, “Remarques sur les notions fondamentales de la Méthodologie des Mathématiques,”
Annales de la Société Polonaise de Mathématique, volume VII, 1928, pages 270-272. [Since the publi-
cation of this article (Tarski 1928), Tarski has written several, more comprehensive articles concerning
the nature of deductive science. These can be found translated into English in Tarski 1956, articles 111,
V and XII. But here Presburger is only assuming the reader knows Tarski’s definition of completeness

in a deductive theory which is: every sentence or its negation is in the theory.]

On the topic of completeness and decidability see: D. Hilbert and W. Ackermann, Grundziige der
theoretischen Logik, (Berlin: Springer 1928). [There is an English translation of the second edition of

this classic work Hilbert and Ackermann 1950.]



meaningful statement which stands for the proposition “not p”. The meaningful statement “~a(a+ 1 = 0)”
stands for the proposition that “there is an integer a such that a +1 =0".

The following expressions will be used as abbreviations for meaningful statements:

“Apq” for “CNpq”, a disjunction of two statements,

“Kpq” for “NCpN¢q” a conjunction of two statements.*

Let A be a set of meaningful statements that contains, to start out with, the following sentences:

1. CCpqCCqrCpr
2. CCNppp

3. CpCNpq

These are the three axioms of propositional calculus determined by Mr. J. Lukasiewicz.?

Furthermore two sentences about equality belong to A:

4. a=a

5. Cla=bCa=c)(b=rc)
as well as the following sentences about arithmetic:

6. Cla=b)la+c=b+c)
7. Clat+c=b+c)(a=0b)
8. a+b=b+a

9. a+(b+c)=(a+b)+c
10. a+0=a

11.  Yb(a+b=rc)

4 The notation we use here originates from Mr. J. Lukasiewicz. See Lukasiewicz, Elemente der mathema-
tischen Logik, prepared by M. Presburger, (University lecture notes, Polish), Warsaw, 1929. [Lukasiewicz
takes credit for the parenthesis-free notation in the author’s preface. See page ix of the English edition

Lukasiewicz 1963.)

5 See Lukasiewicz, loc. cit., page 45. [These axioms are on page 28 of the English edition.]



Sentence 11 asserts that the difference of two integers always exists.
Three recursive sets of statements are added to the eleven sentences already mentioned.
12. Cla+a=b+b)(a=0)

Cla+a+a=b+b+b)(a=0)

Cla+a+...4+a=b+b+...+b)(a=0b)

e} [e3%

The sentences in 12 could have been expressed as:
C(aa = ab)(a =),

but since we do not have the multiplication symbol, a recursive set of statements has been used. When in
the future we use an expression of the form “aa”, where « is a natural number, it is to be viewed as an

abbreviation for the expression “a +a+ ...+ a”.
(P —

[0}

13. SrzAlx+x=a)(x+z+1=a)

SeAAlz+z+z=a)(c+z+z+1=a)(z+ax+ax+1+1=naq)

SzxA. . Alx+z+zx=a)(z+tz+ax+1l=a)lzt+z+z+1+1=aqa)

YzxA... Alacxz=a)(ax+1=a)...(ax+1+14+...+1=0q)

a—1 a—1

The statements in 13 could be read as follows: for every natural number « and for every integer a there is

always an integer = such that ax = a or ax + 7 = a, where 7 is a natural number less than a.

14. N(@a+a+1=0)

N(a+a+a+1=0)

N(aa+1=0)

6 This sentence permits the parentheses to be left out in all expressions of the form “a + (b + ¢)” and

%a+b)+cw

10



The sentences in 14 say that for no natural number « larger than 1 does the equality aa + 1 = 0 hold.

The statements 1 through 14 which comprise the set A could be understood as an infinite axiom system
(if one wanted to introduce such a notion) for a theory of integers in which addition is the only operation.

We now introduce the set of consequences of the set A which we will denote A,. A, is the smallest set
which contains A and fulfills the following four conditions:”

1. If a statement p belongs to A, so does every statement which can be obtained from p by substitution.®

2. If two statements of the form p and Cpq belong to A,, then g belongs to A, as well.

3. If a statement of the form CXaqr belongs to A,, then Cqr belongs to A, as well.

4. If a statement of the form Cqr belongs to A,, and g contains a free variable of the same form as “a”,
then C'¥agr belongs to A, as long as no such variable occurs in 7.

The set A, defines the system of arithmetic? for which we will outline a completeness proof. Without
getting into details, we remark that to prove the completeness of the set A, it is sufficient to show that
for all p, a meaningful statement without free variables, either p or Np belongs to A,. In other words it is
sufficient to prove the decidability of meaningful statements without free variables.

Among those meaningful statements present are those that express the congruence of two integers
modulo «, where « is a natural number. For example, the expression Yz (x + x + a = b) means the same as
a = bmod 2. Statements of the form Yz (ax + a = b) will be written from now on by a =, b for the sake of
brevity.

Now we introduce the concept of a ground statement. We understand a ground statement to be a

meaningful statement in one of the following two forms: a = b or a =, b.

The principle lemma which leads up to our completeness theorem is:

" See A. Tarski, loc. cit.

It is easy to surmise what the definition of substitution should be in our system. See Hilbert and
Ackermann, loc. cit., pages 53-54. [Formulating substitution correctly is apparently not that easy.
Hilbert and Ackermann failed to get it right once again in the revised, second edition. See Church 1956,
page 289. The (incorrect) formulation of substitution by Hilbert and Ackermann can be found on pages

69-70 of the English edition.]

The logical model for the system A, originates from A. Tarksi, who in his university lectures in the
academic year 1927-1928 covered deductive systems without function variables. Among other things,
Tarski proved the completeness of the geometry of straight lines which is based on the notions: “b lies
between a and ¢” and “a is the same distance from b as ¢ from d.” Tarksi also investigated all the

complete systems of the calculus of classes. [See Beth 1965, page 584.]

11



Every meaningful statement without free variables can be transformed into an equivalent statement
in disjunctive normal form,'° where the members of the disjuncts are either ground statements or their
negations without free variables.

Ground statements without free variables can be converted to one of the following four forms by simple
transformations:

0=0, 14+1+...41=0, 0=,0, 14+1+...41=,0
—_——
3

Every one of these statements is decidable in our system. In particular it is easy to show that the statement

1+1+4+...41 =, 0isin A, if and only if § is divisible by «. The expression N(1+1+...+1 =, 0)
| —— —_—

B B
belongs to A, if and only if § is not divisible by «.

So if an expression is in disjunctive normal form as referred to in the lemma, then our system is decidable.
As a consequence, every meaningful statement without free variables is decidable.

The proof of our principle lemma is based on the fact that every meaningful statement can be transformed
into an equivalent normal form, so that the “exists” symbol (negated or not) is at the beginning of the

1

expression,'! and then into an expression in disjunctive normal form in which equations (hence ground

statements) or negated equations appear as the members of the disjuncts. The following is an example of

an expression in the normal form just described:
EaNZbZCNZdAAKK’/‘l17‘12T13K7‘21T22K’/‘317‘32,

where 7y, is an equation or the negation of an equation.
The basic idea of the proof is that one can progressively eliminate the innermost “exists” symbol from

the above normal form expression obtaining the equivalent form:
YaNYbYXeNAAYAK Kri1112m132dK 121790 5d K 131135,
Suppose then that one could replace every expression of the form
YdK ... Krire...rq,
where r; is a ground statement or the negation of one, by an equivalent expression of the form

K...Kriry...r!

a’

10 See Hilbert and Ackermann, loc. cit., page 13. [This can be found on page 17 of the English edition.]

11 See Hilbert and Ackermann, loc. cit., page 63. [First called prenex normal form in the second edition,

this can be found on page 83 of the English edition.]
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where 7} is again either a ground statement or the negation of one, without introducing any new free variables.
Then we could obtain an expression in disjunctive normal form by eliminating the “exists” symbols step by
step.'? Because this transformation introduced no free variables, the last expression will have no free variables
if the original expression had no such variables.

Hence we have shown that in order to prove the completeness of the system A, it is sufficient to prove
the following lemma.

Every expression of the form:

YiaxK ... Krirg...7q,

where each r; is a ground statement or negated ground statement, can be converted into an equivalent form:

!
K...Kriry...r!

a’s

where each r; is again a ground statement or negated ground statement not containing new free variables.
We will consider the case where each disjunct has only two conjuncts; the generalization to more than
two can be easily derived.
We must examine four types of conjuncts: equations, negated equations, congruences, and negated
congruences. However, negated congruences can be reduced to congruences, since the statement N(a =, b)

is equivalent to'3

AA. . Ala+1=,0)(a+1+1=,0)...(a+14+14+...+1=,0).
N—————

a—1

So there are three types of conjuncts remaining, and we must examine the following combinations:

12 The process described here has already been used by Mr. Th. Skolem and Mr. C. H. Langford. (See
Th. Skolem, “Untersuchungen iiber die Axiome des Klassenkalkuls und iiber Produktations- und
Summationsprobleme, welche gewisse Klassen von Aussagen betreffen,” Videnskapsselskapets Skrifter.
I Mat. nat. Klasse, number 3, 1919. See also Annals of Mathematics, Second series, volume 28, Prince-
ton, N.J., 192627, “Some theorems on deducibility,” by C. H. Langford, page 16 and “Theorems on
deducibility (Second paper),” by C. H. Langford, page 459.) Mr. Tarski developed it into a systematic
and general method. [See section 101 of Beth 1965 for a description of the quantifier elimination

procedure for the theory of dense orderings that Langford developed.]

13 This simplification was noticed by Mr. A. Lindenbaum. [Adolf Lindenbaum was killed by the Gestapo

in occupied Poland (Luschei 1962).]
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I. equation, equation

1I. congruence, congruence

III.  negated equation, negated equation
IV. equation, negated equation

V. equation, congruence

VI. congruence, negated equation.

I. A statement of the form Yz Krire, where r1, ro are equations, can easily be transformed to the
form:

YK (ax +a=0b)(d'z+d =V).
Now we have two linear equations in one unknown z which we can transform so that they have the same
coefficient § (the least common multiple of o and «’):

YSzK(Br +c=d)(fx+ =d).
By further transformations we obtain:

SeK(Br+c=d)(d+c =d +c)

KYz(fr+c=d)(d+c =d +¢)

K(c=gd)(d+d =d +¢)
Thus the lemma is proved for the case of two equations.

II. A statement of the form Yz Kriro, where rq and r9 are congruences, can easily be put in the form:
YeK(ax+a=gb)(d'z+ad =5 V).

By the theorem that asserts the equivalence of a =, b and Sa =g, b, we can write our two congruences as

congruences with the same modulus § (the least common multiple of 3 and §'):
SeK(yr+c=sd)(yx+ =5 d)
We obtain further, when, say, v > +':
SeK(H'z+c+d =sd+) Ao+ =5 d),

where v/ = v —+/. In this way the coefficient of the unknown in one of the given congruences is reduced
from v to 7/. After repeating this process, we obtain a system of two congruences with the same coefficient
of the unknown:

Sk (nz+ e =5 ) +¢ =5 f).

14



Further transformations give the equivalent forms:
SeKmr+e=s f)(f+€ =5 f +e)

KXz(nz+e=5 f)(f+€ =5 f +e)

A necessary and sufficient condition for the solution of the congruence nx + e =5 f is that e =y f holds,

where ¥ is the greatest common divisor of 7 and §. So finally we get:
Kle=y f)(f+e =51 +e)

Thus the lemma is proved for the case of two congruences.

IITI.  In the case of two negated equations:
YzKN(azx +a=bN(d'z+ad =)

we have a statement that always holds, so it is equivalent to, say, the statement 0 = 0.

IV. In the case of an equation and a negated equation we have:
YeK(ax+a=bN'z+ad =)
SzK(Brx+c=d)N(Bz+c =d)
YSoeK(Br+c=dN(d+c =d +c)
K(c=gd)N(d+d =d +¢)

V. In the case of an equation and a congruence, we have:
YzK(ax+a=0b)(d'z+ad =5V)
SeK(yz+c=d)(ya+d =5 d)
SeK(yz+c=d)(d+ =g d +c)
K(e=yd)(d+d =g d +¢)

VI. Now we consider the case of a congruence and a negated equation:
YeK(ax+a=gb)N(d'z+d =1).
It is easy to show that this system is equivalent to the following condition:
YSz(ax +a=gb)

which in turn is equal to the congruence:



where + is the greatest common divisor of o and 3. Thus the last case of the lemma is confirmed.

In conclusion we want to note that all the arithmetic transformations used above are justified by the
definition of the set A,. This can be checked out in detail.

Thus we have sketched the completeness proof. It is easy to see that the given proof gives us at the same
time a process by which one can decide if a given meaningful statement p is in the set A, in a finite number
of steps. That is, in the area of integer arithmetic restricted to the set A, there are no more undecidable
problems.

Should we want to introduce the multiplication symbol to our system, we would encounter unsolved
problems in the proof of decidability. Since in such an expanded system we could formulate, for instance,
the statement:

NYXaYXy¥z(z-x-...-x+y -y .. Y=g 2-...-2)

[e% o [e%
which is a special case of the Fermat’s last theorem. Because « can be an arbitrary number, in order to prove
the decidability of the expanded system we would have to be able to decide each special case of Fermat’s

last theorem.

Additions to the communication by M. Presburger:

1. Sentence 7 in the definition of the set A is superfluous, since it can be derived from the other
sentences.

2. The completeness result can be extended to the arithmetic of whole numbers with “0”, “17, “+” and

“>" as primitive notions.

16



[13]

[14]

BIBLIOGRAPHY

Ackermann, Wilhelm. Solvable Cases of the Decision Problem. Studies in Logic and the Foundations
of Mathematics. North-Holland, Amsterdam, 1954.

Beth, Evert Willem. The Foundations of Mathematics: A Study in the Philosophy of Science, Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1965.

Bledsoe, Woodrow W. “The Sup-Inf Method in Presburger Arithmetic.” ATP-18, The University of

Texas at Austin, Departments of Mathematics and Computer Sciences, December 1974.
Chang, Chen-Chung and H. Jerome Keisler. Model Theory, North-Holland, Amsterdam, 1973
Church, Alonzo. Introduction to Mathematical Logic. Princeton University Press, Princeton, 1956.

Cooper, D. C. “Theorem Proving in Arithmetic without Multiplication.” In Machine Intelligence 7,
edited by B. Meltzer and D. Michie, American Elsevier, NY, 1972, pages 91-99.

Crossley, John Newsome. “Reminscences of logicians.” In Albegra and Logic, edited by John Newsome

Crossley, Spring-Verlag, Berlin, 1975, pages 1-62.

Davis, Martin. “A Computer Program for Presburger’s Algorithm.” In Summaries of Talks Presented
at the Summer Institute for Symbolic Logic, Cornell University, 1957, second edition, 1960,
pages 215-223. This article has been reprinted in Classical Papers on Computational Logic
1957-1966, volume 1 of Automation of Reasoning edited by Joérg H. Sickmann and Graham
Wrightson, pages 41-48.

Ferrante, Jeanne, and Charles W. Rackoff. The Computational Complexity of Logic Theories. Lecture
Notes in Mathematics, volume 718, Springer-Verlag, Berlin, 1979.

Fischer, Michael J. and Michael O. Rabin. “Super-exponential Complexity of Presburger Arithmetic.”
In Complexity of Computation edited by Richard M. Karp, American Mathematical Society,
Providence, Rhode Island, 1974, pages 27—41.

Heijenoort, Jean van, editor. From Frege to Godel: A Source Book in Mathematical Logic. Harvard

University Press, Cambridge, Massachusetts, 1977.

Hilbert, David and Wilhelm Ackermann. Grundziige der theoretischen Logik. Verlag von Julius
Springer, Berlin, 1928.

Hilbert, David and Wilhelm Ackermann. Grundziige der theoretischen Logik. Second edition, revised.

Verlag von Julius Springer, Berlin, 1938.

Hilbert, David and Wilhelm Ackermann. Principles of Mathematical Logic. Edited with notes by
Robert E. Luce. Translation of [13] by Lewis M. Hammond, George G. Leckie and F. Steinhardt.
Chelsea, New York, 1950.

Hilbert, David and Paul Bernays. Grundlagen der Mathematik. Volume I. Springer-Verlag, Berlin,
1968.

17



[25]

[26]

[27]

[28]

[29]

Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Mass., 1979.

Jordan, Zbigniew A. The Development of Mathematical Logic and of Logical Positivism in Poland
Between the Two Wars. Polish Science and Learning, volume 6. Oxford University Press,
London, 1945.

Kennedy, Hubert C. Peano: Life and Works of Giuseppe Peano. D. Reidel, Dordrecht, Holland, 1980.

Kneale, William Calvert and Martha Kneale. The Development of Logic. Oxford University Press,
London, 1962.

Kreisel, Georg and Jean Louis Krivine. Elements of Mathematical Logic (Model Theory). Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1967.

Kuratowski, Kazimierz. A Half Century of Polish Mathematics: Remembrances and Reflections.
Translated by Andrzej Kirkor. Pergamon Press and Paistwowe Wydawnictowo Naukowe (Polish
Scientific Publishers), Oxford and Warsaw, 1980.

Langford, Cooper Harold. “Some Theorems on Deducibility.” Annals of Mathematics, second series,

volume 28, number 1, December 1926, pages 16-40.

»”

Langford, Cooper Harold. “Theorems on Deducibility (Second paper).” Annals of Mathematics,

second series, volume 28, number 4, September 1927, pages 459-471.

Lukasiewicz, Jan. Elementy logiki matematycznej. Authorized lecture notes prepared by Mojzesz
Presburger. Publications of the Association of Students of Mathematics and Physics in Warsaw

University, Warsaw, 1929.

Lukasiewicz, Jan. “Z historii logiki zdan.” Przeglad Filozoficzny, volume 37, 1934, pages 417-437.
This article is reprinted in [28] on pages 178-194.

Lukasiewicz, Jan. “Zur Geschichte der Aussagenlogik.” Erkenntnis (Journal of Unified Science),

volume 5, 1935, pages 111-131. Lukasiewicz’s own translation of [25].

Lukasiewicz, Jan. Elementy logiki matematycznej. Authorized lecture notes prepared by Mojzesz

Presburger. Panstwowe Wydawnictowo Naukowe (Polish Scientific Publishers), Warsaw, 1958.

Lukasiewicz, Jan. Z zagadnien Logiki i Filozofii. Edited by Jerzy Stupecki, Panstwowe Wydawnictowo
Naukowe (Polish Scientific Publishers), Warsaw, 1961.

Lukasiewicz, Jan. Elements of Mathematical Logic. Translation of [27] by Olgierd Wojtasiewicz.
Paristwowe Wydawnictowo Naukowe (Polish Scientific Publishers), Pergamon and Macmillan,
Warsaw, London and New York, 1963.

Lukasiewicz, Jan. Jan Lukasiewicz: Selected Works, edited by L. Borkowski and with a foreword by
Jerzy Shupecki. Paristwowe Wydawnictowo Naukowe (Polish Scientific Publishers) and North-
Holland, Warsaw and Amsterdam, 1970.

18



[43]

Luschei, Eugene C. The Logical systems of Lesniewski. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1962.

McCall, Storrs, editor. Polish Logic 1920—1939. Oxford University Press, London, 1967.
Monk, James Donald. Mathematical Logic. Springer-Verlag, New York, 1976.

Oppen, Derek C. “A 92" Upper Bound on the Complexity of Presburger Arithmetic.” Journal of
Computer and System Science, volume 16, 1978, pages 323-332.

Prawitz, Dag. Natural Deduction: A Proof-Theoretical Study. Almqvist and Wiksell, Stockholm,
1965.

Presburger, Mojzesz. “Uber die Vollstéindigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt.” In Sprawozdanie z I
Kongresu matematykéw krajow stowiariskich, Warszawa 1929 (Comptes-rendus du I Congrés
des Mathématiciens des Pays Slaves, Varsovie 1929), Warsaw, 1930, pages 92-101, 395.

Reid, Constance. Hilbert. Springer-Verlag, New York, 1970.

Scholz, Heinrich. “In Memoriam Jan Lukasiewicz.” Archiv fiir Mathematische Logik und Grundlagen-

forschung, volume 3, 1956, pages 3—18.

Shostak, Robert E. “On the SUP-INF Method for Proving Presburger Formulas.” Journal of the
ACM, volume 24, number 4, October 1977, pages 529-543.

Shostak, Robert E. “A Practical Decision Procedure for Arithmetic with Function Symbols.” Journal
of the ACM, volume 26, number 2, April 1979, pages 351-360.

Skolem, Thoralf Albert. Selected Works in Logic. Edited by Jens Erik Fenstad with a survey of
Skolem’s contribution to logic by Hao Wang. Universitetsforlaget, Oslo, 1970.

Skolem, Thoralf Albert. “Untersuchungen iiber die Axiome des Klassenkalkuls und iiber Produkta-
tions- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen.” Skrifter utgit
av Videnskapsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse, number 3, 1919.
This report to the Norkse Videnskaps-akademi (Norwegian Academy of Sciences) located in
Kristiania (now called Oslo) was issued in a number by itself as is customary, and is reprinted
in [41] on pages 67-101.

Tarski, Alfred. “Remarques sur les notions fondamentales de la Méthodologie des Mathématiques.”

Rocznik Polskiego Towarzystwa matematycznego (Annales de la Société Polonaise de Mathématique),

volume 7, 1928, pages 270-272.

Tarski, Alfred. “Fundamentale Begriffe der Methodologie der dedukiven Wissenschaften.” Monats-
hefte fiir Mathematik und Physik, volume 37, 1930, pages 361-404.

Tarski, Alfred. A Decision Method for Elementary Algebra and Geometry. Second edition, revised.
University of California Press, Berkeley and Los Angeles, 1951.

19



[46] Tarski, Alfred. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Translated by Joseph
H. Woodger. Oxford University Press, Oxford, 1956.

[47)  Ulam, Stanistaw Marcin. Adventures of a Mathematician. Scribners, New York, 1976.

20



