QuickSort

- Attributed to Tony Hoare (only one of his contributions to computer science; find out who he is if you don’t already know)
- Pick an element \(p \) of the array; partition array so all values smaller than \(p \) are to \(p \)'s left and all values greater than \(p \) are to the right; recursively quicksort sub-array on either side of \(p \)
- Average and best case time complexity is \(O(n \cdot \lg n) \)
- Worst case time complexity is \(O(n^2) \)
- Usually fastest when compared with other sequential, comparison sorting algorithms
- Does not require extra (explicit) space
- Ways to improve QuickSort
 - Remove recursion — it can consume unacceptable amounts of space for the implicit stack needed for recursion
 - Avoid small sub-arrays — switch to insertion sort when array size is small (e.g., somewhere in the range 5 to 15)
 - Introsoft switches from quick sort to heap sort when the recursion depth exceeds a certain level.
 - Try to avoid the worst case behavior by using a random pivot \(p \), but, even then, a random sequence of pivots could lead to worst case behavior

QuickSort Algorithm

The quicksort algorithm is attributed to Tony Hoare (Hoare, 1961). Sedgewick’s analysis of quicksort (Sedgewick, 1977) and (Sedgewick, 1978) provide an in-depth analysis and details of its implementation.

The basic quicksort idea is to place some element, the pivot \(p \), of a list in its correct position. That is, smaller elements are placed before \(p \) and larger elements after \(p \).

Listing 1: Functional QuickSort

```haskell
(FUNCTIONAL QUICKSORT)

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (p:xs) = qsort [x|x<-xs,x<p] ++ [p] ++ qsort [x|x<-xs,x>=p]
```

Analysis: Functional QuickSort

The time complexity to construct the lower \([x|x<-xs,x<p]\) and upper \([x|x<-xs,x>=p]\) lists for the recursive calls is \(2(n-1) = O(n)\). An optimizing compiler may be able to scan the list \(xs\) only once to construct the lower and upper lists.

The cost of concatenation is a function of the length of the first list. Therefore, it is best to append the high list to \([p]\), then the low list to that result. This cost varies from \(1\) to \(n\) as the low list length \(k\) varies from empty to \(n-1\).
Therefore, the time complexity is described by recursion

\[T(n) = T(k) + T(n - k - 1) + (n - 1) + k \]

The worst case occurs when \(k = 0 \) for each recursive call. In this case, the recursion reduces to

\[T(n) = T(n - 1) + (n - 1) \quad \text{which implies} \quad T(n) = O(n^2). \]

The best case occurs when \(k = (n - 1)/2 \) for each recursive call. The recursion reduces to

\[T(n) = 2T\left(\frac{n-1}{2}\right) + \frac{3(n-1)}{2} \quad \text{which implies} \quad T(n) = O(n \log n). \]

The standard assumption for the average case is that each value of \(k \) is equally likely for each recursive call. The analysis under this assumption is described below.

The Imperative Representation

Here is a summary of Bentley’s code for quick sorting (Bentley, 1984). The essence is partition an array about a pivot that gets placed in its correct position. Then quick sort the lower and upper arrays.

Listing 2: Imperative Quicksort

```c
void quickSort(int A[], int lo}, int hi)
{
    int pivot;
    if (hi > lo) {
        pivot = Partition(A, lo, hi);
        quickSort(A, lo, pivot-1);
        quickSort(A, pivot+1, hi);
    }
}
```

Example: Quicksort Partition Example

- Scan from the right looking for a value greater than the pivot (index i)
- Scan from the left looking for a value less than the pivot (index j)
- If the right and left scans meet or cross, swaps pivot and right scan
- Otherwise, swap the right and left scan and resume scans
Let’s analyze the worst, best, and average case of Quicksort.

Quicksort: Worst Case

- Given an array of length \(n \), quicksort makes two calls to itself, once with an array of length \(k \) and once with an array of length \(n - k - 1 \)
- Here \(k \) is the size of the array from \(\text{low} \) to \(\text{pivot-1} \)
- The cost of the call to \text{partition} \ is \(n + 1 = O(n) \)
- In the worst case \(k = 0 \) and
 \[
 T(n) = (n + 1) + T(n - 1)
 \]
 with initial condition \(T(1) = 1 \)
By mathematical induction, or unrolling the recurrence,

\[T(n) = (n + 1) + (n) + (n - 1) + \cdots + 3 + T(1) \]
\[= (n + 1) + (n) + (n - 1) + \cdots + 3 + 1 \]
\[= (n + 1) + (n) + (n - 1) + \cdots + 3 + 2 + 1 - 2 \]
\[= \frac{(n+1)(n+2)}{2} - 2 \]
\[= O(n^2) \]

Quicksort: Best Case

- In the best case, \(k = n/2 \) and the recursion reduces to

\[T(n) = (n + 1) + 2T(n/2) \]

with initial condition \(T(1) = 1 \)

- Note we are cheating a little here since \(n - k - 1 = n/2 - 1 \neq n/2 \), but this fudge will not alter the timing analysis

- **Unrolling** the formula

\[T(n) = (n + 1) + 2T(n/2) \]
\[= (n + 1) + 2((n/2 + 1) + 2T(n/4)) \]
\[= (n + 1) + (n + 2) + 4T(n/4) \]
\[= (n + 1) + (n + 2) + (n + 4) + \cdots + 2^q T(n/2^q) \]
\[= (n + 1) + (n + 2) + (n + 4) + \cdots + nT(1) \]
\[= (n + 1) + (n + 2) + (n + 4) + \cdots + (n + \frac{n}{2}) + nT(1) \]
\[= (n + n + n + \cdots + n) + (1 + 2 + 4 + \cdots 2^q - 1) \]
\[= nq + (2^q - 1) \]
\[= n\lg n + (n - 1) \]
\[= O(n\lg n) \]

where \(n = 2^q \) is a power of 2 and \(q = \lg n \).

Quicksort: Average Case

Assume it costs nothing to sort nothing: Initial condition: \(T(0) = 0 \).

- In the average case, compute the average of the \(n \) cases as \(k \), the length of the low array, goes from 0 to
\(n - 1\)

\[
T(n) = (n + 1) + \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + T(n - k - 1))
\]

\[
= (n + 1) + \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + \sum_{k=0}^{n-1} T(n - k - 1))
\]

\[
= (n + 1) + \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + \sum_{k=0}^{n-1} T(k))
\]

\[
= (n + 1) + \frac{2}{n} \sum_{k=0}^{n-1} T(k)
\]

- Massaging \(T(n)\) into shape:

 First rewrite

 \[
 T(n) = (n + 1) + \frac{2}{n} \sum_{k=0}^{n-1} T(k)
 \]

 by removing the fraction, multiplying by \(n\)

 \[
 nT(n) = n(n + 1) + 2 \sum_{k=0}^{n-1} T(k)
 \]

 Relabel \(n\) using \(n + 1\) to write

 \[
 (n + 1)T(n + 1) = (n + 1)(n + 2) + 2 \sum_{k=0}^{n} T(k)
 \]

 Subtract the two equations:

 \[
 (n + 1)T(n + 1) - nT(n) = 2(n + 1) + 2T(n)
 \]

- Now suppose we knew a function \(G(z)\) such that

 \[
 G(z) = T_0 + T_1 z + T_2 z^2 + \cdots
 \]

 \[
 = \sum_{n=0}^{\infty} T_n z^n
 \]

 Recall, \(\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}\) which gives

 \[
 \sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2}
 \]

 where we write \(T_n\) for \(T(n)\)

- Notice that

 \[
 G'(z) - zG'(z) = \sum_{n=0}^{\infty} nT_n z^n - z \sum_{n=0}^{\infty} nT_n z^{n-1}
 \]

 \[
 (1-z)G'(z) = \sum_{n=0}^{\infty} (n+1)T_{n+1} z^n - \sum_{n=0}^{\infty} nT_n z^n
 \]

 \[
 = \sum_{n=0}^{\infty} [(n+1)T_{n+1} - nT_n] z^n
 \]

 \[
 = \sum_{n=0}^{\infty} [2(n + 1) + 2T(n)] z^n
 \]

 \[
 = \frac{2}{(1-z)^2} + 2G(z)
 \]
• Thus

\[(1 - z)G'(z) = \frac{2}{(1 - z)^2} + 2G(z)\]

• Multiplying by \((1 - z)\) and rearranging terms gives a perfect differential

\[(1 - z)^2G'(z) - 2(1 - z)G(z) = \frac{2}{1 - z}\]

that is

\[\frac{d(1 - z)^2G(z)}{dz} = (1 - z)^2G'(z) - 2(1 - z)G(z)\]

• Integrating both sides

\[(1 - z)^2G(z) = -2\ln(1 - z) + C\]

where \(C = 0\) since \(G(0) = T_0 = 0\)

• It follows that

\[G(z) = \frac{-2}{(1 - z)^2} \ln(1 - z)\]

\[= 2 \sum_{i=1}^{\infty} \frac{(i + 1)z^i}{i}\]

\[= 2 \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} \frac{n + 1 - k}{k} \right] z^n\]

\[= \sum_{n=1}^{\infty} \left[\frac{2(n + 1)H_n}{n} - 2n \right] z^n\]

• Therefore

\[T(n) = 2(n + 1)H_n - 2n = O(n \lg n)\]

References

