Dijkstra’s algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

\[\pi(v) = \min_{e = (u,v) : w(u,v) \in S} d(u) + \ell_e, \]

add v to S; set $d(v) = \pi(v)$.

\[0 + 8 = 8 \]
\[0 + 16 = 16 \]
\[4 \]
\[8 \]
\[16 \]
Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes
 \[
 \pi(v) = \min_{e = (u,v), \; u \in S} d(u) + \ell_e,
 \]
 add v to S; set $d(v) = \pi(v)$.
Dijkstra’s algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes
 \[
 \pi(v) = \min_{e = (u,v), u \in S} d(u) + \ell_e,
 \]
 add v to S; set $d(v) = \pi(v)$.

4. Greedy Algorithms II

- Dijkstra’s algorithm demo
- improved Dijkstra’s algorithm demo

Improved Dijkstra’s algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u,v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u,v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize \(\pi(s) = 0 \).
- Repeatedly choose \(u \not\in S \) with minimum \(\pi(v) \).
 - for each edge \((u, v) \) leaving \(u \), set \(\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \} \)
 - add \(u \) to \(S \)
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
- add u to S