5. **DIVIDE AND CONQUER I**

- merge and count demo

Merge and count demo

Given two sorted lists \(A \) and \(B \),

- Count number of inversions \((a, b)\) with \(a \in A \) and \(b \in B \).
- Merge \(A \) and \(B \) into sorted list \(C \).

sorted list A

\[
\begin{array}{cccccc}
3 & 7 & 10 & 14 & 18 \\
\end{array}
\]

sorted list B

\[
\begin{array}{cccccc}
2 & 11 & 16 & 17 & 23 \\
\end{array}
\]

compare minimum entry in each list: copy 2 and add \(x \) to inversion count

- \(x = 5 \)
- \(\text{inversions} = 0 \)

sorted list C

\[
\begin{array}{cccccc}
\end{array}
\]

compare minimum entry in each list: copy 3 and decrement \(x \)

- \(x = 5 \)
- \(\text{inversions} = 5 \)
Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Merge and Count Demo

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 17 | 23 |

Sorted List C

| 2 | 3 |

x = 4

inversions = 5

Merge and Count Demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 17 | 23 |

Sorted List C

| 2 | 3 | 7 |

x = 3

inversions = 5

Merge and Count Demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 17 | 23 |

Sorted List C

| 2 | 3 | 7 | 10 |

x = 2

inversions = 5

Merge and Count Demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 17 | 23 |

Sorted List C

| 2 | 3 | 7 | 10 | 11 |

x = 2

inversions = 7
Given two sorted lists \(A \) and \(B \),

- Count number of inversions \((a, b)\) with \(a \in A \) and \(b \in B \).
- Merge \(A \) and \(B \) into sorted list \(C \).

<table>
<thead>
<tr>
<th>Sorted list A</th>
<th>Sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

Merge and count demo

Compare minimum entry in each list: copy 16 and add \(x \) to increment count

<table>
<thead>
<tr>
<th>Sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14</td>
</tr>
</tbody>
</table>

\(x = 1 \)

Inversions = 7

Merge and count demo

Compare minimum entry in each list: copy 17 and add \(x \) to increment count

<table>
<thead>
<tr>
<th>Sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16</td>
</tr>
</tbody>
</table>

\(x = 1 \)

Inversions = 8

Merge and count demo

List \(A \) exhausted: copy 18 and decrement \(x \)

<table>
<thead>
<tr>
<th>Sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16 17</td>
</tr>
</tbody>
</table>

\(x = 1 \)

Inversions = 9

Merge and count demo

Given two sorted lists \(A \) and \(B \),

- Count number of inversions \((a, b)\) with \(a \in A \) and \(b \in B \).
- Merge \(A \) and \(B \) into sorted list \(C \).

<table>
<thead>
<tr>
<th>Sorted list A</th>
<th>Sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

Merge and count demo

Count number of inversions \((a, b)\) with \(a \in A \) and \(b \in B \).

Merge \(A \) and \(B \) into sorted list \(C \).

<table>
<thead>
<tr>
<th>Sorted list A</th>
<th>Sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

Merge and count demo

Inversions count:

List \(A \) exhausted: copy 23

<table>
<thead>
<tr>
<th>Sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16 17 18</td>
</tr>
</tbody>
</table>

\(x = 0 \)

Inversions = 9
Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Merge and count demo

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

done: return 9 inversions

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16 17 18 23</td>
</tr>
</tbody>
</table>

$x = 0$

inversions = 9