Algorithm design patterns and antipatterns

Algorithm design patterns.
• Greedy.
• Divide and conquer.
• Dynamic programming.
• Duality.
• Reductions.
• Local search.
• Randomization.

Algorithm design antipatterns.
• NP-completeness. $O(n^k)$ algorithm unlikely.
• PSPACE-completeness. $O(n^k)$ certification algorithm unlikely.
• Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

constants a and b tend to be small, e.g., $3 N^2$
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most \(k \) steps?
- Given a board position in an \(n \)-by-\(n \) generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-time reductions

Desiderata’. Suppose we could solve \(X \) in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem \(X \) polynomial-time (Cook) reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Note. We pay for time to write down instances sent to oracle \(\Rightarrow \) instances of \(Y \) must be of polynomial size.

Caveat. Don’t mistake \(X \preceq_P Y \) with \(Y \preceq_P X \).
Polynomial-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?

Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[
\begin{align*}
\text{independent set of size 6} & \quad \text{vertex cover of size 4} \\
\end{align*}
\]

\[\text{ratsPtstTstTS} t T X \]
Theorem. \(\textsc{Vertex-Cover} \leq_p \textsc{Set-Cover} \).

Pf. Given a \textsc{Vertex-Cover} instance \(G = (V, E) \), we construct a \textsc{Set-Cover} instance \((U, S)\) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.

- Universe \(U = E \).
- Include one set for each node \(v \in V : S_v = \{ e \in E : e \text{ incident to } v \} \).

\[
\begin{array}{c}
\text{vertex cover instance} \\
(k = 2)
\end{array}
\begin{array}{c}
\text{set cover instance} \\
(k = 2)
\end{array}
\]

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S)\) contains a set cover of size \(k \).

Pf. \(\Rightarrow \) Let \(X \subseteq V \) be a vertex cover of size \(k \) in \(G \).
- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \).

\[
\begin{array}{c}
\text{vertex cover instance} \\
(k = 2)
\end{array}
\begin{array}{c}
\text{set cover instance} \\
(k = 2)
\end{array}
\]

8. Intractability

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-satisfiability reduces to independent set

Theorem. 3-SAT \(\leq_p \) INDEPENDENT-SET.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of \textsc{independent-set} that has an independent set of size \(k\) iff \(\Phi \) is satisfiable.

Construction.
- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

```
\begin{align*}
G &= (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \\
k &= 3
\end{align*}
```

Review.

Basic reduction strategies.
- Simple equivalence: \textsc{independent-set} \(=_p \) \textsc{vertex-cover}.
- Special case to general case: \textsc{vertex-cover} \(\leq_p \) \textsc{set-cover}.
- Encoding with gadgets: 3-SAT \(\leq_p \) INDEPENDENT-SET.

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. 3-SAT \(\leq_p \) \textsc{independent-set} \(\leq_p \) \textsc{vertex-cover} \(\leq_p \) \textsc{set-cover}.
Search problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Ex. To find a vertex cover of size \(\leq k \):
- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{ v \} \) has a vertex cover of size \(\leq k - 1 \).
 (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{ v \} \).

Bottom line. \(\text{VERTEX-COVER} \equiv \text{P} \) \(\text{FIND-VERTEX-COVER} \).

Optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:
- (Binary) search for size \(k^* \) of min vertex cover.
- Solve corresponding search problem.

Bottom line. \(\text{VERTEX-COVER} \equiv \text{P} \) \(\text{FIND-VERTEX-COVER} \equiv \text{P} \) \(\text{OPTIMAL-VERTEX-COVER} \).

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. ⇒
- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order).

Pf. ⇐
- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - ..., $B, G, R, B, G, R, B, G, R, B, ...$
- Blue nodes in Γ' make up directed Hamilton cycle Γ in G, or reverse of one.

3-satisfiability reduces to directed hamilton cycle

Theorem. 3-SAT \leq_p DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = \text{true}.$

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow
- Suppose 3-SAT instance has satisfying assignment $x^\omega.$
- Then, define Hamilton cycle in G as follows:
 - if $x_i^\omega = \text{true},$ traverse row i from left to right
 - if $x_i^\omega = \text{false},$ traverse row i from right to left
 - for each clause $C_j,$ there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle (and we splice in C_j exactly once)

Pf. \Leftarrow
- Suppose G has a Hamilton cycle $\Gamma.$
- If Γ enters clause node $C_j,$ it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}.$
- Set $x_i^\omega = \text{true}$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node $C_j,$ at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \blacksquare
3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph $G = (V, E)$, does there exist a simple path consisting of at least k edges?

Theorem. 3-$\text{Sat} \leq_p \text{LONGEST-PATH}.$

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from i to s.

Pf 2. Show $\text{HAM-CYCLE} \leq_p \text{LONGEST-PATH}.$

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

13,509 cities in the United States
http://www.tsp.gatech.edu

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array
http://www.tsp.gatech.edu
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \) ?

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \) ?

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?

Theorem. HAM-CYCLE \(\leq_p \) TSP.

Pf.
- Given instance \(G = (V, E) \) of HAM-CYCLE, create \(n \) cities with distance function
 \[d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
\end{cases} \]
- TSP instance has tour of length \(\leq n \) iff \(G \) has a Hamilton cycle.

Remark. TSP instance satisfies triangle inequality: \(d(u, w) \leq d(u, v) + d(v, w) \).

Polynomial-time reductions

8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-dimensional matching

3D-MATCHING. Given \(n \) instructors, \(n \) courses, and \(n \) times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Course</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
</tbody>
</table>

Theorem. \(3\text{-SAT} \leq_p \text{3D-MATCHING}. \)

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching if and only if \(\Phi \) is satisfiable.

Remark. Generalization of bipartite matching.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable \(x_i \) with \(2k \) core elements and \(2k \) tip ones.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = \text{true}$) or all blue ones (corresponding to $x_i = \text{false}$).

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are $X, Y,$ and Z?
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X\), \(Y\), and \(Z\)?

A. \(X = \text{red}, Y = \text{green}, \) and \(Z = \text{blue}\).

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple.

3-colorability

3-COLOR. Given an undirected graph \(G\), can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?
Application: register allocation

Register allocation. Assign program variables to machine register so that no more than \(k \) registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between \(u \) and \(v \) if there exists an operation where both \(u \) and \(v \) are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is \(k \)-colorable.

Fact. 3-COLOR \(\leq_p \) K-REGISTER-ALLOCATION for any constant \(k \geq 3 \).

3-satisfiability reduces to 3-colorability

Theorem. 3-SAT \(\leq_p \) 3-COLOR.

Pf. Given 3-SAT instance \(\Phi \), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi \) is satisfiable.

Construction.
(i) Create a graph \(G \) with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes \(T, F, \) and \(B \); connect them in a triangle.
(iv) Connect each literal to \(B \).
(v) For each clause \(C_j \), add a gadget of 6 nodes and 13 edges.

Lemma. Graph \(G \) is 3-colorable iff \(\Phi \) is satisfiable.

Pf. \(\Rightarrow \) Suppose graph \(G \) is 3-colorable.
 - Consider assignment that sets all \(T \) literals to true.
 - (iv) ensures each literal is \(T \) or \(F \).
 - (ii) ensures a literal and its negation are opposites.
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

\neg Consider assignment that sets all T literals to true.
- (i) ensures a literal and its negation are opposites.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

Polynomial-time reductions

3-SAT polytime reduces to Independent-Set

- Constraint satisfaction
- Independent-Set
- Dir-Ham-Cycle
- Graph-3-Color
- Subset-Sum
- Vertex-Cover
- Ham-Cycle
- Planar-3-Color
- Scheduling

packing and covering

partitioning

numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

Theorem. \(3\text{-SAT} \leq_p \text{SUBSET-SUM} \).

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance of \(\text{SUBSET-SUM}\) that has solution iff \(\Phi\) is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance \(\Phi\) with \(n\) variables and \(k\) clauses, form \(2n + 2k\) decimal integers, each of \(n + k\) digits:

- Include one digit for each variable \(x_i\) and for each clause \(C_j\).
- Include two numbers for each variable \(x_i\).
- Include two numbers for each clause \(C_j\).
- Sum of each \(x_i\) digit is 1; sum of each \(C_j\) digit is 4.

Key property. No carries possible \(\Rightarrow\) each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

Example. Given an instance of 3-SAT with variables \(x_1, x_2, x_3\) and clauses \(C_1 = \neg x_1 \lor x_2 \lor x_3, C_2 = x_1 \lor \neg x_2 \lor x_3, C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3\), we construct the corresponding subset sum instance as follows:

- For variable \(x_1\): \(1, 00,001, 100,010, 011,000\)
- For variable \(x_2\): \(0, 100,101, 100,111, 011,001\)
- For variable \(x_3\): \(0, 011,010, 110,001, 101,100\)
- For clause \(C_1\): \(100,000, 000,001, 001,000\)
- For clause \(C_2\): \(010,000, 000,011, 011,000\)
- For clause \(C_3\): \(100,100, 000,000, 000,100\)

The subset sum instance is:

- \(\Phi = \{1, 00,001, 100,010, 011,000, 0, 100,101, 100,111, 011,001, 0, 011,010, 110,001, 101,100, 100,000, 000,001, 001,000, 010,000, 000,011, 011,000, 100,100, 000,000, 000,100\}\)

The sum of \(\Phi\) is 3754, which is the sum of the subset sum instance.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n\) and an integer \(W\), is there a subset that adds up to exactly \(W\)?

Ex. \(\{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}\), \(W = 3754\).

Yes. \(1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754\).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose \(\Phi \) is satisfiable.
 - Choose integers corresponding to each true literal.
 - Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) rows.
 - Choose dummy integers to make clause digits sum to 4.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

\(3 \)-Sat instance

\[
\begin{array}{cccccc}
\text{W} & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 111,444 \\
\text{SUBSET-SUM instance}
\end{array}
\]

My hobby

My Hobby:

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

COTTONS RESTAURANT

APPETIZERS
- FRENCH FRIES 2.75
- SIDES SALAD 3.35
- HOT WINGS 5.55
- MOZZARELLA STICKS 4.20
- SAMPLER PLATE 5.80

SANDWICHES
- CRISPY CHICKEN 6.55

RANDALL MUNRO

http://xkcd.com/c287.html

3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Leftrightarrow \) Suppose there is a subset that sums to \(W \).
 - Digit \(x_i \) forces subset to select either row \(x_i \) or \(\neg x_i \) (but not both).
 - Digit \(C_j \) forces subset to select at least one literal in clause.
 - Assign \(x_i = \text{true} \) iff row \(x_i \) selected.

\[
\begin{array}{cccccc}
\text{x}_1 & 1 & 0 & 0 & 0 & 1 & 0 & 100,010 \\
\text{x}_2 & 1 & 0 & 0 & 1 & 0 & 1 & 100,101 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 0 & 10,100 \\
\neg x_3 & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 1 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 1 & 0 & 1 & 1,001 \\
\end{array}
\]

\(3 \)-Sat instance

\[
\begin{array}{cccccc}
\text{W} & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 111,444 \\
\text{SUBSET-SUM instance}
\end{array}
\]

Partition

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

PARTITION. Given natural numbers \(v_1, \ldots, v_m \), can they be partitioned into two subsets that add up to the same value \(\frac{1}{2} \sum v_i \)?

Theorem. \(\text{SUBSET-SUM} \leq_p \text{PARTITION} \).

Pf. Let \(W, w_1, \ldots, w_n \) be an instance of \text{SUBSET-SUM}.
 - Create instance of \text{PARTITION} with \(m = n + 2 \) elements.
 - \(v_1 = w_1, v_2 = w_2, \ldots, v_n = w_n, v_{n+1} = 2 \sum w_j - W, v_{n+2} = \sum w_j + W \)
 - Lemma: there exists a subset that sums to \(W \) iff there exists a partition since elements \(v_{n+1} \) and \(v_{n+2} \) cannot be in the same partition.

\[
\begin{array}{cc}
W & \text{subset A} \\
\sum w_j - W & \text{subset B}
\end{array}
\]
Scheduling with release times

SCHEDULE. Given a set of n jobs with processing time t_j, release time r_j, and deadline d_j, is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_j time units in the interval $[r_j, d_j]$?

Ex.

Theorem. $\text{SUBSET-SUM} \leq_p \text{SCHEDULE}$.

Pf. Given SUBSET-SUM instance w_1, \ldots, w_n and target W, construct an instance of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

- Create n jobs with processing time $t_j = w_j$, release time $r_j = 0$, and no deadline ($d_j = 1 + \sum w_j$).
- Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W + 1$.
- Lemma: subset that sums to W iff there exists a feasible schedule.

Polynomial-time reductions

- 3-SAT
- INDEPENDENT-SET
- VERTEX-COVER
- SET-COVER
- TSP
- HAM-CYCLE
- PLANAR-3-COLOR
- SCHEDULING
- GRAPH-3-COLOR

Karp's 21 NP-complete problems

Dick Karp (1972) 1985 Turing Award