11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Coping with NP-completeness

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Sacrifice one of three desired features.
 i. Solve arbitrary instances of the problem.
 ii. Solve problem to optimality.
 iii. Solve problem in polynomial time.

\(\rho \)-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio \(\rho \) of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is.

Load balancing

Input. \(m \) identical machines; \(n \) jobs, job \(j \) has processing time \(t_j \).
- Job \(j \) must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let \(J(i) \) be the subset of jobs assigned to machine \(i \).
The load of machine \(i \) is \(L_i = \sum_{j \in J(i)} t_j \).

Def. The makespan is the maximum load on any machine \(L = \max_i L_i \).

Load balancing. Assign each job to a machine to minimize makespan.
Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if only 2 machines.

Pf. \textsc{Number-Partitioning} \textbf{NP} \textless \text{P} \textsc{Load-Balance}.

NP-complete by Exercise 8.26

- \[
\begin{array}{cccc}
 a & b & c & d \\
 e & f & g
\end{array}
\]

- length of job \(f \)

machine 1

- \[
\begin{array}{ccc}
 a & d & f
\end{array}
\]

machine 2

- \[
\begin{array}{cccc}
 b & c & e & g
\end{array}
\]

- yes

Load balancing: list scheduling

List-scheduling algorithm.

- Consider \(n \) jobs in some fixed order.
 - Assign job \(j \) to machine whose load is smallest so far.

```c
List-Scheduling(m, n, t_1, t_2, \ldots, t_n) {
    for i = 1 to m {
        L_i ← 0 ← load on machine i
        J(i) ← \emptyset ← jobs assigned to machine i
    }
    for j = 1 to n {
        i = \arg \min_k L_k
        J(i) ← J(i) \cup \{j\} ← assign job \( j \) to machine \( i \)
        L_i ← L_i + t_j ← update load of machine \( i \)
    }
    return J(1), \ldots, J(m)
}
```

Implementation. \(O(n \log m) \) using a priority queue.

Load balancing: list scheduling analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
 - Need to compare resulting solution with optimal makespan \(L^* \).

Lemma 1. The optimal makespan \(L^* \geq \max_j t_j \).

Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan \(L^* \geq \frac{1}{n} \sum_j t_j \).

Pf.

- The total processing time is \(\sum_j t_j \).
 - One of \(m \) machines must do at least a \(1 / m \) fraction of total work.

Believe it or not
Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.

** Pf.** Consider load L_i of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load.
 Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.

\[L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m. \]

\[L_i = (L_i - t_j) + t_j \leq 2L^*. \]

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m.

Optimal makespan = 10
Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, t₁, t₂,..., tₙ) {
    Sort jobs so that $t₁ ≥ t₂ ≥ ... ≥ tₙ$
    for $i = 1$ to $m$ {
        $L_i ← 0$ ← load on machine $i$
        $J(i) ← ∅$ ← jobs assigned to machine $i$
    }
    for $j = 1$ to $n$ {
        $i = \text{argmin}_k L_k$ ← machine $i$ has smallest load
        $J(i) ← J(i) ∪ \{j\}$ ← assign job $j$ to machine $i$
        $L_i ← L_i + t_j$ ← update load of machine $i$
    }
    return $J(1), ..., J(m)$
}
```

Load Balancing: LPT rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, $n = 2m + 1$ jobs, 2 jobs of length m, $m + 1$, ..., $2m - 1$ and one more job of length m.

Load balancing: LPT rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. ●

Lemma 3. If there are more than m jobs, $L^* ≥ 2t_{m+1}$.
Pf.
- Consider first $m+1$ jobs $t₁, ..., t_{m+1}$.
- Since the t_i’s are in descending order, each takes at least t_{m+1} time.
- There are $m + 1$ jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. ●

Theorem. LPT rule is a 3/2-approximation algorithm.
Pf. Same basic approach as for list scheduling.

$$L_i = \frac{(L_i - t_j)}{L^*} + \frac{t_j}{L^*} ≤ \frac{3}{2} L^*.$$

(by observation, can assume number of jobs $> m$)

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- LP rounding: vertex cover
- generalized load balancing
- knapsack problem
Center selection problem

Input. Set of n sites s_1, \ldots, s_n and an integer $k > 0$.

Center selection problem. Select set of k centers C so that maximum distance $r(C)$ from a site to nearest center is minimized.

![Diagram of center selection problem](image)

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane, $\text{dist}(x, y)$ = Euclidean distance.

Remark: search can be infinite!

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!
Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

\[
\text{GREEDY-CENTER-SELECTION} (k, n, s_1, s_2, \ldots, s_n) \\
C \leftarrow \emptyset. \\
\text{REPEAT} k \text{ times} \\
\quad \text{Select a site } s_i \text{ with maximum distance } \text{dist}(s_i, C). \\
\quad C \leftarrow C \cup s_i. \\
\text{RETURN } C.
\]

Property. Upon termination, all centers in \(C\) are pairwise at least \(r(C)\) apart.

Pf. By construction of algorithm.

Center selection

Lemma. Let \(C^*\) be an optimal set of centers. Then \(r(C) \leq 2r(C^*)\).

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

\[\text{e.g., points in the plane}\]

Question. Is there hope of a 3/2-approximation? 4/3?

Center selection: analysis of greedy algorithm

Lemma. Let \(C^*\) be an optimal set of centers. Then \(r(C) \leq 2r(C^*)\).

Pf. [by contradiction] Assume \(r(C^*) < \frac{1}{2} r(C)\).

- For each site \(c_i \in C\), consider ball of radius \(\frac{1}{2} r(C)\) around it.
- Exactly one \(c_i^*\) in each ball; let \(c_i\) be the site paired with \(c_i^*\).
- Consider any site \(s\) and its closest center \(c_i^* \in C^*\).
- \(\text{dist}(s, C) \leq \text{dist}(s, c_i) \leq \text{dist}(s, c_i^*) + \text{dist}(c_i^*, c_i) \leq 2r(C^*)\).
- Thus, \(r(C) \leq 2r(C^*)\).

Dominating set reduces to center selection

Lemma. \(C^*\) satisfies the triangle inequality.

Theorem. Unless \(P = NP\), there no \(\rho\)-approximation for center selection problem for any \(\rho < 2\).

Pf. We show how we could use a \((2 - \epsilon)\) approximation algorithm for CENTER-SELECTION to solve DOMINATING-SET in poly-time.

- Let \(G = (V, E)\), \(k\) be an instance of DOMINATING-SET.
- Construct instance \(G'\) of CENTER-SELECTION with sites \(V\) and distances
 - \(\text{dist}(u, v) = 1\) if \((u, v) \in E\)
 - \(\text{dist}(u, v) = 2\) if \((u, v) \notin E\)
- Note that \(G'\) satisfies the triangle inequality.
- \(G\) has dominating set of size \(k\) iff there exists \(k\) centers \(C^*\) with \(r(C^*) = 1\).
- Thus, if \(G\) has a dominating set of size \(k\), a \((2 - \epsilon)\)-approximation algorithm for CENTER-SELECTION would find a solution \(C^*\) with \(r(C^*) = 1\) since it cannot use any edge of distance 2.
null
Pricing method example

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.

- Let $S = \text{set of all tight nodes upon termination of algorithm.}$
- S is a vertex cover: if some edge (i,j) is uncovered, then neither i nor j is tight. But then while loop would not terminate.

- Let S^* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i \leq \sum_{i \in S} \sum_{e \in (i,j)} p_e \leq \sum_{i \in V} \sum_{e \in (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$

Weighted vertex cover

Given a graph $G = (V, E)$ with vertex weights $w_i \geq 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

total weight = 6 + 9 + 10 + 32 = 57
Weighted vertex cover: IP formulation

Given a graph $G = (V, E)$ with vertex weights $w_j \geq 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

Integer programming formulation.
- Model inclusion of each vertex i using a 0/1 variable x_i.

 $$x_i = \begin{cases}
 0 & \text{if vertex } i \text{ is not in vertex cover} \\
 1 & \text{if vertex } i \text{ is in vertex cover}
 \end{cases}$$

 Vertex covers in 1–1 correspondence with 0/1 assignments:
 $S = \{ i \in V : x_i = 1 \}$.

- Objective function: minimize $\sum w_i x_i$.
- Must take either vertex i or j (or both): $x_i + x_j \geq 1$.

Observation. If x^* is optimal solution to (ILP), then $S = \{ i \in V : x^*_i = 1 \}$ is a min weight vertex cover.

Linear programming

Given integers a_{ij}, b_i, and c_j, find real numbers x_j that satisfy:

$$(P) \quad \max \ c' x \quad \text{s.t. } \sum_{j=1}^n a_{ij} x_j \leq b_i \quad 1 \leq i \leq m$$

$$(P) \quad \max \ c' x \quad \text{s.t. } A x \leq b \quad x \geq 0$$

Observation. Vertex cover formulation proves that INTEGER-PROGRAMMING is an NP-hard search problem.

LP feasible region

LP geometry in 2D.

Weighted vertex cover: LP relaxation

Linear programming relaxation.

\[
(LP) \quad \begin{array}{ll}
\min & \sum_{i \in V} w_i x_i \\
\text{s.t.} & x_i + x_j \geq 1 \quad (i,j) \in E \\
& x_i \geq 0 \quad i \in V
\end{array}
\]

Observation. Optimal value of (LP) is \(\leq \) optimal value of (ILP).

Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.

Weighted vertex cover: LP rounding algorithm

Lemma. If \(x^* \) is optimal solution to (LP), then \(S = \{ i \in V : x_i^* \geq \frac{1}{2} \} \) is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge \((i,j) \in E\).
- Since \(x_i^* + x_j^* \geq 1 \), either \(x_i^* \geq \frac{1}{2} \) or \(x_j^* \geq \frac{1}{2} \) \(\Rightarrow \) \((i, j) \) covered.

Pf. [S has desired cost]

- Let \(S^* \) be optimal vertex cover. Then

\[
\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i
\]

Theorem. The rounding algorithm is a 2-approximation algorithm.

Pf. Lemma + fact that LP can be solved in poly-time.

Weighted vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If \(P \neq NP \), then no \(\rho \)-approximation for WEIGHTED-VERTEX-COVER for any \(\rho < 1.3606 \) (even if all weights are 1).

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur† Samuel Safra‡

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP hardness of approximation techniques. To that end, one needs to develop a new proof framework, and borrow and extract ideas from several fields.

Open research problem. Close the gap.
11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Generalized load balancing: integer linear program and relaxation

ILP formulation. $x_{ij} =$ time machine i spends processing job j.

\[
(IP) \quad \begin{align*}
\text{min} & \quad L \\
\text{s.t.} & \quad \sum_{j \in J} x_{ij} = t_j \quad \text{for all } j \in J \\
& \quad \sum_{i \in M} x_{ij} \leq L \quad \text{for all } i \in M \\
& \quad x_{ij} \in \{0, t_j\} \quad \text{for all } j \in J \text{ and } i \in M_j \\
& \quad x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_j
\end{align*}
\]

LP relaxation.

\[
(LP) \quad \begin{align*}
\text{min} & \quad L \\
\text{s.t.} & \quad \sum_{j \in J} x_{ij} = t_j \quad \text{for all } j \in J \\
& \quad \sum_{i \in M} x_{ij} \leq L \quad \text{for all } i \in M \\
& \quad x_{ij} \geq 0 \quad \text{for all } j \in J \text{ and } i \in M_j \\
& \quad x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_j
\end{align*}
\]

Generalized load balancing: lower bounds

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.

Pf. Some machine must process the most time-consuming job. □

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan $L^* \geq L$.

Pf. LP has fewer constraints than IP formulation. □

Input. Set of m machines M; set of n jobs J.

- Job $j \in J$ must run contiguously on an authorized machine in $M_j \subseteq M$.
- Job $j \in J$ has processing time t_j.
- Each machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i.

The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine $= \max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.
Generalized load balancing: structure of LP solution

Lemma 3. Let \(x \) be solution to LP. Let \(G(x) \) be the graph with an edge between machine \(i \) and job \(j \) if \(x_{ij} > 0 \). Then \(G(x) \) is acyclic.

Pf. (deferred)

\[\begin{align*}
G(x) \text{ acyclic} & \Rightarrow \text{can transform } x \text{ into another LP solution where} \\
& \text{G}(x) \text{ is acyclic if LP solver doesn’t return such an } x
\end{align*} \]

Generalized load balancing: rounding

Rounded solution. Find LP solution \(x \) where \(G(x) \) is a forest. Root forest \(G(x) \) at some arbitrary machine node \(r \).

- If job \(j \) is a leaf node, assign \(j \) to its parent machine \(i \).
- If job \(j \) is not a leaf node, assign \(j \) to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.

Pf. If job \(j \) is assigned to machine \(i \), then \(x_{ij} > 0 \). LP solution can only assign positive value to authorized machines.

\[\begin{align*}
G(x) \text{ cyclic} & \Rightarrow \text{can transform } x \text{ into another LP solution where} \\
& \text{G}(x) \text{ is acyclic if LP solver doesn’t return such an } x
\end{align*} \]

Generalized load balancing: analysis

Theorem. Rounded solution is a 2-approximation.

Pf.

- Let \(J(i) \) be the jobs assigned to machine \(i \).
- By Lemma 6, the load \(L_i \) on machine \(i \) has two components:

 - **leaf nodes:**
 \[\sum_{j \in J(i)} t_j = \sum_{j \in J(i)} x_{ij} \leq \sum_{j \in J} x_{ij} \leq L \leq L^* \]

 Lemma 5

 \[\sum_{j \in J(i)} x_{ij} \]

 LP

 Lemma 2 (LP is a relaxation)

 optimal value of LP

 - parent: \(t_{\text{parent}(i)} \leq L^* \)

 Thus, the overall load \(L_i \) \(\leq 2L^* \).

\[\begin{align*}
G(x) \text{ acyclic} & \Rightarrow \text{can transform } x \text{ into another LP solution where} \\
& \text{G}(x) \text{ is acyclic if LP solver doesn’t return such an } x
\end{align*} \]
Generalized load balancing: flow formulation

Flow formulation of LP.

\[\sum_{i} x_{ij} = t_j \text{ for all } j \in J \]

\[\sum_{i} x_{ij} \leq L \text{ for all } i \in M \]

\[x_{ij} \geq 0 \text{ for all } j \in J \text{ and } i \in M \]

\[x_{ij} = 0 \text{ for all } j \in J \text{ and } i \notin M \]

Observation. Solution to feasible flow problem with value \(L \) are in 1-to-1 correspondence with LP solutions of value \(L \).

Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with \(mn + 1 \) variables.

Remark. Can solve LP using flow techniques on a graph with \(m + n + 1 \) nodes: given \(L \), find feasible flow if it exists. Binary search to find \(L^* \).

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job \(j \) takes \(t_j \) time if processed on machine \(i \).
- 2-approximation algorithm via LP rounding.
- If \(P \neq NP \), then no \(\rho \)-approximation exists for any \(\rho < 3/2 \).

Generalized load balancing: structure of solution

Lemma 3. Let \((x, L) \) be solution to LP. Let \(G(x) \) be the graph with an edge from machine \(i \) to job \(j \) if \(x_{ij} > 0 \). We can find another solution \((x', L) \) such that \(G(x') \) is acyclic.

Pf.

- Let \(C \) be a cycle in \(G(x) \).
 - Augment flow along the cycle \(C \). flow conservation maintained
 - At least one edge from \(C \) is removed (and none are added).
 - Repeat until \(G(x') \) is acyclic.

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- LP rounding: vertex cover
- generalized load balancing
- knapsack problem
Polynomial-time approximation scheme

PTAS. \((1 + \epsilon)\)-approximation algorithm for any constant \(\epsilon > 0\).
- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack is NP-complete

Knapsack. Given a set \(X\), weights \(w_i \geq 0\), values \(v_i \geq 0\), a weight limit \(W\), and a target value \(V\), is there a subset \(S \subseteq X\) such that:

\[
\sum_{j \in S} w_j \leq W \\
\sum_{j \in S} v_j \geq V
\]

Subset-Sum. Given a set \(X\), values \(u_i \geq 0\), and an integer \(U\), is there a subset \(S \subseteq X\) whose elements sum to exactly \(U\)?

Theorem. Subset-Sum \(\leq_p\) Knapsack.

Pf. Given instance \((u_1, \ldots, u_n, U)\) of Subset-Sum, create Knapsack instance:

\[
v_i = w_i = u_i \\
V = W = U \\
\sum_{i \in S} u_i \leq U
\]

Knapsack problem

Knapsack problem.
- Given \(n\) objects and a knapsack.
- Item \(i\) has value \(v_i > 0\) and weighs \(w_i > 0\). \(\quad\text{we assume } w_i \leq W\) for each \(i\)
- Knapsack has weight limit \(W\).
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3, 4\}\) has value 40.

<table>
<thead>
<tr>
<th>item</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

original instance (\(W = 11\))

Knapsack problem: dynamic programming I

Def. \(OPT(i, w) = \max\) value subset of items \(1, \ldots, i\) with weight limit \(w\).

Case 1. \(OPT\) does not select item \(i\).
- \(OPT\) selects best of \(1, \ldots, i-1\) using up to weight limit \(w\).

Case 2. \(OPT\) selects item \(i\).
- New weight limit \(W\) \(= W - w_i\).
- \(OPT\) selects best of \(1, \ldots, i-1\) using up to weight limit \(W - w_i\).

Theorem. Computes the optimal value in \(O(n W)\) time.
- Not polynomial in input size.
- Polynomial in input size if weights are small integers.
Knapsack problem: dynamic programming II

Def. \(OPT(i, v) = \min \text{ weight of a knapsack for which we can obtain a solution of value } \geq v \text{ using a subset of items } 1, ..., i \).

Note. Optimal value is the largest value \(v \) such that \(OPT(n, v) \leq W \).

Case 1. \(OPT \) does not select item \(i \).
- \(OPT \) selects best of \(1, ..., i-1 \) that achieves value \(\geq v \).

Case 2. \(OPT \) selects item \(i \).
- Consumes weight \(w_i \), need to achieve value \(\geq v - v_i \).
- \(OPT \) selects best of \(1, ..., i-1 \) that achieves value \(\geq v - v_i \).

\[
OPT(i, v) = \begin{cases}
0 & \text{if } v \leq 0 \\
\infty & \text{if } i = 0 \text{ and } v > 0 \\
\min \{ OPT(i-1, v), w_i + OPT(i-1, v-v_i) \} & \text{otherwise}
\end{cases}
\]

Knapsack problem: polynomial-time approximation scheme

Intuition for approximation algorithm.
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded/scaled instance.
- Return optimal items in rounded instance.

<table>
<thead>
<tr>
<th>item</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>934221</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5956342</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>17810013</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>21217800</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>27343199</td>
<td>7</td>
</tr>
</tbody>
</table>

original instance (\(W = 11 \))

<table>
<thead>
<tr>
<th>item</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

rounded instance (\(W = 11 \))

Observation. Optimal solutions to problem with \(\tilde{\tau} \) are equivalent to optimal solutions to problem with \(\hat{\tau} \).

Intuition. \(\tilde{\tau} \) close to \(\tau \) so optimal solution using \(\tau \) is nearly optimal; \(\hat{\tau} \) small and integral so dynamic programming algorithm II is fast.

Knapsack problem: polynomial-time approximation scheme

Theorem. Dynamic programming algorithm II computes the optimal value in \(O(n^2 v_{\text{max}}) \) time, where \(v_{\text{max}} \) is the maximum of any value.

Pf.
- The optimal value \(V^\circ \leq n v_{\text{max}} \).
- There is one subproblem for each item and for each value \(v \leq V^\circ \).
- It takes \(O(1) \) time per subproblem.

Remark 1. Not polynomial in input size!

Remark 2. Polynomial time if values are small integers.
Knapsack problem: polynomial-time approximation scheme

Theorem. If \(S \) is solution found by rounding algorithm and \(S^* \) is any other feasible solution, then
\[
(1 + \epsilon) \sum_{i \in S} v_i \geq \sum_{i \in S^*} v_i
\]

Pf. Let \(S^* \) be any feasible solution satisfying weight constraint.

\[
\begin{align*}
\sum_{i \in S^*} v_i & \leq \sum_{i \in S^*} \hat{v}_i & \text{always round up} \\
& \leq \sum_{i \in S} \hat{v}_i & \text{solve rounded instance optimally} \\
& \leq \sum_{i \in S} (v_i + \theta) & \text{never round up by more than } \theta \\
& \leq \sum_{i \in S} v_i + n\theta & |S| \leq n \\
& = \sum_{i \in S} v_i + \frac{1}{2} \epsilon n v_{\max} & \theta = \epsilon v_{\max} / 2n \\
& \leq (1 + \epsilon) \sum_{i \in S} v_i & v_{\max} \leq 2 \sum_{i \in S} v_i
\end{align*}
\]

subset containing only the item of largest value

choosing \(S^* = \{ \text{max} \} \)

\[
\begin{align*}
v_{\max} & \leq \sum_{i \in S} v_i + \frac{1}{2} \epsilon v_{\max} \\
& \leq \sum_{i \in S} v_i + \frac{1}{2} v_{\max} \\
\text{thus} \quad v_{\max} & \leq 2 \sum_{i \in S} v_i
\end{align*}
\]

Knapsack problem: polynomial-time approximation scheme

Theorem. For any \(\epsilon > 0 \), the rounding algorithm computes a feasible solution whose value is within a \((1 + \epsilon)\) factor of the optimum in \(O(n^2/\epsilon)\) time.

Pf.

- We have already proved the accuracy bound.
- Dynamic program \(I \) running time is \(O(n^2 \hat{v}_{\max})\), where

\[
\hat{v}_{\max} = \left\lceil \frac{v_{\max}}{\theta} \right\rceil = \left\lceil \frac{2n}{\epsilon} \right\rceil
\]