13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Contention resolution in a distributed system

Contention resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.
Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t]$ = event that process i succeeds in accessing the database at time t. Then $1 / (e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n)$.

Pf. By independence, $\Pr[S(i, t)] = p(1 - p)^{n-1}$.

• Setting $p = 1/n$, we have $\Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$.

Useful facts from calculus. As n increases from 2, the function:

• $(1 - 1/n)^n$ converges monotonically from $1/4$ up to $1/e$.

• $(1 - 1/n)^n$ converges monotonically from $1/2$ down to $1/e$.

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at most $1 - 1/n$.

Pf. Let $F[i, t]$ = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[i, t]] = \Pr[\bigcup_{j=1}^{n} F[i, t]] \leq \sum_{j=1}^{n} \Pr[F[i, t]] \leq n(1 - \frac{1}{en})^t$$

Choosing $t = 2 \lfloor en \rfloor \lceil c \ln n \rceil$ yields $\Pr[F[i, t]] \leq n \cdot n^2 = 1/n$.

13. Randomized Algorithms

› contention resolution
› global min cut
› linearity of expectation
› max 3-satisfiability
› universal hashing
› Chernoff bounds
› load balancing
Global minimum cut

Global min cut. Given a connected, undirected graph $G = (V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
- Pick an edge $e = (u, v)$ uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2.
- Return the cut (all nodes that were contracted to form v_1).

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = \text{size of min cut}.$
- In first step, algorithm contracts an edge in F^* probability $k / |E|.$
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq \frac{1}{2} k n.$
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n.$
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*|$ be size of min cut.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|F'| \geq \frac{1}{2} k n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let $E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j$.

\[
\Pr[E_1 \cap E_2 \cap \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\
\geq (1 - \frac{2}{n}) (1 - \frac{2}{n^2}) \cdots (1 - \frac{2}{n^{n-3}}) \\
= \left(\frac{n^2}{n(n-1)} \right) \cdots \left(\frac{2}{3} \right) \left(\frac{1}{2} \right) \\
= \frac{2}{n^2}
\]

Contraction algorithm: example execution

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial 5 (finds min cut)</th>
<th>Trial 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference: Thore Husfeldt

Global min cut: context

Remark. Overall running time is slow since we perform $O(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^2 n)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(n \log^3 n)$.

\[faster \text{ than best known max flow algorithm or deterministic global min cut algorithm } \]
13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Expectation: two properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf.

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Benefit. Decouples a complex calculation into simpler pieces.

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)

- Let $X_i = 1$ if ith prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$.

linearity of expectation

Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]
\]

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j \cdot (1-p)^{j-1} p = \frac{p}{1-p} \cdot \sum_{j=0}^{\infty} (1-p)^j = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}
\]

Wb
Guessing cards

Game. Shuffle a deck of \(n \) cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is \(\Theta(\log n) \).

\(Pf. \)

- Let \(X_i = 1 \) if \(i^{th} \) prediction is correct and 0 otherwise.
- Let \(X = \) number of correct guesses = \(X_1 + \ldots + X_n \).
- \(E[X_i] = \text{Pr}[X_i = 1] = 1 / (n - i - 1) \).
- \(E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n) \). ★

linearity of expectation

\(ln(n+1) < H(n) < 1 + \ln n \)

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

\(Pf. \)

- Phase \(j \) = time between \(j \) and \(j + 1 \) distinct coupons.
- Let \(X_j = \) number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \ldots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = n H(n)
\]

\(\Theta(n \log n) \)

\(\text{prob of success} = (n-j)/n \)

\(\text{expected waiting time} = n / (n-j) \)

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-Sat formula, find a truth assignment that satisfies as many clauses as possible.

- \(C_1 = x_2 \lor x_3 \lor x_4 \)
- \(C_2 = x_2 \lor x_3 \lor \overline{x_4} \)
- \(C_3 = \overline{x_1} \lor x_2 \lor x_4 \)
- \(C_4 = \overline{x_1} \lor \overline{x_2} \lor x_3 \)
- \(C_5 = x_1 \lor \overline{x_2} \lor x_4 \)

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2} \), independently for each variable.
Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(\frac{7}{8}k \).

Pf. Consider random variable \(Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \)

- Let \(Z \) be number of clauses satisfied by random assignment.

\[
E[Z] = \frac{1}{k} \sum_{j=1}^{k} E[Z_j] = \frac{1}{k} \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] = \frac{7}{8}k
\]

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a \(\frac{7}{8} \) fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. •

Probabilistic method. [Paul Erdős] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a \(\frac{7}{8} \)-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies \(\geq 7k/8 \) clauses is at least \(1/(8k) \).

Pf. Let \(p_j \) be probability that exactly \(j \) clauses are satisfied; let \(p \) be probability that \(\geq 7k/8 \) clauses are satisfied.

\[
\frac{7}{8}k = E[Z] = \sum_{j=0}^{7k/8} j p_j + \sum_{j=7k/8}^{k} j p_j
\]

\[
\leq \left(\frac{7}{8} - \frac{1}{8} \right) \sum_{j=7k/8}^{k} p_j + k \sum_{j=7k/8}^{k} p_j
\]

\[
\leq \left(\frac{7}{8} - \frac{1}{8} \right) \cdot 1 + kp
\]

Rearranging terms yields \(p \geq 1/(8k) \). •

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq 7k/8 \) clauses.

Theorem. Johnson’s algorithm is a \(\frac{7}{8} \)-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability \(\geq 1/(8k) \). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most \(8k \). •
Maximum satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for 3-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of Max-3-SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless \(P = NP \), no \(\rho \)-approximation algorithm for Max-3-SAT (and hence Max-SAT) for any \(\rho > 7/8 \).

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s Max-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability \(\geq 1/2 \).

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. \(P \subseteq ZPP \subseteq RP \subseteq NP \).

Fundamental open questions. To what extent does randomization help?
Does \(P = ZPP \)? Does \(ZPP = RP \)? Does \(RP = NP \)?

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- create(): initialize a dictionary with $S = \emptyset$.
- insert(u): add element $u \in U$ to S.
- delete(u): delete u from S (if u is currently in S).
- lookup(u): is u in S?

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h : U \rightarrow \{0, 1, \ldots, n-1\}$.

Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u) = h(v)$ but $u \neq v$.
- A collision is expected after $\Theta(\sqrt{n})$ random insertions.
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u) = i$.

Ad-hoc hash function

Ad hoc hash function.

```java
int hash(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

hash function ala Java string library

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn’t ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can’t we live with ad hoc hash function?
- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt.

Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.
Hashing performance

Ideal hash function. Maps \(m \) elements uniformly at random to \(m \) hash slots.
- Running time depends on length of chains.
- Average length of chain = \(\alpha = m / n \).
- Choose \(n \approx m \) \(\Rightarrow \) on average \(O(1) \) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of \(h \).

\[\operatorname{Universal hashing: analysis} \]

Proposition. Let \(H \) be a universal family of hash functions; let \(h \in H \) be chosen uniformly at random from \(H \); and let \(u \in U \). For any subset \(S \subseteq U \) of size at most \(n \), the expected number of items in \(S \) that collide with \(u \) is at most 1.

Pf. For any element \(s \in S \), define indicator random variable \(X_s = 1 \) if \(h(s) = h(u) \) and 0 otherwise. Let \(X \) be a random variable counting the total number of collisions with \(u \).

\[
E_{h \in H} [X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \operatorname{Pr}[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1
\]

\(\Rightarrow \) linearity of expectation, \(X_s \) is a 0-1 random variable, universal (assumes \(u \notin S \)).

Q. OK, but how do we design a universal class of hash functions?

Universal hashing

Universal family of hash functions. [Carter-Wegman 1980s]
- For any pair of elements \(u, v \in U \), \(\Pr_{h \in H} [h(u) = h(v)] \leq 1/n \).
- Can select random \(h \) efficiently.
- Can compute \(h(u) \) efficiently.

\[\operatorname{Ex.} U = \{ a, b, c, d, e, f \}, n = 2. \]

\[H = \{ h_1, h_2 \} \]

\[
\begin{align*}
\Pr_{h \in H} [h(a) = h(b)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(c)] &= 0 \\
\Pr_{h \in H} [h(a) = h(d)] &= 0 \\
\vdots \\
\end{align*}
\]

\[H' = \{ h_1, h_2, h_3, h_4 \} \]

\[
\begin{align*}
\Pr_{h \in H} [h(a) = h(b)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(c)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(d)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(e)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(f)] &= 0 \\
\vdots \\
\end{align*}
\]

Designing a universal family of hash functions

Theorem. [Chebyshev 1850] There exists a prime between \(n \) and \(2n \).

Modulus. Choose a prime number \(p \approx n \). \(\Leftrightarrow \) no need for randomness here.

Integer encoding. Identify each element \(u \in U \) with a base-\(p \) integer of \(r \) digits: \(x = (x_1, x_2, \ldots, x_r) \).

Hash function. Let \(A \) set of all \(r \)-digit, base-\(p \) integers. For each \(a = (a_1, a_2, \ldots, a_r) \) where \(0 \leq a_i < p \), define

\[
h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

Hash function family. \(H = \{ h_a : a \in A \} \).
Designing a universal family of hash functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal family of hash functions.

Pf. Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ be two distinct elements of U. We need to show that $Pr[h_a(x) = h_a(y)] \leq 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff

 $$a_j (y_j - x_j) \equiv \sum_{i \neq j} a_i (x_i - y_i) \mod p$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_j is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j \equiv m \mod p$ has at most one solution among p possibilities. \(\Rightarrow\) see lemma on next slide
- Thus $Pr[h_a(x) = h_a(y)] = 1/p \leq 1/n$.

Number theory fact

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then $\alpha z = m \mod p$ has at most one solution $0 \leq \alpha < p$.

Pf.

- Suppose α and β are two different solutions.
- Then $(\alpha - \beta) z = 0 \mod p$; hence $(\alpha - \beta) z$ is divisible by p.
- Since $z \neq 0 \mod p$, we know that z is not divisible by p; it follows that $(\alpha - \beta)$ is divisible by p.
- This implies $\alpha = \beta$.

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid's algorithm.

Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$Pr[X > (1+\delta)\mu] \leq \left(e^{\delta} \right)^{\frac{\mu}{(1+\delta)\mu}}$$

Pf. We apply a number of simple transformations.

- For any $t > 0$,
 $$Pr[X > (1+\delta)\mu] = Pr[e^{tX} > e^{(1+\delta)\mu} t] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

- Now $E[e^{tX}] = E[e^{t \sum X_i}] = \prod_i E[e^{tX_i}]$
Chernoff Bounds (above mean)

\[\text{Pr} \left[\sum_i X_i > \left(1 + \delta \right) \mu \right] \leq e^{-\frac{\delta^2}{2}\mu} \]

For any \(\alpha > 0 \), \(\sum_i e^{\alpha X_i} \leq e^{\alpha \mu(1+\alpha)} \)

\[\text{Pr} \left[e^{\alpha X} \right] = e^{\alpha \mu} \text{ for any } \alpha > 0, \text{ s.t. } \sum_i e^{\alpha X_i} = e^{\mu(1+\alpha)} \]

\[\sum_i e^{\alpha X_i} \leq e^{\mu(1+\alpha)} \]

\[\text{for any } \alpha > 0, \text{ s.t. } \sum_i e^{\alpha X_i} = e^{\mu(1+\alpha)} \]

Combining everything:

\[\text{Pr} \left[e^{\alpha X} \right] = e^{\mu(1+\alpha)} \text{ for any } \alpha > 0, \text{ s.t. } \sum_i e^{\alpha X_i} = e^{\mu(1+\alpha)} \]

Finally, choose \(\tau = \ln(1 + \delta) \).

Chernoff Bounds (below mean)

Theorem. Suppose \(X_1, \ldots, X_n \) are independent 0-1 random variables. Let \(X = X_1 + \ldots + X_n \). Then for any \(\mu \leq E[X] \) and for any \(0 < \delta < 1 \), we have

\[\text{Pr} \left[X < (1-\delta) \mu \right] < e^{-\frac{\delta^2 \mu}{2}} \]

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider \(\delta < 1 \).

Load Balancing

Load balancing. System in which \(m \) jobs arrive in a stream and need to be processed immediately on \(m \) identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\lfloor m/n \rfloor \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?
Load balancing

Analysis.
- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$.
- Thus, $X_i = \sum Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields $Pr[X_i > c] < \frac{e^{c-1}}{c^c}$.
- Let $\gamma(n)$ be number x such that $e^x = n$, and choose $c = e^{\gamma(n)}$.
 $$Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c < \left(\frac{1}{\gamma(n)}\right)^{\gamma(n)} = \frac{1}{n^2}$$
 - Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e^{\gamma(n)} = \Theta(\log n / \log \log n)$ jobs.

Theorem. Suppose the number of jobs $m = 16 n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.
- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields
 $$Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n \ln n} < \left(\frac{e}{4}\right)^{16n} = \frac{1}{n^2} \quad Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}} \left(16n \ln n\right) = \frac{1}{n^2}$$
 - Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$.

Bonus fact: with high probability, some processor receives $\Theta(\log n / \log \log n)$ jobs.