Separation Oracle

Given $x \in \mathbb{R}^n$, assert $x \in P$ or return a separating hyperplane.

Theorem. Let $P \subseteq \mathbb{R}^d$. Assume that P is full-dimensional. There exists an algorithm that finds a hyperplane separating x from P.

Min-s Cut

Given digraph $G = (V, E)$, distinguished vertices s and t, and edge costs c_e, find a minimum weight set of edges that separates every s-t path.

Separation Oracle. Shortest s-t path with weights c_e.

Min Cost Arborescence

Min cost arborescence. Given digraph $G = (V, E)$ distinguished vertices s and t, and edge costs c_e. Find a subtree of G that contains a directed path from t to all other vertices.

Ellipsoid and Combinatorial Optimization

Cutset-Chvátal-Schrijver. Polytime algorithms for:
- Network synthesis.
- Matroid intersection.
- Chinese postman problem.
- Min weight perfect matching.
- Minimize submodular set function.
- Stability number of a perfect graph.
- Covering of directed cuts of a digraph.

Totally Unimodular Matrices

Def. A matrix A is totally unimodular if every square submatrix is unimodular.

Matrix Games

Matrix game for $n \times m$-dimensional matrices. Given matrices $A = (a_{ij})$ and $B = (b_{ij})$, find the optimal strategies for players A and B.

Totally Unimodular Matrices

Theorem. If A is totally unimodular, then every square submatrix of A is unimodular.

Assignment Problem

Assignment problem. Assign n tasks to m workers to minimize total cost, where c_{ij} is cost of assigning task i to worker j.

Matrix Games

Matrix game for $n \times m$-dimensional matrices. Given matrices A and B, find the optimal strategies for players A and B.

Linear Programming III

Linear programming problems. Minimize a linear function subject to linear constraints.

Assignment Problem: LP Formulation

Assignment problem. Minimize total cost subject to assignment constraints.

Matrix Games

Matrix game for $n \times m$-dimensional matrices. Given matrices A and B, find the optimal strategies for players A and B.

Matrix Games

Matrix game for $n \times m$-dimensional matrices. Given matrices A and B, find the optimal strategies for players A and B.

Linear Programming III

Linear programming problems. Minimize a linear function subject to linear constraints.

Assignment Problem: LP Formulation

Assignment problem. Minimize total cost subject to assignment constraints.

Matrix Games

Matrix game for $n \times m$-dimensional matrices. Given matrices A and B, find the optimal strategies for players A and B.
Minimax Theorem

Theorem. [von Neumann 1928] For every $A \in \mathbb{R}^{m \times n}$,

$$\min_{x} \max_{y} \langle A \cdot x, y \rangle = \max_{y} \min_{x} \langle A \cdot x, y \rangle \quad (*).$$

This is called the **minimax theorem**.

Consequence. As long as your mixed strategy is optimal, you can reveal it to your opponent.

Theorem. Nash equilibrium exist for 2-person zero-sum games. Moreover, they are poly-time computable.

Kuhn's simplified poker.

- Deck of 3 cards, numbered 1, 2, and 3.
- Each player antes 1.
- One round of betting (1 bet).
- If pass-pass, pass-bet, or bet-bet, player with higher card wins; otherwise player that bets wins.

Kuhn's strategies for X.
1. Pass.
2. Pass; if Y bets, bet.

Kuhn's strategies for Y.
1. Pass no matter what X did.
2. If X passes, pass; if X bets, bet.
3. If X passes, bet; if Y bets, pass.
4. Bet no matter what X did.

Application: Poker

Optimal strategy for X.
- When dealt 1, mix strategies 1 and 3 in ratio 1:1.
- When dealt 2, mix strategies 1 and 2 in ratio 1:1.
- When dealt 3, mix strategies 2 and 3 in ratio 1:1.

Optimal strategy for Y.
- When dealt 1, mix strategies 1 and 3 in ratio 2:1.
- When dealt 2, mix strategies 1 and 2 in ratio 2:1.
- When dealt 3, use strategy 4.

Value of game. $-1/2$ for X.

Gambling lessons. Optimal strategies involve bluffing and trapping. Player who acts last has advantage.

Linear Programming III

Strongly-Polynomial

An algorithm is strongly polynomial if:
- Elementary ops: $+$, $-$, $/$, comparison
- # ops is polynomial in the dimension of input.
- Polynomial space on a classic TM.

Ex. Merge-sort: $O(n \log n)$.
Ex. Edmonds-Karp max-flow: $O(n^4)$.
Ex. Gaussian elimination: $O(n^3)$ arithmetic ops.

Ex. Ellipsoid: $O(n^4)$ arithmetic ops.
Ex. Interior point method: $O(n^3)$ arithmetic ops.

Open problem. Strongly polynomial algorithms for LP?
Open problem. Is LP in P?

New York Times Article

An Approach to Difficult Problems

- Ellipsoid algorithm
- Combinatorial optimization
- Matrix games
- Open problems