LONGEST INCREASING SUBSEQUENCE

Longest increasing subsequence

Given a sequence of elements c_1, c_2, \ldots, c_n from a totally-ordered universe, find the longest increasing subsequence.

Ex. $7 \ 2 \ 8 \ 1 \ 3 \ 4 \ 10 \ 6 \ 9 \ 5$.

Application. Part of MUMmer system for aligning entire genomes.

$O(n^2)$ dynamic programming solution. LIS is a special case of edit-distance.

- $x = c_1 c_2 \ldots c_n$.
- $y =$ sorted sequence of c_x, removing any duplicates.
- Mismatch penalty = ∞; gap penalty = 1.

Patience solitaire

Patience. Deal cards c_1, c_2, \ldots, c_n into piles according to two rules:

- Can’t place a higher-valued card onto a lowered-valued card.
- Can form a new pile and put a card onto it.

Goal. Form as few piles as possible.

Patience: greedy algorithm

Greedy algorithm. Place each card on leftmost pile that fits.
Patience: greedy algorithm

Greedy algorithm. Place each card on leftmost pile that fits.

Observation. At any stage during greedy algorithm, top cards of piles increase from left to right.

Patience-LIS: weak duality

Weak duality. In any legal game of patience, the number of piles \geq length of any increasing subsequence.

Pf.
- Cards within a pile form a **decreasing subsequence**.
- Any increasing sequence can use at most one card from each pile.

Patience-LIS: strong duality

Theorem. [Hammersley 1972] Min number of piles = max length of an IS; moreover greedy algorithm finds both.

Pf. Each card maintains a pointer to top card in previous pile.
- Follow pointers to obtain IS whose length equals the number of piles.
- By weak duality, both are optimal.

Greedy algorithm: implementation

Theorem. The greedy algorithm can be implemented in $O(n \log n)$ time.

- Use n stacks to represent n piles.
- Use binary search to find leftmost legal pile.

```
PATIENCE (n, c_1, c_2, ..., c_n)

INITIALIZE an array of n empty stacks S_1, S_2, ..., S_n.

FOR i = 1 TO n
    S_j ← binary search to find leftmost stack that fits c_i.
    PUSH (S_j, c_i).
    pred[c_i] ← PEEK (S_{j-1}). ← null if j = 1

RETURN sequence formed by following pointers from top card of rightmost nonempty stack.
```
Patience sorting

Patience sorting. Deal all cards using greedy algorithm; repeatedly remove smallest card.

Theorem. For uniformly random deck, the expected number of piles is approximately $2^{\frac{n}{2}}$ and the standard deviation is approximately $n^{\frac{1}{6}}$.

Remark. An almost-trivial $O(n^{3/2})$ sorting algorithm.

Speculation. [Persi Diaconis] Patience sorting is the fastest way to sort a pile of cards by hand.

Bonus theorem

Theorem. [Erdős-Szekeres 1935] Any sequence of $n^2 + 1$ distinct real numbers either has an increasing or decreasing subsequence of size $n + 1$.

Pf. [by pigeonhole principle]