Assignments for Students as Individuals
CSE 5211 Analysis of Algorithms, Instructor: William Shoaff
Spring 2018

Gaussian Elimination

Gaussian elimination is a method for computing the solution vector \vec{x} of a given system of linear equations.

$$A\vec{x} = \vec{b}$$

First, a reduction step transforms the augmented matrix $[A|\vec{b}]$ into upper-triangular form. Then, a second solving step produces the solution \vec{x} by back-substitution.

Let’s get on with the code.¹ Some types and helper functions will be needed. The reduction and solver steps must be constructed. And, a main routine is needed as an entry point. Here is the structure of the code. It is written in noweb style.

¹ Thanks to Lucky’s Notes for the structure of the code.

\[\langle Gauss 1a\rangle \equiv\]
\[\langle Row, Column, and Matrix Types 1b\rangle\]
\[\langle IO conversion functions 3d\rangle\]
\[\langle The Gaussian reduction step 2a\rangle\]
\[\langle The Gaussian solver step 5\rangle\]
\[\langle Main module 3c\rangle\]

Define the Row and Column types to be lists of double precision floating point numbers. Define the RMatrix type to be a list indexed by rows. Define the CMatrix type to be a list indexed by columns.

\[\langle Row, Column, and Matrix Types 1b\rangle \equiv\]
\[\text{type Row} = [\text{Double}]\]
\[\text{type Column} = [\text{Double}]\]
\[\text{type RMatrix} = [\text{Row}]\]
\[\text{type CMatrix} = [\text{Column}]\]
The Reduction Step

The reduction process used in Gaussian elimination transforms a matrix into upper-triangular form. Pictorially, for a small example.

\[
\begin{bmatrix}
p & \cdots & | & \cdot \\ a & \cdots & | & \cdot \\ b & \cdots & | & \cdot \\ c & \cdots & | & \cdot \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & \cdots & | & \cdot \\ 0 & \cdots & | & \cdot \\ 0 & \cdots & | & \cdot \\ 0 & \cdots & | & \cdot \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & \cdots & | & \cdot \\ 0 & 1 & \cdots & | \\ 0 & 0 & \cdots & \cdot \\ 0 & 0 & \cdots & \cdot \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & \cdots & | & \cdot \\ 0 & 1 & \cdots & \cdot \\ 0 & 0 & 1 & \cdot \\ 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

To reduce a matrix to upper-triangular form repeat these steps iteratively across all rows of the matrix. For the first row:

1. Assume \(p \), the pivot, is not 0 and normalize the row by scaling it by \(1/p \).
2. Repeatedly, multiply the normalized row by \(a \), \(b \), \(c \) and subtract the result row from second, third, and fourth rows, respectively.

\[
\begin{align*}
\text{gaussianReduce} :: \text{RMatrix} & \rightarrow \text{RMatrix} \\
\text{gaussianReduce matrix} & = \text{foldl reducerow matrix [0..length matrix-2]} \text{ where} \\
\text{reducerow :: RMatrix} & \rightarrow \text{Int} \rightarrow \text{RMatrix} \\
\text{reducerow m r} & = \text{let} \\
\quad & \langle \text{Pick the row to reduce by, its pivot, and normalize this pivot row} \rangle \\
\quad & \langle \text{Construct a function that reduces other rows} \rangle \\
\quad & \langle \text{Apply the reduction function to rows below the pivot} \rangle \\
\quad & \langle \text{Piece the matrix back together} \rangle \\
\text{row} & = \text{m}!!r \\
\text{p} & = \text{row}!!r \\
\text{row'} & = \text{map} (\lambda x \rightarrow x/p) \text{row} \\
\quad & \text{Now, to reduce another row, say } \text{nrow}, \text{by } \text{row'} \text{ apply the function} \\
\text{nr} & \ast a - b \\
\end{align*}
\]

(where \(\text{nr} \) is the \(r \)-th element in \(\text{nrow} \))

to each entry \(a \) in \(\text{row} \) and \(b \) in \(\text{nrow} \). The Haskell idiom for this is to \(\text{zip} \) the function with the values in \(\text{row'} \) and \(\text{nrow} \).

\[
\begin{align*}
\text{reduceonerow nrow} & = \text{let} \text{nr} = \text{nrow}!!r \text{ in zipWith} (\lambda a \rightarrow \text{nr}\ast a - b) \text{row'} \text{nrow} \\
\end{align*}
\]
Next, map reduceRow across all rows in matrix below the pivot row.

3a (Apply the reduction function to rows below the pivot 3a) ≡
 nextrows = map reduceonerow (drop (r+1) m)

And finally, piece the results back together: Concatenate the first r rows from m, row row’ and the reduces nextrows.

3b (Piece the matrix back together 3b) ≡
 in take r m ++ [row’] ++ nextrows

To turn gaussianReduce into a standalone program, a main module, an entry point, must be established. IO can be tricky. The structure of the input must be known, and that must be translated into the structure of the Haskell function that implements the program.

Let’s agree, for the purpose of these notes, that the program is executed with input redirected from standard input, like so

./Gauss < gauss.dat

Assume the contents of gauss.dat is a string of lines separated by newline characters like so:

\[
\begin{array}{ccccccc}
 a_{00} & a_{01} & a_{02} & \cdots & a_{0(n-1)} & b_0 & \backslash n \\
 a_{10} & a_{11} & a_{12} & \cdots & a_{1(n-1)} & b_1 & \backslash n \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 a_{n-1,0} & a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} & b_{n-1} & \backslash n \\
\end{array}
\]

Let’s agree to use the Haskell idiom raw <- getContents to input all of gauss.dat into one String called raw.

• The lines function breaks raw up into a list of strings [String], separated at the newline. Call the result rows.

• Mapping the words function over rows breaks each string in rows list of Strings. These values need to be converted from String to Double.

3c (Main module 3c) ≡
 main :: IO ()
 main = do
 raw <- getContents
 let rows = lines raw
 let rows’ = map words rows
 let matrix = map stringsToDoubles rows’
 print $ matrix ++ gaussianReduce matrix

3d (IO conversion functions 3d) ≡
 stringToDouble = read :: String -> Double

 stringsToDoubles :: [String] -> [Double]
 stringsToDoubles xs = map stringToDouble xs
Test the Reduction Step

The noweb source file Gauss.nw is here.

- Running notangle Gauss.nw > Gauss.hs generates the Haskell code.
- Running noweave -index -delay Gauss.nw > Gauss.tex generates a \LaTeX file that is included in a wrapper \LaTeX file, that produces this document.

You may not have the noweb tools. You can retrieve the Haskell code from a link in the first step of this part of the assignment.
1. Download these files at the links: Gauss.hs and Gauss.tex.
2. Install the Glasgow Haskell Compiler and use its interpreter ghci to load Gauss.hs. Check the reduction code is correct on some simple cases, for instance,
 - *Gauss> gaussianReduce [[]] – the empty matrix
 - *Gauss> gaussianReduce [[1]] – a 1 × 1 matrix that needs no normalization
 - *Gauss> gaussianReduce [[2]] – a 1 × 1 matrix that needs normalization
 - *Gauss> gaussianReduce [[1,2]] – the equation 2x = 1
 - *Gauss> gaussianReduce [[1,2],[2,3]] – an inconsistent system
 - *Gauss> gaussianReduce [[1,-2,1,4],[2,3,-1,5],[3,1,4,7]] – a picked out of the air example
3. Write code to generate n lists of random Doubles of length n + 1 that represents a linear system Ax = b, where A is an n × n matrix and b is an n × 1 vector.
4. Run your data generation code to generate several data files of varying sizes n × n + 1.
5. Compile the Haskell source Gauss.hs with ghc profiling options, see the ghc User’s Guide on Profiling for instructions on this.
6. Execute Gauss on your data files, and collect running times.
7. Plot the running times. Find a curve that approximates the data. The R^2 value for the approximation should be close to 1.

Analyze the reduction step

A big-O time complexity can be computed for each function in the code. For instance, the anonymous function \((\lambda a \ b \rightarrow n \ast a \ - \ b) \) has time complexity \(O(1) \). The time cost to map it over a list of length \(n + 1 \) is \(O(n) \).

What are the big-O time complexities for the functions below. Explain your reasoning for each function. In particular, identify the size and type for the input and output of each function.
- stringsToDoubles
- map stringsToDoubles
The solving step in Gaussian elimination uses back substitution to solve for the values in \vec{x} in order $x_{n-1}, x_{n-2}, \ldots, x_0$. Write Haskell code that implements the solver step.

\[
\text{(The Gaussian solver step)} \equiv
- \text{gaussianSolve :: RMatrix} \to [\text{Double}]
- \text{Your code goes here}
\]

Test the Solver Step

Test your gaussianSolve code following steps similar to those outlined in testing gaussianReduce.

Analyze the solver step

1. What is the big-O time complexity of your gaussianSolve code?
2. Write a function that tests the accuracy of the computed solution \vec{x}'.
 - Use the L_∞ norm to measure and report solution accuracy.
 \[
 \|b' - b\|_\infty = \max \{ |b'_0 - b_0|, |b'_1 - b_1|, \ldots, |b'_{n-1} - b_{n-1}| \}
 \]
 where $b' = A\vec{x}'$.
 - Hilbert matrices H_n are famous examples of ill-conditioned matrices. Informally, this means solving $H_n\vec{x} = b$ accurately is difficult. The Hilbert H_5 is
 \[
 H_5 = \begin{bmatrix}
 1 & 1/2 & 1/3 & 1/4 & 1/5 \\
 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\
 1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\
 1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\
 1/5 & 1/6 & 1/7 & 1/8 & 1/9
 \end{bmatrix}
 \]
 In general, the value in row i, column j is
 \[
 (H_n)_{ij} = \frac{1}{i+j+1}, \quad i, j = 0, \ldots, n-1
 \]
 Test your code on Hilbert matrices.
References

