1. The are two bits: 0 and 1 (other names are: False and True, no and yes, off and on, low and high). Write down all bit strings of length:
 (a) 1
 (b) 2
 (c) 3

2. Tell me the number of bit strings of length:
 (a) 4.
 (b) 8.
 (c) \(n \), where \(n \) is a natural number, that is \(n \in \mathbb{N} = \{0, 1, 2, 3, \ldots \} \)
 (d) Does your formula (function \(n \mapsto \text{number of bit strings} \)) make sense at the boundary where \(n = 0 \)?

3. Most computers have 32-bit or 64-bit words. How many different binary words can be written using:
 (a) 32 bits?
 (b) 64 bits?

4. Do you see how to generalize your answers from above? How many different:
 (a) Decimal strings can be written using \(n \) digits?
 (b) Hexadecimal strings can be written using \(n \) hexadecimal numerals?
 (c) Lowercase English strings can be written using \(n \) letters?

5. The range of natural numbers that can be represented using 1 bit is 0 to 1. What range of natural numbers that can be represented using:
 (a) 2 bits?
 (b) 3 bits?
 (c) 4 bits?
 (d) 8 bits?
 (e) What function maps the number of bits \(n \) to the largest (top) natural number in the range?
 (f) Does your formula (function \(n \mapsto \text{top of the range} \)) make sense at the boundary where \(n = 0 \)?

6. Do you see how to generalize your answers from above? What is the range of natural numbers that can be written using:
 (a) \(n \) digits?
 (b) \(n \) hexadecimal numerals?

7. Computers have a memory address register (MAR) that holds the address of a location in memory. If the MAR is 14 bits wide, how many memory locations can be addressed?
8. Binary addition is straightforward: \(0 + 0 = 0\), \(0 + 1 = 1 + 0 = 1\) and \(1 + 1 = 0\) with a carry of 1. Compute the following binary sums:

\[
\begin{array}{c}
1 & 1 & 1 & 0 \\
+ & 0 & 1 & 1 & 0 \\
\hline
1 & 0 & 1 & 0 & 0 \\
\end{array}
\quad
\begin{array}{c}
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
+ & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

9. Binary multiplication is straightforward too: \(0 \cdot x = x \cdot 0 = 0\) and \(1 \cdot x = x \cdot 1 = x\). Compute the following binary products.

\[
\begin{array}{c}
1 & 1 & 1 & 0 \\
\times & 1 & 0 & 0 \\
\hline
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\quad
\begin{array}{c}
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\times & 1 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

Total Points: 0

2015-01-12 to 2015-01-16