One-to-One Functions

Definition 1 (One-to-One Function). A function \(f : X \rightarrow Y \) is one-to-one if \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \), or equivalently, \(x_1 \neq x_2 \) implies \(f(x_1) \neq f(x_2) \).

Each \(y \) in \(Y \), is the image of at most one \(x \) in \(X \).

\[
(\forall x_1, x_2 \in Y)((f(x_1) = f(x_2)) \rightarrow (x_1 = x_2))
\]
or

\[
(\forall x_1, x_2 \in Y)((x_1 \neq x_2) \rightarrow (f(x_1) \neq f(x_2)))
\]

One-to-One Functions

Recall, that a function can be represented by a graph, a good way to visualize the one-to-one idea.

Here is an example showing an one-to-one function.

[Graph of a one-to-one function with points 0, 1, 2, 3, 4, 5 mapping to a, b, c, d, e, f, respectively.]

One-to-One Functions

And, here is an example function that is not one-to-one.

[Graph of a non-one-to-one function with points 0, 1, 2, 3, 4, 5 mapping to a, b, c, d, e, f, respectively.]

\(b \) is the images of three values in \(X \) and \(d \) is the images of both 4 and 5.
The Horizontal Line Test for One-to-One-ness

When a function \(y = f(x) \) is graphed using Cartesian coordinates in the traditional analytic geometry fashion, the function is one-to-one when every horizontal line crosses its graph at most once.

When some horizontal line crosses the graph of \(y = f(x) \), more than once the \(f \) is not one-to-one.

Example One-to-One Functions

The following are one-to-one functions.

- All polynomials of degree 1 are one-to-one. For instance, \(f(x) = 3x + 2 \) is one-to-one.

 To see this, if \(3x_1 + 2 = 3x_2 + 2 \), then \(x_1 = x_2 \).

- The common (base 10) logarithm \(f(x) = \log x \) is one-to-one.

 To see this, if \(\log x_1 = \log x_2 \), then \(\log x_1 - \log x_2 = 0 \) and so \(\log(x_1/x_2) = 0 \) which implies \(x_1/x_2 = 1 \).

Example Functions That Are Not One-to-One

The following are not one-to-one functions.

- \(f(x) = 3x^2 + 2 \) is not one-to-one.

 To see this, notice \(f(-1) = 5 \) and \(f(1) = 5 \).

- \(f(n) = n \mod 3 \) is not one-to-one. \(1 \mod 3 = 4 \mod 3 = 7 \mod 3 = \cdots \).

One-to-One Depends on Cardinality of Domain and Co-domain

Let \(|X| = n \) and \(|Y| = m \) be the cardinalities of \(X \) and \(Y \).

Recall, the cardinality is the number of elements in the set.

If \(Y \) has fewer elements than \(X \), that is, if \(|Y| < |X| \), then it is not possible to define an one-to-one (total) function from \(X \) to \(Y \).
No One-to-One Functions from Large to Smaller Sets

You cannot have an one-to-one function from a large set to a smaller set.

On the other hand, a small domain does not guarantee a one-to-one function.