Representing Permutations

There are several ways to write a permutation.

As an example, let \(\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \).

A permutation on \(\mathbb{D} \) can be represented by

- The permutation itself, say \(\langle 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 \rangle \), but this notation fails to show how the permutation is constructed.

- A \(2 \times n \) permutation matrix

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 & 9
\end{bmatrix}
\]

which shows how terms are permuted from their natural order.

- Cyclic notation

\[[0][1, 5, 7, 8, 4, 2][3, 6][9] \]

Cyclic Notation for Permutations

Consider the 4-cycle permutation written in cyclic notation

\[[0][1, 5, 7, 8, 4, 2][3, 6][9] \]

This notation is read

1. 0 goes to (position) 0.
2. 1 goes to (position) 5, 5 goes to 7, 7 goes to 8, 8 goes to 4, 4 goes to 2, and 2 goes to 1.
3. 3 goes to (position) 6 and 6 goes to 3.
4. 9 goes to (position) 9.

Therefore, the permutation is \(\langle 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 \rangle \).

Writing a Permutation in Cyclic Notation

To write a permutation in cyclic notation it is perhaps best to first write it in matrix notation.

For instance, given the permutation \(\langle 8, 6, 4, 2, 0, 9, 7, 5, 3, 1 \rangle \) write it in matrix notation

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 6 & 4 & 2 & 0 & 9 & 7 & 5 & 3 & 1
\end{bmatrix}
\]

And now read off the cyclic structure.

(See the next slide)
Writing a Permutation in Cyclic Notation

Use the matrix notation

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 6 & 4 & 2 & 0 & 9 & 7 & 5 & 3 & 1
\end{bmatrix}
\]

to read off the cyclic structure.

1. 0 goes to (position) 4, 4 goes to 2, 2 goes to 3, 3 goes to 8, and 8 goes to 0. Giving the cycle

\[[0, 4, 2, 3, 8] \]

2. 1 goes to 9, 9 goes to 5, 5 goes to 7, 7 goes to 6, and 6 goes to 1.

\[[1, 9, 5, 7, 6] \]

Therefore, the permutation has 2 cycles \([0, 4, 2, 3, 8][1, 9, 5, 7, 6]\)

Writing a Permutation in Cyclic Notation

Here is another example.

Given the permutation \(\langle 7, 4, 8, 1, 3, 6, 5, 2, 9, 0 \rangle\) write it in matrix notation

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 4 & 8 & 1 & 3 & 6 & 5 & 2 & 9 & 0
\end{bmatrix}
\]

Read off the cyclic structure.

1. 0 goes to (position) 9, 9 goes to 8, 8 goes to 2, 2 goes to 7, and 7 goes to 0.

2. 1 goes to 3, 3 goes to 4, 4 goes to 1.

3. 5 goes to 6, 6 goes to 5.

Therefore, the permutation has 3 cycles

\[[0, 9, 8, 2, 7][1, 3, 4][5, 6] \]

Writing Cyclic Notation as a Permutation

Consider the reverse problem:

Given cyclic notation, write the permutation.

For instance, given the four cycle permutation

\[[0, 2, 5][3, 8, 7, 6][4, 1][9] \]

Write it in matrix notation

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 4 & 0 & 6 & 1 & 5 & 7 & 8 & 3 & 9
\end{bmatrix}
\]

and read off the permutation

\[\langle 5, 4, 0, 6, 1, 5, 7, 8, 3, 9 \rangle \]
Permutations Written in Cyclic Notation

\begin{align*}
\begin{bmatrix} 0, 1, 2 \end{bmatrix} & \quad \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1, 2 \end{bmatrix} \\
\begin{bmatrix} 0, 2, 1 \end{bmatrix} & \quad \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0, 2 \end{bmatrix} \\
& \quad \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 0, 1 \end{bmatrix}
\end{align*}

Figure 1: Cyclic notation for the $3! = 6$ permutations of $\{0, 1, 2\}$.

The similar table and figure for $4! = 24$ permutations of $\{0, 1, 2, 3\}$ is shown.

Figure 2: Cyclic notation for the $4! = 24$ permutations of $\{0, 1, 2, 3\}$.