The Symmetric Property of Relations

The symmetric property is defined by a conditional statement.

Let \(\sim \) be a relational symbol.

If \(x \sim y \) implies \(y \sim x \) for every \(x, y \in U \), then \(\sim \) is symmetric.

Definition 1 (Symmetric Relation). Let \(\sim \) be a relation on set \(U \). The relation \(\sim \) is **symmetric** if \(x \sim y \) implies \(y \sim x \) for all \(x, y \in U \).

In symbols, \(\sim \) is symmetric when

\[
(\forall x, y \in U)((x \sim y) \rightarrow (y \sim x))
\]

Representations of Symmetric Relations

If you recall, a relation is a set \(\sim \) of ordered pairs. **Symmetric** says if \((x, y) \in \sim \), then \((y, x) \in \sim \).

If you recall, a relation is an adjacency matrix, Symmetric says the value in row \(x \), column \(y \) equals the value in row \(y \), column \(x \).

\[
\begin{array}{cccccccc}
& a & b & c & d & \cdots & u \\
 a & x & \bullet & \bullet & \cdots & \bullet \\
b & \bullet & x & \bullet & 0 & \cdots & 0 \\
c & \bullet & \bullet & x & 1 & \cdots & 1 \\
d & \bullet & 0 & 1 & x & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
u & \bullet & 0 & 1 & 0 & \cdots & x \\
\end{array}
\]

The diagonal values \(x \) do not matter.

Representations of Symmetric Relations

If you know about matrices, a relation is symmetric when its adjacency matrix equals its **transpose**. Row \(k \) of \(A \) is column \(k \) of \(A^T \).

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\(A^T \) is symmetric

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\(A^T \) is **not** symmetric
Examples of Symmetric Relations
The following relations are symmetric.

• Equality on the set of integers. \((\forall a, b \in \mathbb{Z})(\ (a = b) \rightarrow (b = a))\).

• Not equal on the set of integers. \((\forall a, b \in \mathbb{Z})(\ (a \neq b) \rightarrow (b \neq a))\).

• Congruence mod \(n\) on the set of integers. \((\forall a \in \mathbb{Z})(\ (a \equiv b \pmod{n}) \rightarrow (b \equiv a \pmod{n}))\).

 If \(a - b\) is a multiple of \(n\), then \(b - a\) is a multiple of \(n\).

Examples of Symmetric Relations
The following relations are symmetric.

• Points on an origin-centered circle: \((\forall (x, y) \in \mathbb{R}^2)(\ (x^2 + y^2 - 1 = 0) \rightarrow (y^2 + x^2 - 1 = 0))\).

![Graph](circle.png)

• Even products on the integers:

 If \(xy\) is even, then \(yx\) is even.

Examples of Relations that are Not Symmetric
The following relations are not symmetric.

• Less than on the set of integers. A counterexample is, \(1 < 2\) but \(2 \not< 1\).

• Divides on the set of natural numbers. A counterexample is, \(1 \mid 2\) but \(2 \not\mid 1\).

• Proper subset on \(2^\mathbb{N}\), the power set \(\mathbb{N}\). A counterexample is, \(\{0\} \subset \{0, 1\}\) but \(\{0, 1\} \not\subset \{0\}\).
Counting Symmetric Relations

It is interesting to count symmetric relations on a finite set.

Theorem 2 (The Number of Symmetric Relations). Let \(U \) be a set with cardinality \(n \). There are

\[
2^{n(n+1)/2} = \sqrt{2^n(n+1)}
\]

symmetric relations on \(U \).

Recall, a relation on \(U \) can be represented as an \(n \times n \) adjacency matrix \(A \).

There are \(n \times n = n^2 \) entries in \(A \), and each entries can take on one of 2 values.

There are \(2^{n^2} \) different adjacency matrices (relations) that can be defined.

Using Adjacency Matrices to Count Symmetric Relations

Continuing from the previous slide.

To be symmetric, the matrix \(A \) must have equal values in symmetric entries: the value in row \(x \), column \(y \) equals the value in row \(y \), column \(x \).

Recall, there are

\[
1 + 2 + 3 + \cdots + (n - 1) + n = \frac{n(n + 1)}{2}
\]

entries on or below the main diagonal of \(A \).

The value in an entry of \(A \) can either be True or False.

But, once a value for an off-diagonal entry is chosen the value of the symmetric entry is also determined.

There are

\[
2^{n(n+1)/2} = \sqrt{2^n(n+1)}
\]

ways to choose values on or below the main diagonal of \(A \), and for each of these choice you can construct a symmetric matrix.
Counting Symmetric Relations

Here’s another way to count symmetric relations. Let \(\mathbb{U} \) be a set with cardinality \(n \).

Let name and order the elements of \(\mathbb{U} \):
\[
\mathbb{U} = \{u_0, u_1, u_2, \ldots, u_{n-2}, u_{n-1}\}
\]
A relation on \(\mathbb{U} \) can be represented as a subset \(\sim \) of the Cartesian product \(\mathbb{U} \times \mathbb{U} \).

There are \(n \times n = n^2 \) ordered pairs in \(\mathbb{U} \times \mathbb{U} \).

To be symmetric, if \((x, y) \in \sim\) then \((y, x) \in \sim\).

Consider \(p(j, k) = u_j \sim u_k \) as a predicate statement. When creating a relation you can set \(p(j, k) \) to either True or False.

Counting Symmetric Relations

To make a symmetric relation you choose to set
\[
u_j \sim u_k \quad \text{to True or False}
\]
for \(j = 0, 1, \ldots, n-1 \) and \(k = j, j+1, \ldots, n-1 \). For a fixed \(j \), the index \(k \) steps through \(n-j \) decisions.

\[
(u_0, u_0) \in \sim \quad (u_0, u_1) \in \sim \quad (u_0, u_2) \in \sim \quad \cdots \quad (u_0, u_{n-1}) \in \sim \\
(u_1, u_1) \in \sim \quad (u_1, u_2) \in \sim \quad \cdots \quad (u_1, u_{n-1}) \in \sim \\
(u_2, u_2) \in \sim \quad \cdots \quad (u_2, u_{n-1}) \in \sim \\
\vdots \quad \vdots \\
(u_{n-1}, u_{n-1}) \in \sim
\]

There are \(2^{n(n+1)/2} \) symmetric adjacency matrices.
Related Relation

• A relation \sim is not symmetric when there are values x and y such that $x \sim y$ and $y \not\sim x$. In symbols,
 $$(\exists x, y \in U)((x \sim y) \land (y \not\sim x))$$

• A relation \sim is asymmetric when $(x \sim y) \land (y \not\sim x)$, for all x and y. In symbols,
 $$(\forall x, y \in U)((x \sim y) \rightarrow (y \not\sim x))$$

• A relation \sim is antisymmetric when for all x and y, if $x \neq y$, then $x \not\sim y$ or $y \not\sim x$. In symbols,
 $$(\forall x, y \in U)((x \neq y) \rightarrow ((x \not\sim y) \lor (y \not\sim x)))$$

Problems on Symmetric Relations

Show your understanding of this topic by completing the problems found at Symmetric Relations.