1. What is the value of \(\lg(\sqrt{8}) \)?
 Answer: \(\lg(\sqrt{8}) = \lg(2^{3/5}) = 3/5 \)

2. Show that \(T(n) = n \lg n \) solves the recurrence equation
 \[
 T_n = 2T_{n/2} + n, \quad T_1 = 0
 \]
 For \(n = 1, 2, 4, 8, 16, \ldots \)
 Answer: First, \(T(1) = 1 \lg 1 = 0 = T_1 \). Next, if
 \[
 T_{n/2} = \frac{n}{2} \lg \left(\frac{n}{2} \right)
 \]
 for some \(n = 2^p \geq 1 \), then
 \[
 2T_{n/2} + n = n \lg \left(\frac{n}{2} \right) + n \\
 = n(\lg n - \lg 2) + n \\
 = n(\lg n - 1) + n \\
 = n \lg n \\
 = T_n
 \]

3. Show that
 \[
 \lceil x \rceil - \lfloor x \rfloor = 0, \quad \text{if } x \in \mathbb{Z}
 \]
 and
 \[
 \lceil x \rceil - \lfloor x \rfloor = 1, \quad \text{if } x \notin \mathbb{Z}
 \]
 Answer: If \(x \) is an integer then \(|x| = x \) and \(\lceil x \rceil = x \), so their difference is 0. If \(x \) is not an integer then \(n < x < n + 1 \) for some integer \(n \) and \(|x| = n \) and \(\lceil x \rceil = n + 1 \), so their difference is 1.