1. Use mathematical induction to show that \(m(n) = 2^n - 1 \) solves the recurrence equation \(m_n = 2m_{n-1} + 1 \) with initial conditions \(m_0 = 0 \) by

 (a) Establishing a basis for induction: \(m(0) = m_0 \).

 (b) Making a hypothesis that \(m(n-1) = m_{n-1} = 2^{n-1} - 1 \) for some \(n \geq 1 \).

 (c) Proving under these assumptions that \(m(n) = m_n = 2^n - 1 \).

2. Use mathematical induction to show that the geometric sum
 \[
 \sum_{k=0}^{n-1} r^k = \frac{r^n - 1}{r - 1}
 \]
 provided \(r \neq 1 \).

3. Use mathematical induction to prove the sum of products consecutive pairs of natural numbers is the product of three consecutive number divided by 3, that is,
 \[
 \sum_{k=0}^{n-1} k(k-1) = \frac{n(n-1)(n-2)}{3}
 \]
 Notice that this identity states
 \[
 \sum_{k=0}^{n-1} \binom{k}{2} = \binom{n}{3}
 \]