1. Consider the set of integers
\[\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \ldots\} \].

and the set of natural numbers
\[\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\} \].

Let \(a, b \in \mathbb{Z} \) and let \(n \in \mathbb{N} \). If \(n \) divides \(a - b \), write
\[a \equiv b \pmod{n} \]
and say \(a \) is congruent to \(b \) modula \(n \).

• Show that congruence modulo \(n \) is an equivalence relation.

Answer: Congruence is

- Reflexive: \((\forall a \in \mathbb{Z})(a \equiv a \pmod{n})\) because \(n \) divides \(a - a = 0 \).
- Symmetric: \((\forall a, b \in \mathbb{Z})(a \equiv b \pmod{n}) \rightarrow (b \equiv a \pmod{n})\) because if \(n \) divides \(a - b \), then \(n \) divides \(b - a \). That is, if \(a - b = n \cdot q \) for some quotient \(q \in \mathbb{Z} \), then \(b - a = n(-q) \).
- Transitive: \((\forall a, b, c \in \mathbb{Z})(a \equiv b \pmod{n}) \land (b \equiv c \pmod{n}) \rightarrow (a \equiv c \pmod{n})\) because if \(n \) divides \(a - b \) and \(n \) divides \(b - c \), then \(n \) divides \(a - c \). That is, if \(a - b = n \cdot q \) for some quotient \(q \in \mathbb{Z} \) and \(b - c = n \cdot q' \), then \(a - c = (a - b) + (b - c) = n(q + q') \), and \(n \) divides \(a - c \).

• What does \(a \equiv b \pmod{1} \) mean?

Answer: If \(a \equiv b \pmod{1} \) then \(a - b \) is divisible by \(1 \). Since \(1 \) divides every number, \(a \equiv b \pmod{1} \) means every integer \(a \) is related to every integer \(b \).

• What does \(a \equiv b \pmod{0} \) mean?

Answer: If \(a \equiv b \pmod{0} \) then \(a - b \) is divisible by \(0 \). The only number \(0 \) divides is \(0 \), so \(a \equiv b \pmod{0} \) means \(a = b \).