1. Suppose there are 8 people in a room.

 (a) How many 3 person subsets are there? (Give a whole number as your answer)

 Answer: There are
 \[\binom{8}{3} = \frac{8!}{3!5!} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 8 \cdot 7 = 56 \]

 3 person subsets.

 (b) In how many ways can you choose 10 of these subsets. (You can give an expression involving factorials as your answer, don’t compute a whole number!)

 Answer:
 \[\binom{56}{10} = \frac{56!}{10!46!} \]

2. With respect to sets and subsets, what does the binomial coefficient \(\binom{n}{k} \) represent?

 Answer: The binomial coefficient \(\binom{n}{k} \) is the number of \(k \)-element subsets that can be formed from an \(n \)-element set.

3. What is Pascal’s identity and what are its boundary conditions?

 Answer: Pascal’s identity is
 \[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \]

 and the boundary conditions are
 \[\binom{n}{0} = \binom{n}{n} = 1 \]