1. (10 pts) Fill in the truth table for De Morgan’s first law: If \(p \) and \(q \) are not both True, then one of \(p \) or \(q \) is False. Conversely, if one of \(p \) or \(q \) is False, then not both of them are True.

\[
\neg(p \land q) \equiv \neg p \lor \neg q
\]

De Morgan’s First Law

<table>
<thead>
<tr>
<th>Input</th>
<th>Computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2. (10 pts) Construct a truth table for the Boolean expression.

\[
[(p \to q) \land (\neg p \to r)] \to (q \lor r)
\]

Answer:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(Q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3. (10 pts) Given the truth table below, find a Boolean expression that computes it.

<table>
<thead>
<tr>
<th>Row</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0 1 1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1 0 0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1 1 0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Answer: Taking the row where the output D is 1. Form an AND-clauses of the input to make the row True. Form the OR of these clauses.

\[D = (\neg A \land B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land \neg C) \lor (A \land B \land C) \]

Alternatively, take the row where the output D is 0. Form an OR-clauses of the input to make the row False. Form the AND of these clauses.

\[D = (A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (\neg A \lor B \lor C) \]

4. (10 pts) The Internet Protocol (IP) is used to route traffic on the Internet. IPv6 uses 128-bits (16-bytes) to name addresses. What is the size of Internet version 6 space?

Answer: Internet version 6 space has \(2^{128} = 16^{32}\) addresses. A simple approximation gives

\[
2^{128} = (2^{10})^{12.8} \\
\approx (10^3)^{12.8} \\
= 10^{38.4}
\]

SI prefixes go up to yotta: \(10^{24}\). So there are about one hecto-tera-yotta-addresses \((10^{38})\) in IPv6 space.
5. (10 pts) Using \(n \) digits what is the largest natural number that can be written? Using \(n \) bits what is the largest natural number that can be written?

Answer: The largest decimal number that can written using \(n \) digits is \(10^n - 1 \). The largest binary number that can written using \(n \) bits is \(2^n - 1 \).

6. (10 pts) How many bits does it take to write the number 73? How many bits does it take to write the number \(n \)?

Answer: 73 can be written in 7 bits. Note that repeated division (quotients and remainders) is a simple way to compute a number’s binary representation. For instance,

<table>
<thead>
<tr>
<th>Repeated Remaindering Mod 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotients</td>
</tr>
<tr>
<td>Remainders</td>
</tr>
</tbody>
</table>

Therefore 73 = \((1001001)_2 \).

In general, any number \(n \geq 1 \) can be bound below and above by powers of 2

\[
2^k \leq n < 2^{k+1} \quad \text{for some } k \geq 0.
\]

In this case, it will require \(k + 1 \) bits to write \(n \). Using the inequalities above, and taking the log base 2 of each term, deduce that

\[
k \leq \lg n < k + 1
\]

Take the floor of \(\lg n \) to get \(k \) and add 1 to get \(k + 1 \), the number of bits needed to write \(n \).

\[
\lfloor \lg n \rfloor + 1 = \text{number of bits to write } n
\]
7. (30 pts) Let \(n, m \in \mathbb{N} \) be natural numbers. Write the following statements using mathematical notation.

(a) There is an \(n \in \mathbb{N} \) such that \(m = n/2 \).
Answer: \((\exists n \in \mathbb{N})(m = n/2)\)

(b) For all \(m \in \mathbb{N} \), there is an \(n \in \mathbb{N} \) such that \(n/2 = m \).
Answer: \((\forall m \in \mathbb{N})(\exists n \in \mathbb{N})(m = n/2)\)

(c) There is an \(n \in \mathbb{N} \) such that for all \(m \in \mathbb{N} \), \(m = n/2 \).
Answer: \((\exists n \in \mathbb{N})(\forall m \in \mathbb{N})(m = n/2)\)

Which of these three statements are True, False, or undecidable.
Answer:
(a) Question (7a) is True: \(n = 2m \) is a natural number if \(m \) is and \(m = n/2 \).
(b) Question (7b) is True: Since there were no restrictions on \(m \) in the previous answer, the argument applies to all \(m \).
(c) Question (7c) is False: It says there is some fixed natural number \(n \) such that every other natural number is twice \(n \) \((m = 2n)\).

8. (10 pts) Okay, I have to know, who can solve my favorite quadratic equation?
\[x^2 - x - 1 = 0\]

The roots are interesting numbers, for 10 extra points, tell me about the roots.

Total Points: 100

Wednesday, January 22, 2014